## 8-bit Proprietary Microcontroller

## CMOS

## F²MC-8L MB89160/160A Series

## MB89161/163/165/P165/PV160/W165 MB89161A/163A/165A

## ■ DESCRIPTION

The MB89160 series is a line of the general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as an LCD controller/driver, an A/D converter, timers, a serial interface, PWM timers, and external interrupts.

■ FEATURES

- F²MC-8L family CPU core
- Dual-clock control system
- Maximum memory size: 16-Kbyte ROM, 512-byte RAM (max.)
- Minimum execution time: $0.95 \mu \mathrm{~s} / 4.2 \mathrm{MHz}$
- I/O ports: max. 54 channels
- 21-bit time-base counter
- 8/16-bit timer/counter: 2 or 1 channels
- 8 -bit serial I/O: 1 channel
- External interrupts (wake-up function): Four channels with edge selection plus eight level-interrupt channels
- 8 -bit A/D converter: 8 channels
- 8-bit PWM timers: 2 channels
- Watch prescaler ( 15 bits)
- LCD controller/driver: 24 segments $\times 4$ commons (max. 96 pixels)
- LCD driving reference voltage generator and booster (option)
- Remote control transmission output
- Buzzer output
- Power-on reset function (option)
- Low-power consumption modes (stop, sleep, and watch mode)
- CMOS technology


## MB89160/160A Series

## PACKAGE

(FTP-80P-M05)

PRODUCT LINEUP

| Part number Parameter | $\begin{gathered} \text { MB89161/ } \\ \text { MB89161A } \end{gathered}$ | $\begin{gathered} \hline \text { MB89163/ } \\ \text { MB89163A1 } \end{gathered}$ | $\begin{gathered} \text { MB89165/ } \\ \text { MB89165A1 } \end{gathered}$ | MB89P165 | MB89W165 | MB89PV160 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Classification | Mass production products (mask ROM products) |  |  | One-time PROM product | EPROM product | Piggyback/ evaluation product (for development) |
| ROM size | $4 \mathrm{~K} \times 8$ bits (internal mask ROM) | $8 \mathrm{~K} \times 8$ bits (internal mask ROM) | $16 \mathrm{~K} \times 8$ bits (internal mask ROM) | 16 K <br> (internal PROM with general-p programmer) | 8 bits programming pose EPROM | $32 \mathrm{~K} \times 8$ bits (external ROM) |
| RAM size | $128 \times 8$ bits | $256 \times 8$ bits | $512 \times 8$ bits |  |  |  |
| CPU functions | Number of instructions: 136 <br> Instruction bit length: 8 bits <br> Instruction length: 1 to 3 bytes <br> Data bit length: $1,8,16$ bits <br> Minimum execution time: $0.95 \mu \mathrm{~s} / 4.2 \mathrm{MHz}$ <br> Interrupt processing time: $9 \mu \mathrm{~s} / 4.2 \mathrm{MHz}$ |  |  |  |  |  |
| Ports | I/O port (N-ch open-drain): 8 (6 ports also serve as peripherals, 3 ports <br>  are a heavy-current drive type.) <br> Output ports (N-ch open-drain): 28 (16 ports also serve as segment pins, 2 ports <br>  serve as booster capacitor connection pins, <br>  2 ports serve as common pins.) <br>   <br>  (8 ports also serve as an A/D input) <br> I/O ports (CMOS): 16 (12 ports also serve as an external interrupt) <br> Output ports (CMOS): 2 (Also serve as peripherals) <br> Total: 54 (max.) |  |  |  |  |  |
| Timer/counter | 8-bit timer operation (toggled output capable, operating clock cycle $1.9 \mu \mathrm{~s}$ to $486 \mu \mathrm{~s}$ ) 16-bit timer operation (toggled output capable, operating clock cycle $1.9 \mu \mathrm{~s}$ to $486 \mu \mathrm{~s}$ ) |  |  |  |  |  |
| Serial I/O | 8 bitsLSB first/MSB first selectabilityOne clock selectable from four operation clocks(one external shift clock, three internal shift clocks: $1.9 \mu \mathrm{~s}, 7.6 \mu \mathrm{~s}, 30.4 \mu \mathrm{~s}$ ) |  |  |  |  |  |
| LCD controller/ driver | Common output: 4 (max.) <br> Segment output: 24 (max.) ${ }^{* 3}$ <br> Bias power supply pins: 4 <br> LCD display RAM size: $24 \times 4$ bits <br> Booster for LCD driving: Built-in (product with a booster) ${ }^{* 3}$ <br> Dividing resistor for LCD driving: Built-in (an external resistor <br> selectability) |  |  |  |  | Without a booster for LCD driving |
| A/D converter | 8-bit resolution $\times 8$ channels <br> A/D conversion mode (conversion time $43 \mu \mathrm{~s} / 4.2 \mathrm{MHz}$ ( 44 instruction cycles)) Sense mode (conversion time $11.9 \mu \mathrm{~s} / 4.2 \mathrm{MHz}$ ) Continuous activation by an internal timer capable Reference voltage input |  |  |  |  |  |

(Continued)

## MB89160/160A Series

(Continued)

| Part number Parameter | $\begin{gathered} \text { MB89161/ } \\ \text { MB89161A } \end{gathered}$ | $\begin{gathered} \text { MB89163/ } \\ \text { MB89163A } \end{gathered}$ | $\begin{gathered} \text { MB89165/ } \\ \text { MB89165A } \end{gathered}$ | MB89P165 | MB89W165 | MB89PV160 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PWM timer 1, PWM timer 2 | 8 bits $\times 2$ channels <br> 8 -bit reload timer operation (toggled output capable, operating clock cycle: $0.95 \mu$ s to 124 ms ) <br> 8 -bit resolution PWM operation (conversion cycle: $243 \mu \mathrm{~s}$ to 32 s ) |  |  |  |  |  |
| External interrupt 1 (wake-up function) | 4 independent channels (edge selectability) <br> Rising edge/falling edge selectability <br> Used also for wake-up from stop/sleep mode. <br> (Edge detection is also permitted in stop mode.) |  |  |  |  |  |
| External interrupt 2 | "L" level interrupts $\times 8$ channels |  |  |  |  |  |
| Buzzer output | 1 (7 frequencies are selectable by the software.) |  |  |  |  |  |
| Remote control transmission output | 1 (Pulse width and cycle are software selectable.) |  |  |  |  |  |
| Standby modes | Subclock mode, sleep mode, stop mode, and watch mode |  |  |  |  |  |
| Process | CMOS |  |  |  |  |  |
| Operating voltage*2 | 2.2 V to 6.0 V (single clock)/ 2.2 V to 4.0 V (dual clock) |  |  | 2.7 V to 6.0 V |  |  |
| EPROM for use | - |  |  |  |  | $\begin{aligned} & \text { MBM27C256A- } \\ & \text { 20TV } \end{aligned}$ |

*1: Products with an internal booster.
*2: Varies with conditions such as the operating frequency. (The operating voltage of the $A / D$ converter is assured separately. See section "■ Electrical Characteristics.")
*3: See section "■ Mask Options."
PACKAGE AND CORRESPONDING PRODUCTS

| Package | MB89161 <br> MB89161A | MB89163 <br> MB89163A | MB89165 <br> MB89165A | MB89PW165 | MB89W165 | MB89PV160 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| FPT-80P-M05 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\times$ |
| FPT-80P-M06 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\times$ |
| FPT-80P-M11 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\times$ |
| MQP-80C-P01 | $\times$ | $\times$ | $\times$ | $\times$ | $\bigcirc$ | $\times$ |
| FPT-80C-A02 | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ | $\bigcirc$ |

$\bigcirc$ : Available $\quad \times$ : Not available
Note: For more information about each package, see section "■ Package Dimensions."

## MB89160/160A Series

## DIFFERENCES AMONG PRODUCTS

## 1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used.
Take particular care on the following points:

- On the MB89161/A and MB89163/A, the upper half of each register bank cannot be used.
- The stack area, etc., is set at the upper limit of the RAM.


## 2. Current Consumption

- In the case of the MB89PV160, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.

However, the current consumption in the sleep/stop modes is the same. (For more information, see section "■ Electrical Characteristics.")

## 3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.
Before using options check section " $\square$ Mask Options."
Take particular care on the following points:

- A pull-up resistor cannot be set for P20 to P27 on the MB89P165.
- A pull-up resistor is not selectable for P40 to P47 and P60 to P67 if they are used as LCD pins.
- Options are fixed on the MB89PV160.


## MB89160/160A Series

## PIN ASSIGNMENT

(Top view)

(FPT-80P-M11)
*1: For products with a booster circuit
*2: For products without a booster circuit
*3: N-ch open-drain heavy-current drive type
*4 to *7: Selected using the mask option (in units of 4 pins)
*8: Selected using the mask option (in units of 2 pins)
Note: For more information on mask option combinations of *4 to *8, see section "■ Mask Options."

## MB89160/160A Series

(Top view)

(FPT-80P-M06)
(FPT-80C-A02)
*1: For products with a booster circuit
*2: For products without a booster circuit
*3: N-ch open-drain heavy-current drive type
*4 to *7: Selected using the mask option (in units of 4 pins)
*8: Selected using the mask option (in units of 2 pins)
Note: For more information on mask option combinations of *4 to *8, see section "■ Mask Options."

## MB89160/160A Series

(Top view)

(FPT-80P-M05)
*1: For products with a booster circuit
*2: For products without a booster circuit
*3: N-ch open-drain heavy-current drive type

* 4 to * 7 : Selected using the mask option (in units of 4 pins)
*8: Selected using the mask option (in units of 2 pins)
Note: For more information on mask option combinations of *4 to *8, see section "■ Mask Options."


| Pin no. | Pin name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81 | N.C. | 89 | A2 | 97 | N.C. | 105 | $\overline{\mathrm{OE}}$ |
| 82 | VPP | 90 | A1 | 98 | O4 | 106 | N.C. |
| 83 | A12 | 91 | A0 | 99 | O5 | 107 | A11 |
| 84 | A7 | 92 | N.C. | 100 | O6 | 108 | A9 |
| 85 | A6 | 93 | O1 | 101 | O7 | 109 | A8 |
| 86 | A5 | 94 | O2 | 102 | O8 | 110 | A13 |
| 87 | A4 | 95 | O3 | 103 | $\overline{\mathrm{CE}}$ | 111 | A14 |
| 88 | A3 | 96 | Vss | 104 | A10 | 112 | Vcc |

N.C.: Internally connected. Do not use.

## MB89160/160A Series

## PIN DESCRIPTION

| Pin no. |  | Pin name | Circuit type | Function |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SQFP } \\ & \text { QFP }^{+1} \end{aligned}$ | $\begin{gathered} \text { MQFP }{ }^{\prime 3}{ }^{\text {QFP }} 4 \end{gathered}$ |  |  |  |
| 16 | 18 | X0 | A | Main clock crystal oscillator pins CR oscillation selectability (mask products only) |
| 15 | 17 | X1 |  |  |
| 18 | 20 | MOD0 | C | Operating mode selection pins Connect directly to Vss. |
| 17 | 19 | MOD1 |  |  |
| 19 | 21 | $\overline{\mathrm{RST}}$ | D | Reset I/O pin <br> This pin is an N-ch open-drain output type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L". |
| 20 to 27 | 22 to 29 | P00/INT20 to P07/INT27 | E | General-purpose I/O ports <br> Also serve as an external interrupt 2 input (wake-up function). <br> External interrupt 2 input is hysteresis input. |
| 28 to 31 | 30 to 33 | P10/INT10 to P13/INT13 | E | General-purpose I/O ports Also serve as an external interrupt 1 input. External interrupt 1 input is hysteresis input. |
| 32 to 35 | 34 to 37 | P14 to P17 | F | General-purpose I/O ports |
| 36 | 38 | P20/EC | H | N-ch open-drain general-purpose I/O port Also serves as the external clock input for the timer. The peripheral is a hysteresis input type. |
| 37 | 39 | P21 | 1 | N-ch open-drain general-purpose I/O port |
| 38 | 40 | P22/TO | 1 | N -ch open-drain general-purpose I/O port Also serves as a timer output. |
| 39 | 41 | P23/SI | H | N-ch open-drain general-purpose I/O port Also serves as the data input for the serial I/O. The peripheral is a hysteresis input type. |
| 40 | 42 | P24/SO | I | N -ch open-drain general-purpose I/O port Also serves as the data output for the serial I/O. |
| 41 | 43 | P25/SCK | H | N -ch open-drain general-purpose I/O port Also serves as the clock I/O for the serial I/O. The peripheral is a hysteresis input type. |
| 42 | 44 | P26 | 1 | N-ch open-drain general-purpose I/O port |
| 43 | 45 | P27/PWM2 | 1 | N -ch open-drain general-purpose I/O port Also serves as the square wave or PWM wave output for the 8-bit PWM timer 2. |
| 49 | 51 | P33 | J | Functions as an N-ch open-drain general-purpose output port only in the products without a booster. |
|  |  | C0 | - | Functions as a capacitor connection pin in the products with a booster. |

*1: FPT-80P-M05
(Continued)
*2: FPT-80P-M11
*3: MQP-80C-P01
*4: FPT-80P-M06

## MB89160/160A Series

(Continued)

| Pin no. |  | Pin name <br> SQFP*1 <br> QFP'2MQFP*3 <br> QFP | Circuit <br> type | Function |
| :---: | :---: | :--- | :---: | :--- |

*1: FPT-80P-M05
*2: FPT-80P-M11
*3: MQP-80C-P01
*4: FPT-80P-M06

## MB89160/160A Series

- External EPROM pins (MB89PV160 only)

| Pin no. | Pin name | I/O | Function |
| :---: | :---: | :---: | :---: |
| 82 | Vpp | O | "H" level output pin |
| $\begin{aligned} & 83 \\ & 84 \\ & 85 \\ & 86 \\ & 87 \\ & 88 \\ & 89 \\ & 90 \\ & 91 \end{aligned}$ | A12 <br> A7 <br> A6 <br> A5 <br> A4 <br> A3 <br> A2 <br> A1 <br> A0 | O | Address output pins |
| $\begin{aligned} & 93 \\ & 94 \\ & 95 \end{aligned}$ | $\begin{aligned} & \text { O1 } \\ & \text { O2 } \\ & \text { O3 } \end{aligned}$ | 1 | Data input pins |
| 96 | Vss | 0 | Power supply (GND) pin |
| $\begin{gathered} 98 \\ 99 \\ 100 \\ 101 \\ 102 \end{gathered}$ | O4 05 06 07 08 | I | Data input pins |
| 103 | $\overline{\mathrm{CE}}$ | 0 | ROM chip enable pin Outputs "H" during standby. |
| 104 | A10 | 0 | Address output pin |
| 105 | OE | 0 | ROM output enable pin Outputs "L" at all times. |
| $\begin{aligned} & 107 \\ & 108 \\ & 109 \end{aligned}$ | $\begin{aligned} & \text { A11 } \\ & \text { A9 } \\ & \text { A8 } \end{aligned}$ | 0 | Address output pins |
| 110 | A13 | 0 |  |
| 111 | A14 | 0 |  |
| 112 | Vcc | 0 | EPROM power supply pin |
| $\begin{gathered} 81 \\ 92 \\ 97 \\ 106 \\ \hline \end{gathered}$ | N.C. | - | Internally connected pins Be sure to leave them open. |

## MB89160/160A Series

## I/O CIRCUIT TYPE

| Type | Circuit | Remarks |
| :---: | :---: | :---: |
| A |  | Main clock <br> - At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5.0 \mathrm{~V}$ <br> - CR oscillation is selectable (MB8916X/A only). |
| B |  | Subclock <br> - At an oscillation feedback resistor of approximately $\text { 4.5 M } \Omega / 5.0 \mathrm{~V}$ |
| C | $\square \longrightarrow$ |  |
| D |  | - At an output pull-up resistor of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$ <br> - Hysteresis input |
| E |  | - CMOS I/O <br> - The peripheral is a hysteresis input type. <br> - Pull-up resistor optional (Not available on the MB89PV160.) |

(Continued)

## MB89160/160A Series

(Continued)

| Type | Circuit | Remarks |
| :---: | :---: | :---: |
| F |  | - CMOS I/O <br> - Pull-up resistor optional (Not available on the MB89PV160) |
| G |  | - CMOS output <br> - P-ch output is a heavy-current drive type. |
| H |  | - N -ch open-drain I/O <br> - CMOS input <br> - The peripheral is a hysteresis input type. <br> - P21, P26, and P27 are a heavy-current drive type. <br> - Pull-up resistor optional (Not available on the MB89P165/A, MB89W165/A and MB89PV160) |
| I |  | - N-ch open-drain output <br> - CMOS input <br> - Pull-up resistor optional (Not available on the MB89P165/A, MB89W165/A and MB89PV160) |
| J |  | - N-ch open-drain output <br> - Pull-up resistor optional (Not available on the MB89P165/A, MB89W165/A and MB89PV160) <br> - P32 and P33 are not provided with a pull-up resistor. |

(Continued)

## MB89160/160A Series

(Continued)

| Type | Circuit | Remarks |
| :---: | :---: | :---: |
| K |  | - LCD controller/driver segment output |
| L |  | - N-ch open-drain output <br> - Analog input <br> - Pull-up resistor optional (Not available on the MB89PV160) |

## MB89160/160A Series

## HANDLING DEVICES

## 1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than $\mathrm{V}_{\mathrm{cc}}$ or lower than $\mathrm{V}_{\mathrm{ss}}$ is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc to Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog power supply ( AV cc and AVR ) and analog input from exceeding the digital power supply ( $\mathrm{V}_{\mathrm{cc}}$ ) when the analog system power supply is turned on and off.

## 2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

## 3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be $\mathrm{AV} \mathrm{cc}=\mathrm{DAVC}=\mathrm{Vcc}$ and $\mathrm{AVss}=\mathrm{AVR}=\mathrm{V} s \mathrm{~s}$ even if the $\mathrm{A} / \mathrm{D}$ and $\mathrm{D} / \mathrm{A}$ converters are not in use .

## 4. Treatment of N.C. Pin

Be sure to leave (internally connected) N.C. pins open.

## 5. Power Supply Voltage Fluctuations

Although $V_{c c}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that V cc ripple fluctuations ( $\mathrm{P}-\mathrm{P}$ value) will be less than $10 \%$ of the standard Vcc value at the commercial frequency ( 50 to 60 Hz ) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

## 6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

## PROGRAMMING TO THE EPROM ON THE MB89P165

The MB89P165 is an OTPROM version of the MB89160 series.

## 1. Features

- 32-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)


## 2. Memory Space

Memory space in each mode such as 32-Kbyte PROM, option area is diagrammed below.


## 3. Programming to the EPROM

In EPROM mode, the MB89P165 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

When the operating area for a single chip is 16 Kbyte ( COOOH to FFFF ) the PROM can be programmed as follows:

## - Programming procedure

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program into the EPROM programmer at 4000 н to 7 FFFн.
(Note that addresses $\mathrm{COOOH}_{\mathrm{H}}$ to FFFFH while operating as a single chip assign to $400 \mathrm{O}_{\mathrm{H}}$ to 7 FFFн in EPROM mode.)
Load option data into address 3FFOH to 3 FF5 ${ }_{\mathrm{H}}$ of the EPROM programmer.
(For information about each corresponding option, see "8. Setting OTPROM Options.")
(3) Program with the EPROM programmer.

## MB89160/160A Series

## 4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.


## 5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of $100 \%$ cannot be assured at all times.

## 6. EPROM Programmer Adapter Socket

| Package | Compatible adapter socket |
| :--- | :--- |
| FPT-80P-M05 | ROM-80SQF-28DP-8L |
| FPT-80P-M06 | ROM-80QF-28DP-8L3 |
| FPT-80P-M11 | ROM-80QF2-28DP-8L2 |

## 7. Erasure

In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an ultraviolet light source. A dosage of 10 W -seconds/ $\mathrm{cm}^{2}$ is required to completely erase an internal EPROM. This dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms ( $\AA$ )) with intensity of $12000 \mu \mathrm{~W} / \mathrm{cm}_{2}$ for 15 to 21 minutes. The internal EPROM should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.
It is important to note that the internal EPROM and similar devices, will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure time will be much longer than with UV source at $2537 \AA \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

## MB89160/160A Series

## 8. Setting OTPROM Options

The programming procedure is the same as that for the PROM. Options can be set by programming value at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map:

- OTPROM option bit map

|  | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3FFOH | Vacancy | Vacancy | Oscillation stabilization time |  | Vacancy <br> Readable | Reset pin output 1: Yes 0: No | Clock mode selection <br> 1: Dual clock <br> 0 : Single clock | Power-on reset <br> 1: Yes <br> 0 : No |
|  | Readable | Readable | WTM1 WTM0 <br> See section "■ Mask Option."  |  |  |  |  |  |
| 3FF1H | P07 <br> Pull-up <br> 1: No <br> 0 : Yes | P06 Pull-up 1: No 0: Yes | P05 Pull-up 1: No 0: Yes | P04 Pull-up 1: No 0 : Yes | P03 Pull-up 1: No 0: Yes | P02 <br> Pull-up <br> 1: No <br> 0 : Yes | P01 Pull-up 1: No 0: Yes | P00 <br> Pull-up <br> 1: No <br> 0: Yes |
| 3FF2H | P17 <br> Pull-up <br> 1: No <br> 0 : Yes | P16 Pull-up 1: No 0: Yes | P15 <br> Pull-up <br> 1: No <br> 0: Yes | P14 Pull-up 1: No 0 : Yes | P13 <br> Pull-up <br> 1: No <br> 0: Yes | P12 <br> Pull-up <br> 1: No <br> 0: Yes | P11 Pull-up 1: No 0 : Yes | P10 Pull-up 1: No 0: Yes |
| 3FF3H | P57 <br> Pull-up <br> 1: No <br> 0 : Yes | P56 Pull-up 1: No 0: Yes | P55 Pull-up 1: No 0 : Yes | P54 Pull-up 1: No 0 : Yes |  | P52 <br> Pull-up 1: No 0 : Yes | P51 Pull-up 1: No 0 : Yes |  |
| 3FF4H | Vacancy <br> Readable |
| 3FF5H | Vacancy <br> Readable |

Notes: - Set each bit to 1 to erase.

- Do not write 0 to the vacant bit.

The read value of the vacant bit is 1 , unless 0 is written to it.

## MB89160/160A Series

## PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TV

## 2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

| Package | Adapter socket part number |
| :---: | :---: |
| LCC-32 (Rectangle) | ROM-32LC-28DP-YG |

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

## 3. Memory Space

Memory space in each mode, such as 32-Kbyte PROM, option area is diagrammed below.


## 4. Programming to the EPROM

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0000н to 7FFFн.
(3) Program to 0000 н to 7 FFFн with the EPROM programmer.

## MB89160/160A Series

## BLOCK DIAGRAM



## MB89160/160A Series

## CPU CORE

## 1. Memory Space

The microcontrollers of the MB89160 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89160 series is structured as illustrated below.


## MB89160/160A Series

## 2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 18-bit data processing instruction, the lower byte is used.
Index register (IX): A 16-bit register for index modification
Extra pointer (EP): A 16-bit pointer for indicating a memory address
Stack pointer (SP): A 16-bit register for indicating a stack area
Program status (PS): A 16-bit register for storing a register pointer, a condition code


The PS can further be divide into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

## Structure of the Program Status Register



## MB89160/160A Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

## Rule for Conversion of Actual Addresses of the General-purpose Register Area



The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.
I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

| IL1 | ILO | Interrupt level | High-low |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | High |
| 0 | 1 |  |  |
| 1 | 0 | 2 |  |
| 1 | 1 | 3 | Low $=$ no interrupt |

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag: Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set the shift-out value in the case of a shift instruction.

## MB89160/160A Series

The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers. Up to a total of 16 banks can be used on the MB89163 (RAM $256 \times 8$ bits), and a total of 32 banks can be used on the MB89165 (RAM $256 \times 8$ bits). The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size.

## Register Bank Configuraiton



## MB89160/160A Series

I/O MAP

| Address | Read/write | Register name | Register description |
| :---: | :---: | :---: | :---: |
| 00н | (R/W) | PDR0 | Port 0 data register |
| 01н | (W) | DDR0 | Port 0 data direction register |
| 02н | (R/W) | PDR1 | Port 1 data register |
| 03н | (W) | DDR1 | Port 1 data direction register |
| 04 | (R/W) | PDR2 | Port 2 data register |
| 05 н | (W) | DDR2 | Port 2 data direction register |
| 06 |  |  | Vacancy |
| 07\% | (R/W) | SYCC | System clock control register |
| 08н | (R/W) | STBC | Standby control register |
| 09н | (R/W) | WDTE | Watchdog timer control register |
| ОАн | (R/W) | TBTC | Time-base timer control register |
| OBH | (R/W) | WPCR | Watch prescaler control register |
| $0 \mathrm{CH}_{\mathrm{H}}$ | (R/W) | PDR3 | Port 3 data register |
| 0D |  |  | Vacancy |
| ОЕн | (R/W) | PDR4 | Port 4 data register |
| $\mathrm{OFH}_{\mathrm{H}}$ | (R/W) | PDR5 | Port 5 data register |
| 10H | (R/W) | BUZR | Buzzer register |
| 11н |  |  | Vacancy |
| 12H | (R/W) | PDR6 | Port 6 data register |
| 13н | (R/W) | PDR7 | Port 7 data register |
| 14 H | (R/W) | RCR1 | Remote control transmission register 1 |
| 15 H | (R/W) | RCR2 | Remote control transmission register 2 |
| 16 ${ }^{\text {H}}$ |  |  | Vacancy |
| 17\% |  |  | Vacancy |
| 18H | (R/W) | T2CR | Timer 2 control register |
| 19н | (R/W) | T1CR | Timer 1 control register |
| 1 Ан $^{\text {¢ }}$ | (R/W) | T2DR | Timer 2 data register |
| 1BH | (R/W) | T1DR | Timer 1 data register |
| 1 CH | (R/W) | SMR | Serial mode register |
| 1D ${ }_{\text {H }}$ | (R/W) | SDR | Serial data register |
| $1 \mathrm{E}_{\text {н }}$ | (R/W) | CNTR1 | PWM 1 control register |
| 1 FH | (W) | COMP1 | PWM 1 compare register |

(Continued)

## MB89160/160A Series

(Continued)

| Address | Read/write | Register name | Register description |
| :---: | :---: | :---: | :---: |
| 20н | (R/W) | CNTR2 | PWM 2 control register |
| 21H | (W) | COMP2 | PWM 2 compare register |
| 22 H to 2 CH |  |  | Vacancy |
| 2D | (R/W) | ADC1 | A/D converter control register 1 |
| 2Ен | (R/W) | ADC2 | A/D converter control register 2 |
| 2 F | (R/W) | ADCD | A/D converter data register |
| 30 | (R/W) | EIE1 | External interrupt 1 enable register 1 |
| 31н | (R/W) | EIF1 | External interrupt 1 flag register 1 |
| 32н | (R/W) | EIE2 | External interrupt 2 enable register 2 |
| 33н | (R/W) | EIF2 | External interrupt 2 flag register 2 |
| 34 н to 5F |  |  | Vacancy |
| 60н to 6Вн | (R/W) | VRAM | Display data RAM |
| 6С to $^{\text {71 }}$ н |  |  | Vacancy |
| 72н | (R/W) | LCDR | LCD controller/driver control register 1 |
| 73н to 7Вн |  |  | Vacancy |
| 7 C | (W) | ILR1 | Interrupt level setting register 1 |
| 7Dн | (W) | ILR2 | Interrupt level setting register 2 |
| 7Ен | (W) | ILR3 | Interrupt level setting register 3 |
| 7F | Access prohibited | ITR | Interrupt test register |

Note: Do not use vacancies.

## MB89160/160A Series

## ELECTRICAL CHARACTERISTICS

## 1. Absolute Maximum Ratings

| Parameter |  |  |  |  |  |  |  | Symbol | Value |  | Unit | Remarks |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

(Continued)

## MB89160/160A Series

(Continued)
$(\mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V})$

| Parameter | Symbol | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |  |
| " H " level average output current | lohav1 | - | -2 | mA | All pins except P30, P31, and power supply pins Average value (operating current $\times$ operating rate) |
|  | lohav2 | - | -4 | mA | P30 and P31 <br> Average value (operating current $\times$ operating rate) |
| "H" level total maximum output current | $\Sigma$ lon | - | -50 | mA | Peak value |
| "H" level total average output current | $\Sigma$ Iohav | - | -10 | mA | Average value (operating current $\times$ operating rate) |
| Power consumption | PD | - | 300 | mW |  |
| Operating temperature | $\mathrm{T}_{\mathrm{A}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Storage temperature | Tstg | -55 | +150 | ${ }^{\circ} \mathrm{C}$ |  |

Precautions: Parmanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## 2. Recommended Operating Conditions

| Parameter | Symbol | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |  |
| Power supply voltage | Vcc AVcc | $2.2 * 1$ | $6.0{ }^{* 1}$ | V | Normal operation assurance range ${ }^{11}$ |
|  |  | $2.2{ }^{*}$ | 4.0 | V | Dual-clock mask ROM products |
|  |  | 2.7 | 6.0 | V | Normal operation assurance range for MB89P165/A and MB89W165/A |
|  |  | 1.5 | 6.0 | V | Retains the RAM state in stop mode |
|  | AVR | 2.0 | AVcc | V | Normal operation assurance range |
| LCD power supply voltage | V0 to V3 | Vss | Vcc | V | V0 to V3 pins on the products without a booster <br> LCD power supply range <br> (The optimum value dependent on the LCD element in use.) |
| EPROM program power supply voltage | Vpp | - | Vss + 13.0 | V | MOD1 pin of the MB89P165 |
| Operating temperature | $\mathrm{T}_{\mathrm{A}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |

*1: The minimum operating power supply voltage varies with the execution time (instruction cycle time) setting for the operating frequency.
A/D converter assurance accuracy varies with the operating power supply voltage.
*2: P32 and P33 are applicable only for procucts of the MB89160 series (without "A" suffix).
P40 to P47 and P60 to P67 are applicable when selected as ports.

## MB89160/160A Series



Figure 1 Operating Voltage vs. Main Clock Operating Frequency (Single-clock MB8916X/A and MB89P165/PV160)

## MB89160/160A Series



Figure 2 Operating Voltage vs. Main Clock Operating Frequency (Dual-clock MB8916X/A)
Figures 1 and 2 indicate the operating frequency of the external oscillator at an instruction cycle of 4/Fcн.
Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.

## MB89160/160A Series

## 3. DC Characteristics

(1) Pin DC characteristics ( $\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V}$ )

| Parameter | Symbol | Pin | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |  |
| " H " level input voltage | $\mathrm{V}_{\text {H }}$ | P00 to P07, P10 to P17, P20 to P27 | - | 0.7 Vcc | - | $\mathrm{Vcc}+0.3$ | V |  |
|  | Vıнs | RST, MODO, MOD1, EC, SI, SCK, INT10 to INT13, INT20 to INT27 |  | 0.8 Vcc | - | $\mathrm{Vcc}+0.3$ | V |  |
| "L" level input voltage | VII | P00 to P07, P10 to P17, P20 to P27 |  | Vss - 0.3 | - | 0.3 Vcc | V |  |
|  | VıLs | RST, MOD0, MOD1, EC, SI, SCK, INT10 to INT13, INT20 to INT27 |  | Vss - 0.3 | - | 0.2 Vcc | V |  |
| Open-drain output pin application voltage | V ${ }_{1}$ | $\begin{aligned} & \text { P20 to P27, } \\ & \text { P33, P32, } \\ & \text { P40 to P47, } \\ & \text { P60 to P67 } \end{aligned}$ |  | Vss - 0.3 | - | Vss $+6.0^{\text {22 }}$ | V | P20 to P27, P40 to P47, and P60 to P67 without pullup resistor only |
|  | V D 2 | P50 to P57 |  | $\mathrm{V}_{\text {ss }}-0.3$ | - | $\mathrm{V}_{\mathrm{cc}}+0.3$ | V |  |
| " H " level output voltage | Vон1 | $\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17 } \end{aligned}$ | $\mathrm{lor}=-2.0 \mathrm{~mA}$ | 2.4 | - | - | V |  |
|  | Voн2 | P30, P31 | Іон $=-6.0 \mathrm{~mA}$ | 4.0 | - | - | V |  |
| "L" level output voltage | Vol | P00 to P07, P10 to P17, P20 to P27, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P71 | $\mathrm{loL}=1.8 \mathrm{~mA}$ | - | - | 0.4 | V |  |
|  | VoL2 | P21, P26, P27 | $\mathrm{loL}=8.0 \mathrm{~mA}$ | - | - | 0.4 | V |  |
|  | Voı3 | RST | $\mathrm{loL}=4.0 \mathrm{~mA}$ | - | - | 0.6 | V |  |
| Input leakage current (Hi-z output leakage current) | 1.11 | P00 to P07, P10 to P17, MODO, MOD1, P30, P31 | $0.45 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}}$ | - | - | $\pm 5$ | $\mu \mathrm{A}$ | Without pullup resistor |

(Continued)

## MB89160/160A Series

(Continued)
$\left(\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ )

| Parameter | Symbol | Pin | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |  |
| Open-drain output leakage current | ILo1 | $\begin{aligned} & \text { P20 to P27, } \\ & \text { P32, P33, } \\ & \text { P40 to P47, } \\ & \text { P60 to P67, } \\ & \text { P70, P71 } \end{aligned}$ | $0.45 \mathrm{~V}<\mathrm{V}_{1}<6.0 \mathrm{~V}$ | - | - | $\pm 1$ | $\mu \mathrm{A}$ | Without pullup resistor |
|  | ILoz | P50 to P57 | $0.45 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$ | - | - | $\pm 1$ | $\mu \mathrm{A}$ | Without pullup resistor |
| Pull-up resistance | Rpull | P00 to P07, P10 to P17, P20 to P27, P40 to P47, P50 to P57, P60 to P67, RST | $\mathrm{V}_{1}=0.0 \mathrm{~V}$ | 25 | 50 | 100 | $\mathrm{k} \Omega$ | With pull-up resistor |
| Common output impedance | Rvcom | COM0 to COM3 | V | - | - | 2.5 | $\mathrm{k} \Omega$ |  |
| Segment output impedance | Rvseg | SEG0 to SEG24 |  | - | - | 15 | $\mathrm{k} \Omega$ |  |
| LCD divided resistance | Rlco | - | Between Vcc and V0 | 300 | 500 | 750 | $\mathrm{k} \Omega$ | Products without a booster only |
| LCD controller/driver leakage current | ILcol | V0 to V3, COM0 to COM3, SEG0 to SEG23 | - | - | - | $\pm 1$ | $\mu \mathrm{A}$ |  |
| Booster for LCD driving output voltage | Vov3 | V3 | $\mathrm{V} 1=1.5 \mathrm{~V}$ | 4.3 | 4.5 | 4.7 | V | Products with a booster only |
|  | Vov2 | V2 |  | 2.9 | 3.0 | 3.1 | V |  |
| Reference output voltage for LCD driving | Vov1 | V1 | $\mathrm{lin}=0 \mu \mathrm{~A}$ | 1.27 | 1.5 | 1.73 | V |  |
| Reference voltage input impedance | Rrin | V1 | - | 600 | 1000 | 1400 | $\mathrm{k} \Omega$ | Procucts with a booster only |
| Input capacitance | Cin | Other than Vcc, Vss | $\mathrm{f}=1 \mathrm{MHz}$ | - | 10 | - | pF |  |

Note: For pins which serve as the segment (SEG8 to SEG24) and ports (P40 to P47, P50 to P57, and P60 to P67), see the port parameter when these pins are used as ports and the segment parameter when they are used as segments. P32 and P33 are applicable only for products of the MB89160 series (without "A" suffix). Applicable as external capacitor connection pins for products of the MB89160A series (with "A" suffix).

## MB89160/160A Series

(2) Pin DC Characteristics ( $\mathrm{Vcc}=+3.0 \mathrm{~V}$ )

| Parameter | Symbol | Pin | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  | Min. | Typ. | Max. |  |  |
| " H " level output voltage | Vor1 | $\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \end{aligned}$ | $\mathrm{I} \mathrm{O}=-1.0 \mathrm{~mA}$ | 2.4 | - | - | V |  |
|  | Vон2 | P30, P31 | $\mathrm{IOH}=-3.0 \mathrm{~mA}$ | 2.4 | - | - | V |  |
| "L" level output voltage | Vol | P00 to P07, P10 to P17, P20 to P27, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P71 | $\mathrm{loL}=1.8 \mathrm{~mA}$ | - | - | 0.4 | V |  |
|  | VoL2 | $\overline{\mathrm{RST}}$ | $\mathrm{loL}=1.8 \mathrm{~mA}$ | - | - | 0.4 | V |  |
|  | Voı3 | P21, P26, P27 | $\mathrm{loL}=3.6 \mathrm{~mA}$ | - | - | 0.4 | V |  |
| Pull-up resistance | Rpull | P00 to P07, P10 to P17, P20 to P27, P40 to P47, P50 to P57, P60 to P67, RST | $\mathrm{V}_{1}=0.0 \mathrm{~V}$ | 50 | 100 | 150 | $k \Omega$ | With pull-up resistor |

## MB89160/160A Series

## (3) Power Supply Current Characteristics (MB8916X)

$\left(\mathrm{V}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ )

| Parameter | Symbol | Pin | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |  |
| Power supply current ${ }^{11}$ | Icc1 | Vcc | $\begin{aligned} & \mathrm{F}_{\mathrm{cH}}=4.2 \mathrm{MHz}, \mathrm{~V} \mathrm{cc}=5.0 \mathrm{~V} \\ & \text { tinst }^{2}=4 / \mathrm{FcH} \\ & \text { Main clock operation mode } \end{aligned}$ | - | 5.0 | 10.0 | mA | MB8916X/A, MB89PV160 |
|  |  |  |  | - | 8.0 | 15.0 | mA | MB89PV165 |
|  | Icc2 |  | $\begin{aligned} & \mathrm{F}_{\mathrm{cH}}=4.2 \mathrm{MHz}, \mathrm{~V} \mathrm{Vc}=3.0 \mathrm{~V} \\ & \mathrm{tinst}^{2}=64 / \mathrm{FcH} \\ & \text { Main clock operation mode } \end{aligned}$ | - | 1.5 | 2.0 | mA | MB8916X/A, MB89PV160 |
|  |  |  |  | - | 2.4 | 2.8 | mA | MB89P165 |
|  | Iccl |  | $\begin{aligned} & \mathrm{FcL}=32.768 \mathrm{kHz}, \mathrm{~V} \mathrm{cc}=3.0 \mathrm{~V} \\ & \text { tinst }^{2}=2 / \mathrm{FcL} \\ & \text { Subclock operation mode } \end{aligned}$ | - | 0.05 | 0.1 | mA | MB8916X/A, MB89PV160 |
|  |  |  |  | - | 1.0 | 3.0 | mA | MB89PV165 |
|  | Iccs 1 |  | $\begin{aligned} & \mathrm{F}_{\mathrm{cH}}=4.2 \mathrm{MHz}, \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ & \text { tinst }^{2}=4 / \mathrm{F}_{\mathrm{cH}} \\ & \text { Main clock sleep mode } \end{aligned}$ | - | 2.5 | 5.0 | mA |  |
|  | Iccs2 |  | $\begin{aligned} & \mathrm{F}_{\mathrm{cH}}=4.2 \mathrm{MHz}, \mathrm{~V} \mathrm{Vc}=3.0 \mathrm{~V} \\ & \text { tinst }^{2}=64 / \mathrm{FcH} \\ & \text { Main clock sleep mode }^{2} \end{aligned}$ | - | 1.0 | 1.5 | mA | MB8916X/A, MB89PV160, MB89PV165 |
|  | Iccs |  | $\begin{aligned} & \begin{array}{l} \mathrm{FcL}=32.768 \mathrm{kHz}, \mathrm{~V} \mathrm{cc}=3.0 \mathrm{~V} \\ \text { tinst }^{2}=2 / \mathrm{FcL} \\ \text { Subclock sleep mode } \end{array} \end{aligned}$ | - | 25 | 50 | $\mu \mathrm{A}$ |  |
|  | Ісст |  | $\begin{aligned} & \mathrm{F}_{\mathrm{cL}}=32.768 \mathrm{kHz}, \mathrm{Vcc}=3.0 \mathrm{~V} \\ & \text { Watch mode } \end{aligned}$ | - | 10 | 15 | $\mu \mathrm{A}$ | MB8916X, MB89P165-1XX, MB89PV160 |
|  | Iccta |  | $\mathrm{F}_{\mathrm{cL}}=32.768 \mathrm{kHz}, \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$ <br> - Watch mode <br> - During reference voltage generator and booster operation | - | 250 | 400 | $\mu \mathrm{A}$ | MB8916XA, MB89P165-2XX |
|  | ІсС¢ |  | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V} \mathrm{VC}=5.0 \mathrm{~V} \\ & \text { Stop mode } \end{aligned}$ | - | 0.1 | 1.0 | $\mu \mathrm{A}$ | MB8916X |
|  |  |  |  | - | 0.1 | 10 | $\mu \mathrm{A}$ | MB89PV160, MB89P165-1XX |
|  | $\mathrm{IA}_{\text {A }}$ | AVcc | $\mathrm{F}_{\mathrm{ch}}=4.2 \mathrm{MHz}, \mathrm{Vcc}=5.0 \mathrm{~V}$ | - | 1.0 | 3.0 | mA | When A/D conversion is activated |

*1: The power supply current is measured at the external clock, open output pins, and the external LCD dividing resistor (or external input for the reference voltage). In the case of the MB89PV160, the current consumed by the connected EPROM and ICE is not included.
*2: For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

## MB89160/160A Series

## 4. AC Characteristics

(1) Reset Timing

| Parameter | Symbol | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Max. |  |  |
| RST "L" pulse width | tzızH | - | 48 txcyL | - | ns |  |
| $\overline{\mathrm{RST}}$ "H" pulse width | tzHzL |  | 24 txCyL | - | ns |  |


(2) Power-on Reset

| Parameter | Symbol | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Max. |  |  |
| Power supply rising time | tr | - | - | 50 | ms | Power-on reset function only |
| Power supply cut-off time | toff | - | 1 | - | ms | Due to repeated operations |

Note: Make sure that power supply rises within the selected oscillation stabilization time. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.


## MB89160/160A Series

## (3) Clock Timing



## Main Clock Timing and Conditions



## Main Clock Conditions



When an external clock is used


When the CR
oscillation option is used


## MB89160/160A Series

## Subclock Timing and Conditions



Subclock Conditions
When a crystal
or
ceramic oscillator is used


When the single-clock option is used

(4) Instruction Cycle

| Parameter | Symbol | Value (typical) | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| Instruction cycle (minimum execution time) | tinst | $\begin{aligned} & \text { 4/Fсн, 8/Fсн, 16/Fсн, } \\ & 64 / \mathrm{Fch} \end{aligned}$ | $\mu \mathrm{s}$ | $(4 / \mathrm{FcH})$ tinst $=1.0 \mu \mathrm{~s}$ at $\mathrm{F}_{\mathrm{CH}}=4 \mathrm{MHz}$ |
|  |  | 2/Fcı | $\mu \mathrm{s}$ | tinst $=62 \mu \mathrm{~s}$ at $\mathrm{FcL}=32.768 \mathrm{kHz}$ |

## MB89160/160A Series

## (5) Serial I/O Timing

| Parameter | Symbol | Pin | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |  |
| Serial clock cycle time | tscyc | SCK | Internal clock operation | 2 tinst* | - | $\mu \mathrm{s}$ |  |
| SCK $\downarrow \rightarrow$ SO time | tsiov | SCK, SO |  | -200 | 200 | ns |  |
| Valid SI $\rightarrow$ SCK $\uparrow$ | tivsh | SI, SCK |  | 1/2 tinst* | - | $\mu \mathrm{S}$ |  |
| SCK $\uparrow \rightarrow$ valid SI hold time | tshix | SCK, SI |  | 1/2 tins* | - | $\mu \mathrm{S}$ |  |
| Serial clock "H" pulse width | tshsL | SCK | External clock operation | 1 tins** | - | $\mu \mathrm{s}$ |  |
| Serial clock "L" pulse width | tsısh |  |  | 1 tins** | - | $\mu \mathrm{s}$ |  |
| SCK $\downarrow \rightarrow$ SO time | tsov | SCK, SO |  | 0 | 200 | ns |  |
| Valid SI $\rightarrow$ SCK $\uparrow$ | tivs | SI, SCK |  | 1/2 tinst ${ }^{*}$ | - | $\mu \mathrm{s}$ |  |
| SCK $\uparrow \rightarrow$ valid SI hold time | tshix | SCK, SI |  | 1/2 tinst ${ }^{*}$ | - | $\mu \mathrm{s}$ |  |

*: For information on tinst, see "(4) Instruction Cycle."

## Internal Clock Operation



## External Clock Operation



## MB89160/160A Series

## (6) Peripheral Input Timing

| Parameter | Symbol | Pin | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Max. |  |  |
| Peripheral input "H" pulse width 1 | tııн1 | INT10 to INT13, EC | 1 tinst ${ }^{\text {* }}$ | - | $\mu \mathrm{s}$ |  |
| Peripheral input " $L$ " pulse width 1 | tHHL1 |  | 1 tinst ${ }^{*}$ | - | $\mu \mathrm{s}$ |  |
| Peripheral input "H" pulse width 2 | tıLН² | INT20 to INT27 | 2 tinst ${ }^{\text {* }}$ | - | $\mu \mathrm{s}$ |  |
| Peripheral input "L" pulse width 2 | thill2 |  | 2 tinst ${ }^{*}$ | - | $\mu \mathrm{s}$ |  |

*: For information on tinst, see "(4) Instruction Cycle."


## MB89160/160A Series

## 5. A/D Converter Electrical Characteristics

$\left(3 \mathrm{MHz}, \mathrm{AV}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=+3.5 \mathrm{~V}\right.$ to $+6.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |  |
| Resolution | - | - | - | - | - | 8 | bit |  |
| Total error |  |  | $\mathrm{AVR}=\mathrm{AV} \mathrm{cc}$ | - | - | $\pm 1.5$ | LSB |  |
| Linearity error |  |  |  | - | - | $\pm 1.0$ | LSB |  |
| Differential linearity error |  |  |  | - | - | $\pm 0.9$ | LSB |  |
| Zero transition voltage | Vot |  |  | AVss - 1.0 LSB | AVss + 0.5 LSB | AVss + 2.0 LSB | mV |  |
| Full-scale transition voltage | Vfst |  |  | AVR - 3.0 LSB | AVR - 1.5 LSB | AVR | mV |  |
| Interchannel disparity | - |  |  | - | - | 0.5 | LSB |  |
| A/D mode conversion time |  |  | - | - | 44 tinst | - | $\mu \mathrm{s}$ |  |
| Sense mode conversion time |  |  |  | - | 12 tinst | - | $\mu \mathrm{s}$ |  |
| Analog port input current | IAI | ANO to AN7 |  | - | - | 10 | $\mu \mathrm{A}$ |  |
| Analog input voltage | - |  |  | 0.0 | - | AVR | V |  |
| Reference voltage | - | AVR |  | 2.0 | - | AVcc | V |  |
| Reference voltage supply current | IR |  | $\mathrm{AVR}=5.0 \mathrm{~V},$ <br> when A/D conversion is activated | - | 100 | - | $\mu \mathrm{A}$ |  |
|  | IRH |  | $\text { AVR }=5.0 \mathrm{~V} \text {, }$ <br> when A/D conversion is stopped | - | - | 1 | $\mu \mathrm{A}$ |  |

## (1) A/D Glossary

- Resolution

Analog changes that are identifiable with the $A / D$ converter.
When the number of bits is 8 , analog voltage can be divided into $2^{8}=256$.

- Linearity error (unit: LSB)

The deviation of the straight line connecting the zero transition point ("0000 0000" $\leftrightarrow$ "0000 0001") with the full-scale transition point ("1111 1111" "1111 1110") from actual conversion characteristics

- Differential linearity error (unit: LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error (unit: LSB)

The difference between theoretical and actual conversion values

## MB89160/160A Series



## (2) Precautions

- Input impedance of analog input pins

The A/D converter contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below $10 \mathrm{k} \Omega$ ).

Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about $0.1 \mu \mathrm{~F}$ for the analog input pin.

## Analog Input Equivalent Circuit



## - Error

The smaller the |AVR - AVss|, the greater the error would become relatively.

## MB89160/160A Series

## EXAMPLE CHARACTERISTICS

## (1) "L" Level Output Voltage


(2) "H" Level Output Voltage



## MB89160/160A Series

(3) "H" Level Input Voltage/"L" level Input Voltage

(4) Power Supply Current (External Clock)


Icc2 vs. Vcc (Mask ROM products)
$\operatorname{lcc} 2(m A)$

(Continued)

## MB89160/160A Series



Iccl vs. Vcc (Mask ROM products)


Icc2s vs. Vcc (Mask ROM products)
Icc2s (mA)


Icct vs. Vcc

(Continued)

## MB89160/160A Series

(Continued)

(5) Pull-up Resistance


## MB89160/160A Series

## MASK OPTIONS

| Part number | MB89161/3/5 | MB89P165 | MB89PV160 |
| :---: | :---: | :---: | :---: |
| Specifying procedure | Specify when ordering masking | Set with EPROM programmer | Setting not possible |
| Pull-up resistors (SEG) <br> $\left[\begin{array}{l}\text { P00 to P07, P10 to P17, } \\ \text { P20 to P27, P40 to P47, } \\ \text { P50 to P57, P60 to P67 }\end{array}\right.$ | Slectable per pin (The pull-up resistors for P40 to P47 and P60 to P67 are only selectable when these pins are not set as segment outputs. When the $A / D$ is used, P50 to P57 are must not selected.) | Can be set per pin (P20 to P27, P40 to P47, and P60 to P67 are available only for without a pull-up resistor.) | Fixed to without pull-up resistor |
| Power-on reset (POR) <br> With power-on reset Without power-on reset | Selectable | Selectable | Fixed to with power-on reset |
| Selection of oscillation stabilization time (OSC) <br> - The initial value of the oscillation stabilization time for the main clock can be set by selecting the values of the WTM1 and WTM0 bits on the right. | Selectable  <br> OSC  <br> 0 $: 2^{2 / /} / \mathrm{FCH}^{2}$ <br> 1 $: 2^{12 / / \mathrm{F}_{\mathrm{CH}}}$ <br> 2 $: 2^{16} \mathrm{~F}_{\mathrm{CH}}$ <br> 3 $: 2^{18} / \mathrm{F}_{\mathrm{CH}}$ |  | Fixed to oscillation stabilization time of $2^{16 / F c h}$ |
| Main clock oscillation type (XSL) Crystal or ceramic resonator CR | Selectable | Crystal or ceramic only | Fixed to crystal or ceramic |
| Reset pin output (RST) With reset output Without reset output | Selectable | Selectable | Fixed to with reset output |
| $\begin{gathered} \hline \text { Clock mode selection (CLK) } \\ {\left[\begin{array}{l} \text { Dual-clock mode } \\ \text { Single-clock mode } \end{array}\right.} \end{gathered}$ | Selectable | Selectable | Fixed to dual-clock mode |

## MB89160/160A Series

- Segment Options

| No. | Part number | MB89161/3/5 | MB89P165 | MB89PV160 |
| :---: | :---: | :---: | :---: | :---: |
|  | Specifying procedure | Specify when ordering masking | Select by version number | Select by version number |
| 7 | LCD output pin configuration choices | Specify by the option combinations listed below |  |  |
|  | $\text { SEG }=4:$ <br> P40 to P47 segment output P60 to P67 segment output P70, P71 common output | Specify as SEG = 4 | -101: SEG 24 pins -201 COM 4 pins | $\begin{gathered} -101: \text { SEG } 24 \text { pins } \\ \text { COM } 4 \text { pins } \end{gathered}$ |
|  | SEG = 3: <br> P40 to P43 segment output P44 to P47 port output P60 to P67 segment output P70, P71 common output | Specify as SEG = 3 | $\begin{aligned} & -102 \text { : SEG } 20 \text { pins } \\ & -202 \text { COM } 4 \text { pins } \end{aligned}$ | $\begin{gathered} -102: \text { SEG } 20 \text { pins } \\ \text { COM } 4 \text { pins } \end{gathered}$ |
|  | $\text { SEG }=2:$ <br> P40 to P47 port output P60 to P67 segment output P70, P71 common output | Specify as SEG = 2 | -103: SEG 16 pins -203 COM 4 pins | -103: SEG 16 pins COM 4 pins |
|  | SEG = 1: <br> P40 to P47 port output P60 to P63 segment output P64 to P67 port output P70, P71 port output | Specify as SEG = 1 | -104: SEG 12 pins COM 2 pins | $\begin{gathered} -104: \text { SEG } 12 \text { pins } \\ \text { COM } 2 \text { pins } \end{gathered}$ |
|  | SEG = 0: <br> P40 to P47 port output P60 to P67 port output P70, P71 port output | Specify as SEG = 0 | $\begin{array}{r} -105: \text { SEG } 8 \text { pins } \\ \text { COM } 2 \text { pins } \end{array}$ | $\begin{array}{r} -105: \text { SEG } 8 \text { pins } \\ \text { COM } 2 \text { pins } \end{array}$ |

## VERSIONS

| Version |  |  |  | Features |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mass production product | One-time PROM product | EPROM product | Piggyback/ evaluation product | Number of segment pins | Booster |
| MB89160A series | $\begin{array}{r} \hline \text { MB89P165-201 } \\ -202 \\ -203 \end{array}$ | $\begin{array}{r} \hline \text { MB89W165-201 } \\ -202 \\ -203 \end{array}$ | - | 24 (4 commons) <br> 20 (4 commons) <br> 16 (4 commons) | Yes |
| MB89160 series | MB89P165-101 -102 -103 -104 -105 | MB89W165-101 -102 -103 -104 -105 | MB89PV160- 101 -102 -103 -104 -105 | 24 (4 commons) <br> 20 (4 commons) <br> 16 (4 commons) <br> 12 (2 commons) <br> 8 (2 commons) | No |

## ORDERING INFORMATION

| Part number | Package | Remarks |
| :---: | :---: | :---: |
| MB89161-PFV <br> MB89161A-PFV <br> MB89163-PFV <br> MB89163A-PFV <br> MB89165-PFV <br> MB89165A-PFV <br> MB89P165-××x-PFV | 80-pin Plastic LQFP <br> (FPT-80P-M05) |  |
| MB89161-PF <br> MB89161A-PF <br> MB89163-PF <br> MB89163A-PF <br> MB89165-PF <br> MB89165A-PF <br> MB89P165-×xx-PF | 80-pin Plastic QFP <br> (FPT-80P-M06) |  |
| MB89161-PFM <br> MB89161A-PFM <br> MB89163-PFM <br> MB89163A-PFM <br> MB89165-PFM <br> MB89165A-PFM <br> MB89P165-×XX-PFM | 80-pin Plastic LQFP <br> (FPT-80P-M11) |  |
| MB89W165-Xxx-PF | 80-pin Ceramic QFP <br> (FPT-80C-A02) |  |
| MB89PV160-×xx-PF | 80-pin Ceramic MQFP <br> (MQP-80C-P01) |  |

Note: For information on $\times \times x$, see section " ${ }^{\text {D }}$ Versions."

## MB89160/160A Series

## PACKAGE DIMENSIONS



## 80-pin plastic QFP (FPT-80P-M06)



Dimensions in mm (inches).

## MB89160/160A Series


© 2000 FUJITSU LIMITED F80016S-1C-4
Dimensions in mm (inches).

## 80-pin ceramic QFP <br> (FPT-80C-A02)



## MB89160/160A Series

(Continued)

© 1994 FUUITSU LIMTED M80001SC-4-2
Dimensions in mm (inches).

## MB89160/160A Series

## FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

