FAIRCHILD			January 1993 Revised March 2005
SEMICONDபCTOR®			
74ABT573			
Octal D-Type Latch with 3-STATE Outputs			
General Description Features			
The ABT573 is an octal latch with buffered common Latch Enable (LE) and buffered common Output Enable ($\overline{\mathrm{OE}}$) inputs.			■ Inputs and outputs on opposite sides of package allow easy interface with microprocessors Useful as input or output port for microprocessors
This device is functionally identical to the ABT373 but has broadside pinouts.			■ Functionally identical to ABT373 ■ 3-STATE outputs for bus interfacing ■ Output sink capability of 64 mA , source capability of 32 mA ■ Guaranteed output skew ■ Guaranteed multiple output switching specifications ■ Output switching specified for both 50 pF and 250 pF loads ■ Guaranteed simultaneous switching, noise level and dynamic threshold performance ■ Guaranteed latchup protection ■ High impedance glitch-free bus loading during entire power up and power down ■ Nondestructive hot insertion capability
Ordering Code:			
Order Number	Package Number		Package Description
74ABT573CSC	M20B	20-Lead Small Outline I	egrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
$\begin{aligned} & \text { 74ABT573CSCX_NL } \\ & \text { (Note 1) } \end{aligned}$	M20B	Pb-Free 20-Lead Small	utline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ABT573CSJ	M20D	Pb-Free 20-Lead Small	utline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ABT573CMSA	MSA20	20-Lead Shrink Small O	line Package (SSOP), JEDEC MO-150, 5.3mm Wide
74ABT573CMTC	MTC20	20-Lead Thin Shrink S	Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
$\begin{aligned} & \text { 74ABT573CMTCX_NL } \\ & \text { (Note 1) } \end{aligned}$	MTC20	Pb-Free 20-Lead Thin S Wide	ink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm
74ABT573CPC	N20A	20-Lead Plastic Dual-In	ne Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available in Tape and Reel. Specify by appending the suffix letter " X " to the ordering code. Pb-Free package per JEDEC J-STD-020B. Note 1: "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Device available in Tape and Reel only.			

Connection Diagram

Pin Descriptions

Pin Names	Descriptions
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs
LE	Latch Enable Input (Active HIGH)
$\overline{\mathrm{OE}}$	3-STATE Output Enable Input (Active LOW)
$\mathrm{O}_{0}-\mathrm{O}_{7}$	3-STATE Latch Outputs

Functional Description

The ABT573 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable $(\overline{\mathrm{OE}})$ input. When $\overline{\mathrm{OE}}$ is LOW, the buffers are in the bi-state mode. When $\overline{O E}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Function Table

Inputs			Outputs
$\overline{\mathrm{OE}}$	LE	D	0
L	H	H	H
L	H	L	L
L	L	X	O_{0}
H	X	X	Z
$\begin{aligned} & \mathrm{GH} \mathrm{Vc} \\ & \mathrm{~W} \text { Vol } \\ & \text { mater } \\ & \text { alue s } \end{aligned}$	revio		

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings（Note 2）

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias $V_{C C}$ Pin Potential to Ground Pin Input Voltage（Note 3）
Input Current（Note 3）
Voltage Applied to Any Output
in the Disabled or
Power－Off State
in the HIGH State
Current Applied to Output
in LOW State（Max）
DC Latchup Source Current
Over Voltage Latchup（I／O）
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ -0.5 V to +7.0 V -0.5 V to +7.0 V
-30 mA to +5.0 mA

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

Twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
$-500 \mathrm{~mA}$

Recommended Operating

 Conditions| Free Air Ambient Temperature | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |
| Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$ | |
| \quad Data Input | $50 \mathrm{mV} / \mathrm{ns}$ |
| Enable Input | $20 \mathrm{mV} / \mathrm{ns}$ |

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal
V_{CD}	Input Clamp Diode Voltage			－1．2	V	Min	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.55	V	Min	$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$
I_{H}	Input HIGH Current			1	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\text { Note } 5) \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IL	Input LOW Current			$\begin{aligned} & \hline-1 \\ & -1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\text { Note } 5) \\ & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
$\mathrm{l}_{\text {OzH }}$	Output Leakage Current			10	$\mu \mathrm{A}$	0－5．5V	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V} ; \overline{\mathrm{OE}}=2.0 \mathrm{~V}$
lozl	Output Leakage Current			－10	$\mu \mathrm{A}$	0－5．5V	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} ; \overline{\mathrm{OE}}=2.0 \mathrm{~V}$
los	Output Short－Circuit Current	－100		－275	mA	Max	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{I}_{\text {zz }}$	Bus Drainage Test			100	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$ ；All Others GND
${ }^{\text {CCH }}$	Power Supply Current			50	$\mu \mathrm{A}$	Max	All Outputs HIGH
$\mathrm{I}_{\text {CLL }}$	Power Supply Current			30	mA	Max	All Outputs LOW
$\mathrm{I}_{\mathrm{ccz}}$	Power Supply Current			50	$\mu \mathrm{A}$	Max	$\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { All Others at } \mathrm{V}_{\mathrm{CC}} \text { or } G N D \end{aligned}$
${ }_{\text {ICCT }}$	Additional $\mathrm{I}_{\mathrm{CC}} /$ Input Outputs Enabled Outputs 3－STATE Outputs 3－STATE			$\begin{aligned} & \hline 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	Max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { Enable Input } \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { Data Input } \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { All Others at } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \hline \end{aligned}$
${ }^{\text {CCD }}$	Dynamic ICC No Load （Note 5）			0.12	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	Max	Outputs Open $\overline{\mathrm{OE}}=\mathrm{GND}, \mathrm{LE}=\mathrm{V}_{\mathrm{CC}}$（Note 4） One Bit Toggling，50\％Duty Cycle
Note 4：For 8 bits toggling， $\mathrm{I}_{\mathrm{CCD}}<0.8 \mathrm{~mA} / \mathrm{MHz}$ ． Note 5：Guaranteed but not tested．							

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	$\begin{array}{r} \text { Con } \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{p} \end{array}$	$=500 \Omega$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$		0.7	1.0	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (N	
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	-1.5	-1.2		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\mathrm{N}$	
$\mathrm{V}_{\text {OHV }}$	Minimum HIGH Level Dynamic Output Voltage	2.5	3.0		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\mathrm{N}$	
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	2.2	1.8		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\mathrm{N}$	
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage		1.0	0.7	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\mathrm{N}$	
Note 6: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . One output at LOW. Guaranteed, but not tested. Note 7: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . One output HIGH. Guaranteed, but not tested. Note 8: Max number of data inputs (n) switching. $\mathrm{n}-1$ inputs switching 0 V to 3 V . Input-under-test switching: 3 V to threshold $\left(\mathrm{V}_{\text {ILD }}\right)$, 0 V to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right)$. Guaranteed, but not tested. AC Electrical Characteristics (SOIC and SSOP Package)								
Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$				$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ			Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{n} \text { to } O_{n}$	$\begin{aligned} & 1.9 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.8 \end{aligned}$			$\begin{aligned} & 1.9 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay LE to O_{n}	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 3.1 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 3.1 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.3 \end{aligned}$	ns
tehz tplz	Output Disable Time Time	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 3.4 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.4 \end{aligned}$	ns

AC Operating Requirements

(SOIC and SSOP Package)		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
Symbol	Parameter						
		Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {TOGGLE }}$	Max Toggle Frequency		100				MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$	Set Time, HIGH or LOW D_{n} to LE	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW D_{n} to LE	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		ns
${ }_{t_{w}(\mathrm{H})}$	Pulse Width, LE HIGH	3.0			3.0		ns

Dashed lines represent design characteristics; for specified guarantees, refer to AC Characteristics Tables.
AC Loading

OPEN
FIGURE 1. Test Load

$V_{M}=1.5 \mathrm{~V}$
FIGURE 2. Test Input Signal Levels

Amplitude	Rep. Rate	$\mathbf{t}_{\mathbf{W}}$	$\mathbf{t}_{\mathbf{r}}$	$\mathbf{t}_{\mathbf{f}}$
3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 3. Test Input Signal Requirements
AC Waveforms

FIGURE 4. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

FIGURE 5. Propagation Delay, Pulse Width Waveforms

FIGURE 6. 3-STATE Output HIGH and LOW Enable and Disable Times

Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
Package Number MSA20

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
