48 1 1 OE

SCES047 - AUGUST 1995

- Member of the Texas Instruments Widebus™ Family
- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 2 V at V_{CC} = 3.3 V, T_A = 25°C
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- All Outputs Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required
- Package Options Include Plastic Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

description

This 16-bit (dual-octal) noninverting bus transceiver is designed for 2.7-V to 3.6-V $V_{\rm CC}$ operation

The SN74LVCR162245 is designed for asynchronous communication between data buses. The control function implementation minimizes external timing requirements.

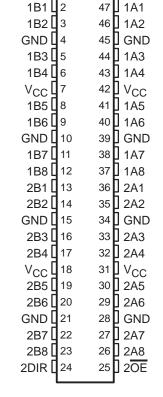
This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending upon the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated.

All outputs, which are designed to sink up to 12 mA, include $26-\Omega$ resistors to reduce overshoot and undershoot.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74LVCR162245 is characterized for operation from −40°C to 85°C.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

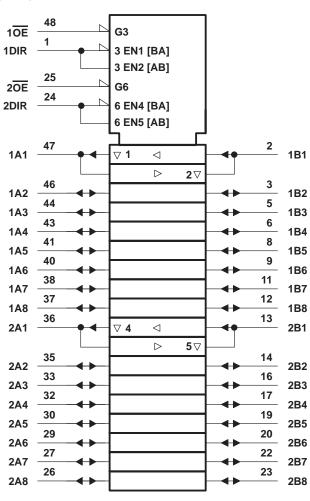
EPIC and Widebus are a trademarks of Texas Instruments Incorporated.

TEXAS INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

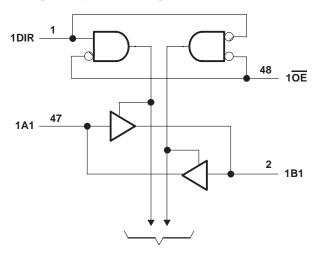
DGG OR DL PACKAGE

(TOP VIEW)

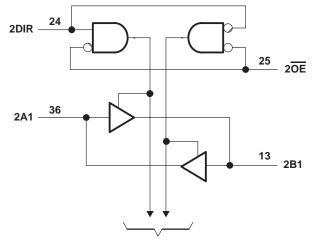

1DIR L

Copyright © 1995, Texas Instruments Incorporated

FUNCTION TABLE (each 8-bit section)


INPUTS		OPERATION					
OE	DIR	OPERATION					
L	L	B data to A bus					
L	Н	A data to B bus					
Н	X	Isolation					

logic symbol†



† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

SCES047 - AUGUST 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, VI: Except I/O ports (see Note 1)	$-0.5 \text{ V to V}_{CC} + 4.6 \text{ V}$
I/O ports (see Notes 1 and 2)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Output voltage range, VO (see Notes 1 and 2)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Maximum power dissipation at $T_A = 55^{\circ}$ C (in still air) (see N	lote 3): DGG package 0.85 W
	DL package 1.2 W
Storage temperature range, T _{stg}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This value is limited to 4.6 V maximum.
- The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.
 For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology
 Data Book, literature number SCBD002B.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
Vсс	Supply voltage		2.7	3.6	V
VIH	High-level input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		V
V_{IL}	Low-level input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	V
٧ _I	Input voltage		0	VCC	V
٧o	Output voltage		0	VCC	V
la	High-level output current	$V_{CC} = 2.7 \text{ V}$		-8	mA
ЮН	nigir-level output current	V _{CC} = 3 V		-12	IIIA
lo.	Low-level output current	V _{CC} = 2.7 V	V _{CC} = 2.7 V		
IOL	Low-level output current	VCC = 3 V		12	mA
$\Delta t/\Delta V$	Input transition rise or fall rate		0	10	ns/V
T _A	Operating free-air temperature		-40	85	°C

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

SN74LVCR162245 **16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS**

SCES047 - AUGUST 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

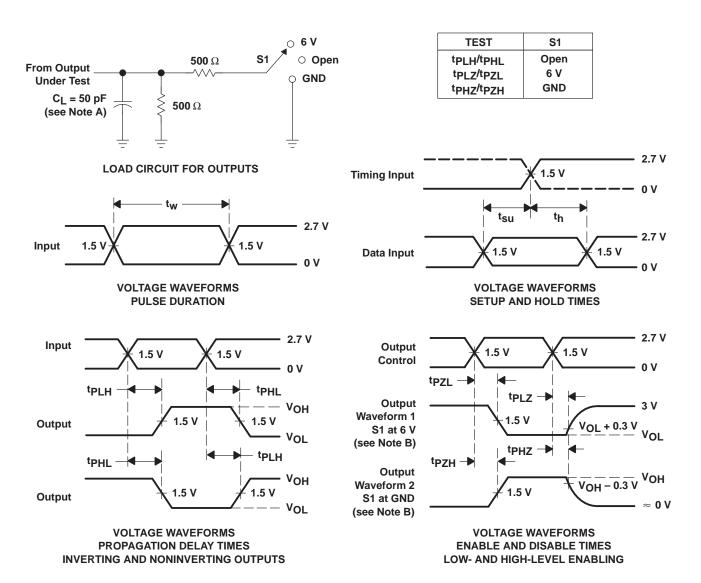
PAI	RAMETER	TEST CONDITIONS		v _{cc} †	MIN	TYP [‡]	MAX	UNIT	
		I _{OH} = -100 μA		MIN to MAX	VCC-0	.2			
	$I_{OH} = -4 \text{ mA},$	V _{IH} = 2 V	2.7 V	2.2					
Vон		$I_{OH} = -8 \text{ mA},$	V _{IH} = 2 V	2.7 V	2			V	
		$I_{OH} = -6 \text{ mA},$	V _{IH} = 2 V	3 V	2.4				
		$I_{OH} = -12 \text{ mA},$	V _{IH} = 2 V	3 V	2				
		I _{OH} = -100 μA		MIN to MAX			0.2		
		$I_{OH} = -4 \text{ mA},$	V _{IL} = 0.8 V	2.7 V			0.4	V	
VOL		$I_{OH} = -8 \text{ mA},$	V _{IL} = 0.8 V	2.7 V			0.6		
		$I_{OH} = -6 \text{ mA},$	V _{IL} = 0.8 V	3 V			0.55	ļ	
		$I_{OH} = -12 \text{ mA},$	V _{IL} = 0.8 V	3 V			0.8		
lį		$V_I = V_{CC}$ or GND		3.6 V			±5	μΑ	
l _l (hold)		V _I = 0.8 V		3 V	75			μΑ	
		V _I = 2 V] 3 v	-75				
		V _I = 0 to 3.6 V		3.6 V			±500	μΑ	
loz§		$V_O = V_{CC}$ or GND		3.6 V			±10	μΑ	
ICC		$V_I = V_{CC}$ or GND,	IO = 0	3.6 V			20	μΑ	
∆lcc		One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	2.7 V to 3.6 V			500	μΑ	
Ci	Control inputs	V _I = V _{CC} or GND		3.3 V		2.5		pF	
Cio	A or B ports	$V_O = V_{CC}$ or GND		3.3 V		3.5		pF	

[†] For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =	3.3 V 3 V	VCC =	2.7 V	UNIT	
	(INFOT)	(001701)	MIN	MAX	MIN	MAX		
t _{pd}	A or B	B or A	1.5	7.5	1.5	8.5	ns	
t _{en}	ŌĒ	A or B	1.5	9	1.5	10	ns	
^t dis	ŌĒ	A or B	1.5	7.5	1.5	8.5	ns	

operating characteristics, $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$


PARAMETER			TEST CONDITIONS	TYP	UNIT
C _{pd}	Down dissipation conscitance per transcriver	Outputs enabled	Cı = 50 pF. f = 10 MHz	20	nE
	Power dissipation capacitance per transceiver	Outputs enabled	$C_L = 50 \text{ pF}, f = 10 \text{ MHz}$	2	p⊦

[‡] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] For I/O ports, the parameter IOZ includes the input leakage current.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50~\Omega$, $t_f \leq 2.5~ns$, $t_f \leq 2.5~ns$.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tpzL and tpzH are the same as tden.
- G. tpHL and tpLH are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated