4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD753108 is one of the 75XL Series 4-bit single-chip microcontroller chips and has a data processing capability comparable to that of an 8-bit microcontroller.

The existing 75X Series containing an LCD controller/driver supplies an 80-pin package.
The μ PD753108 supplies a 64-pin package ($12 \times 12 \mathrm{~mm}$), which is suitable for small-scale systems.
It features expanded CPU functions and can provide high-speed operation at a low supply voltage of 1.8 V compared with the existing μ PD75308B.

For detailed function descriptions, refer to the following user's manual. Be sure to read the document before designing.
μ PD753108 User's Manual: U10890E

Features

O Low voltage operation: VdD $=1.8$ to 5.5 V

- Can be driven by two 1.5-V batteries
- On-chip memory
- Program memory (ROM):
4096×8 bits (μ PD753104)
6144×8 bits (μ PD753106)
8192×8 bits (μ PD753108)
- Data memory (RAM):
512×4 bits
- Capable of high-speed operation and variable instruction execution time for power saving
- $0.95,1.91,3.81,15.3 \mu \mathrm{~s}$ (@ 4.19 MHz with main system clock)
- 0.67, 1.33, 2.67, 10.7 $\mu \mathrm{s}$ (@ 6.0 MHz with main system clock)
- $122 \mu \mathrm{~s}$ (@ 32.768 kHz with subsystem clock)
- Internal programmable LCD controller/driver
- Small package:

64-pin plastic QFP ($12 \times 12 \mathrm{~mm}, 0.65-\mathrm{mm}$ pitch)
o One-time PROM version: μ PD75P3116

Application

Remote controllers, cameras, hemadynamometers, electronic scale, gas meters, etc.

Unless otherwise indicated, references in this data sheet to the μ PD753108 mean the μ PD753104 and μ PD753106.

Ordering Information

Part number	Package	ROM (x 8 bits)
μ PD753104GC-xxx-AB8	64-pin plastic QFP $(14 \times 14 \mathrm{~mm}, 0.8-\mathrm{mm}$ pitch $)$	4096
μ PD753104GK-xxx-8A8	64-pin plastic QFP $(12 \times 12 \mathrm{~mm}, 0.65-\mathrm{mm}$ pitch $)$	4096
μ PD753106GC-xxx-AB8	64-pin plastic QFP $(14 \times 14 \mathrm{~mm}, 0.8-\mathrm{mm}$ pitch $)$	6144
μ PD753106GK-xxx-8A8	64-pin plastic QFP $(12 \times 12 \mathrm{~mm}, 0.65-\mathrm{mm}$ pitch $)$	6144
μ PD753108GC-xxx-AB8	64-pin plastic QFP $(14 \times 14 \mathrm{~mm}, 0.8-\mathrm{mm}$ pitch $)$	8192
μ PD753108GK-xxx-8A8	64-pin plastic QFP $(12 \times 12 \mathrm{~mm}, 0.65-\mathrm{mm}$ pitch $)$	8192

Remark $\quad x x x$ indicates the ROM code suffix.

Functional Outline

Parameter					Function
Instruction execution time			- $0.95,1.91,3.81,15.3 \mu \mathrm{~s}$ (@ 4.19 MHz with main system clock) - 0.67, 1.33, 2.67, $10.7 \mu \mathrm{~s}$ (@ 6.0 MHz with main system clock) - $122 \mu \mathrm{~s}$ (@ 32.768 kHz with subsystem clock)		
On-chip memory		ROM	4096×8 bits (μ PD753104)		
		6144×8 bits (μ PD753106)			
		8192×8 bits (μ PD753108)			
		RAM	512×4 bits		
General-purpose register			- 4-bit operation: 8×4 banks - 8 -bit operation: 4×4 banks		
Input/ output port	CMOS input		8	On-chip pull-up re	ors which can be specifie
	CMOS input/output		20	On-chip pull-up r Also used for seg	ors which can be specifie t pins: 8
	N -ch open-drain input/output pins		4	On-chip pull-up r voltage	ors which can be specifie
	Total		32		
LCD controller/driver			- Segment selection: 16/20/24 segments (can be changed to CMOS input/ output port in 4 time-unit; max. 8) - Display mode selection: Static, $1 / 2$ duty ($1 / 2$ bias), $1 / 3$ duty ($1 / 2$ bias), $1 / 3$ duty ($1 / 3$ bias), $1 / 4$ duty ($1 / 3$ bias)		
				n-chip split resisto	LCD drive can be specifi
Timer			5 channels - 8-bit timer/event counter: 3 channels (16-bit timer/event counter, carrier generator, timer with gate) - Basic interval timer/watchdog timer: 1 channel - Watch timer: 1 channel		
Serial interface			- 3-wire serial I/O mode ... MSB or LSB can be selected for transferring first bit - 2-wire serial I/O mode - SBI mode		
Bit sequential buffer (BSB)			16 bits		
Clock output (PCL)			- Ф, $524,262,65.5 \mathrm{kHz}$ (@ 4.19 MHz with main system clock) - $\Phi, 750,375,93.8 \mathrm{kHz}$ (@ 6.0 MHz with main system clock)		
Buzzer output (BUZ)					
Vectored interrupt			External: 3, Internal: 5		
Test input			External: 1, Internal: 1		
System clock oscillator			- Ceramic or crystal oscillator for main system clock oscillation - Crystal oscillator for subsystem clock oscillation		
Standby function			STOP/HALT mode		
Supply voltage			$V_{\text {DD }}=1.8$ to 5.5 V		
Package			- 64-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.8-\mathrm{mm}$ pitch $)$ - 64-pin plastic QFP ($12 \times 12 \mathrm{~mm}, 0.65-\mathrm{mm}$ pitch $)$		

CONTENTS

1. PIN CONFIGURATION (Top View) 6
2. BLOCK DIAGRAM 8
3. PIN FUNCTIONS 9
3.1 Port Pins 9
3.2 Non-port Pins 11
3.3 Pin Input/Output Circuits 13
3.4 Recommended Connections for Unused Pins 15
4. SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE 16
4.1 Difference between Mk I Mode and Mk II Mode 16
4.2 Setting Method of Stack Bank Select Register (SBS) 17
5. MEMORY CONFIGURATION 18
6. PERIPHERAL HARDWARE FUNCTION 23
6.1 Digital I/O Port 23
6.2 Clock Generator 23
6.3 Subsystem Clock Oscillator Control Functions 25
6.4 Clock Output Circuit 26
6.5 Basic Interval Timer/Watchdog Timer 27
6.6 Watch Timer 28
6.7 Timer/Event Counter 29
6.8 Serial Interface 33
6.9 LCD Controller/Driver 35
6.10 Bit Sequential Buffer 37
7. INTERRUPT FUNCTION AND TEST FUNCTION 38
8. STANDBY FUNCTION 40
9. RESET FUNCTION 41
10. MASK OPTION 44
11. INSTRUCTION SET 45
12. ELECTRICAL SPECIFICATIONS 59
13. CHARACTERISTIC CURVES (FOR REFERENCE ONLY) 75
14. PACKAGE DRAWINGS 78
15. RECOMMENDED SOLDERING CONDITIONS 80
APPENDIX A. μ PD75308B, 753108 AND 75P3116 FUNCTIONAL LIST 81
APPENDIX B. DEVELOPMENT TOOLS 83
APPENDIX C. RELATED DOCUMENTS 87

1. PIN CONFIGURATION (Top View)

- 64-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.8-\mathrm{mm}$ pitch) μ PD753104GC-xxx-AB8, μ PD753106GC-xxx-AB8, μ PD753108GC-xxx-AB8
- 64-pin plastic QFP (12 x $12 \mathrm{~mm}, 0.65-\mathrm{mm}$ pitch) μ PD753104GK-xxx-8A8, μ PD753106GK-xxx-8A8, μ PD753108GK-xxx-8A8

Note Connect the IC (Internally Connected) pin directly to Vdd.

Pin Identification

P00 to P03	Port 0	Vlco to Vlc2	: LCD Power Supply 0 to 2
P10 to P13	Port 1	BIAS	: LCD Power Supply Bias Control
P20 to P23	Port 2	LCDCL	: LCD Clock
P30 to P33	Port 3	SYNC	: LCD Synchronization
P50 to P53	Port 5	TIO to TI2	: Timer Input 0 to 2
P60 to P63	Port 6	PTO0 to PTO2	: Programmable Timer Output 0 to 2
P80 to P83	Port 8	BUZ	: Buzzer Clock
P90 to P93	Port 9	PCL	: Programmable Clock
KR0 to KR3	Key Return 0 to 3	INT0, INT1, INT4	: External Vectored Interrupt 0, 1, 4
$\overline{\text { SCK }}$	Serial Clock	INT2	: External Test Input 2
SI	: Serial Input	X1, X2	: Main System Clock Oscillation 1, 2
SO	: Serial Output	XT1, XT2	: Subsystem Clock Oscillation 1, 2
SB0, SB1	: Serial Data Bus 0, 1	Vdd	: Positive Power Supply
RESET	Reset	Vss	: Ground
S0 to S23	Segment Output 0 to 23	IC	: Internally Connected
COMO to CO	Common Output 0 to 3		

2. BLOCK DIAGRAM

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin Name	Input/Output	Alternate Function	Function	$\begin{array}{\|c\|} \hline \text { 8-bit } \\ \text { I/O } \end{array}$	After Reset	I/O Circuit TYPE Note 1
P00	Input	INT4	4-bit input port (PORTO). For P01 to P03, connection of on-chip pullup resistors can be specified by software in 3-bit units.	No	Input	(B)
P01	Input/Output	$\overline{\text { SCK }}$				(F)-A
P02	Input/Output	SO/SB0				(F)-B
P03	Input/Output	SI/SB1				(M)-C
P10	Input	INTO	4-bit input port (PORT1). Connection of on-chip pull-up resistors can be specified by software in 4-bit units. P10/INTO can select noise elimination circuit.	No	Input	(B)-C
P11		INT1				
P12		TI1/TI2/INT2				
P13		TIO				
P20	Input/Output	PTO0	4-bit input/output port (PORT2). Connection of on-chip pull-up resistors can be specified by software in 4-bit units.	No	Input	E-B
P21		PTO1				
P22		PCL/PTO2				
P23		BUZ				
P30	Input/Output	LCDCL	Programmable 4-bit input/output port (PORT3). This port can be specified for input/output bit-wise. Connection of on-chip pull-up resistors can be specified by software in 4-bit units.	No	Input	E-B
P31		SYNC				
P32		-				
P33		-				
P50-P53 Note 2	Input/Output	-	N-ch open-drain 4-bit input/output port (PORT5). A pull-up resistor can be contained bit-wise (mask option). Withstand voltage is 13 V in open-drain mode.	No	High level (when pullup resistors are provided) or highimpedance	M-D

Notes 1. Characters in parentheses indicate the Schmitt trigger input.
2. If on-chip pull-up resistors are not specified by mask option (when used as N-ch open-drain input port), low-level input leakage current increases when input or bit manipulation instruction is executed.

3.1 Port Pins (2/2)

Pin Name	Input/Output	Alternate Function	Function	$\begin{gathered} \text { 8-bit } \\ \text { I/O } \end{gathered}$	After Reset	I/O Circuit TYPE Note 1
P60	Input/Output	KR0	Programmable 4-bit input/output port (PORT6). This port can be specified for input/output bit-wise. Connection of on-chip pull-up resistors can be specified by software in 4-bit units.	No	Input	(F)-A
P61		KR1				
P62		KR2				
P63		KR3				
P80	Input/Output	S23	4-bit input/output port (PORT8). Connection of on-chip pull-up resistors can be specified by software in 4 -bit units Note ${ }^{2}$.	Yes	Input	H
P81		S22				
P82		S21				
P83		S20				
P90	Input/Output	S19	4-bit input/output port (PORT9). Connection of on-chip pull-up resistors can be specified by software in 4 -bit units Note ${ }^{2}$.		Input	H
P91		S18				
P92		S17				
P93		S16				

Notes 1. Characters in parentheses indicate the Schmitt trigger input.
2. When these pins are used as segment signal output pins, do not connect the on-chip pull-up resistor by software.

3.2 Non-port Pins (1/2)

Pin Name	Input/Output	Alternate Function	Function		After Reset	I/O Circuit TYPE Note 1
TIO	Input	P13	Inputs external event pulses to the timer/event counter.		Input	(B) -C
TI1		P12/INT2/TI2				
TI2		P12/INT2/TI1				
PTO0	Output	P20	Timer/event counter output		Input	E-B
PTO1		P21				
PTO2		P22/PCL				
PCL		P22/PTO2	Clock output			
BUZ		P23	Optional frequency output (for buzzer output or system clock trimming)			
$\overline{\text { SCK }}$	Input/Output	P01	Serial clock input/output		Input	(F)-A
SO/SB0		P02	Serial data output Serial data bus input/output			(F)-B
SI/SB1		P03	Serial data input Serial data bus input/output			(M)-C
INT4	Input	P00	Edge detection vectored interrupt input (both rising edge and falling edge detection)		Input	(B)
INTO	Input	P10	Edge detection vectored interrupt input (detection edge can be selected). INT0/P10 can select noise elimination circuit.	Noise elimination circuit/ asynchronous selection	Input	(B) -C
INT1		P11		Asynchronous		
INT2		P12/TI1/TI2	Rising edge detection testable input	Asynchronous		
KRO-KR3	Input	P60-P63	Falling edge detection testable input		Input	(F)-A
S0-S15	Output	-	Segment signal output		Note 2	G-A
S16-S19	Output	P93-P90	Segment signal output		Input	H
S20-S23	Output	P83-P80	Segment signal output		Input	H
COM0-COM3	Output	-	Common signal output		Note 2	G-B
VLCO-VLC2	-	-	LCD drive power On-chip split resistor is enabled (mask option).		-	-
BIAS	Output	-	Output for external split resistor disconnect		Note 3	-
LCDCL ${ }^{\text {Note } 4}$	Output	P30	Clock output for externally expanded driver		Input	E-B
SYNC Note 4	Output	P31	Clock output for externally expanded driver synchronization		Input	E-B

Notes 1. Characters in parentheses indicate the Schmitt trigger input.
2. Each display output selects the following VLCx as input source. S0-S15: Vlc1, COM0-COM2: Vlc2, COM3: Vlco
3. When a split resistor is contained Low level When no split resistor is contained High-impedance
4. These pins are provided for future system expansion. At present, these pins are used only as pins P30 and P31.

3.2 Non-port Pins (2/2)

Pin Name	Input/Output	Alternate Function	Function	After Reset	I/O Circuit TYPE Note
X1	Input	-	Crystal/ceramic connection pin for the main system clock oscillation. When the external clock is used, input the external clock to pin X1, and the inverted phase of the external clock to pin X2.	-	-
X2	-				
XT1	Input	-	Crystal connection pin for the subsystem clock oscillation. When the external clock is used, input the external clock to pin XT1, and the inverted phase of the external clock to pin XT2. Pin XT1 can be used as a 1-bit input (test) pin.	-	-
XT2	-				
RESET	Input	-	System reset input (low-level active)	-	(B)
IC	-	-	Internally connected. Connect directly to Vdo.	-	-
VDD	-	-	Positive power supply	-	-
Vss	-	-	Ground potential	-	-

Note Characters in parentheses indicate the Schmitt trigger input.

3.3 Pin Input/Output Circuits

The μ PD753108 pin input/output circuits are shown schematically.
(1/2)
TYPE A

3.4 Recommended Connections for Unused Pins

Table 3-1. List of Recommended Connections for Unused Pins

Pin	Recommended Connection
P00/INT4	Connect to Vss or Vdo
P01/SCK	Connect to Vss or VdD via a resistor individually
P02/SO/SB0	
P03/SI/SB1	Connect to Vss
P10/INT0, P11/INT1	Connect to Vss or Vdd
P12/TI1/TI2/INT2	
P13/TI0	
P20/PTO0	Input state: Connect to Vss or Vod via a resistor individually Output state: Leave open
P21/PTO1	
P22/PCL/PTO2	
P23/BUZ	
P30/LCDCL	
P31/SYNC	
P32	
P33	
P50-P53	Input state: Connect to $\mathrm{V}_{\text {ss }}$ Output state: Connect to Vss (do not connect a pull-up resistor of mask option)
P60/KR0-P63/KR3	Input state: Connect to $V_{S s}$ or $V_{D D}$ via a resistor individually Output state: Leave open
S0-S15	Leave open
COMO-COM3	
S16/P93-S19/P90	Input state: Connect to Vss or Vod via a resistor individually Output state: Leave open
S20/P83-S23/P80	
Vlco-Vlcz	Connect to Vss
BIAS	Only if all of VLco to VLC2 are unused, connect to Vss. In other cases, leave open.
XT1 ${ }^{\text {Note }}$	Connect to Vss or Vdo
XT2 ${ }^{\text {Note }}$	Leave open
IC	Connect directly to Vdo

Note When the subsystem clock is not used, specify SOS. $0=1$ (so as not to use the on-chip feedback resistor).

4. SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE

4.1 Difference between Mk I Mode and Mk II Mode

The CPU of the μ PD753108 has the following two modes: Mk I and Mk II, either of which can be selected. The mode can be switched by bit 3 of the stack bank select register (SBS).

- Mk I mode: Upward compatible with the μ PD75308B. Can be used in the 75XL CPU with a ROM capacity of up to 16 Kbytes.
- Mk II mode: Incompatible with the μ PD75308B. Can be used in all the 75XL CPU's including those products whose ROM capacity is more than 16 Kbytes.

Table 4-1. Differences between Mk I Mode and Mk II Mode

	Mk I mode	Mk II mode
Number of stack bytes for subroutine instructions	2 bytes	3 bytes
BRA !addr1 instruction CALLA !addr1 instruction	Not available	Available
CALL !addr instruction	3 machine cycles	4 machine cycles
CALLF !faddr instruction	2 machine cycles	3 machine cycles

Caution The Mk II mode supports a program area exceeding 16 Kbytes for the 75X and 75XL Series. Therefore, this mode is effective for enhancing software compatibility with products exceeding 16 Kbytes.
When the Mk II mode is selected, the number of stack bytes used during execution of subroutine call instructions increases by one byte per stack compared to the MkI mode. When the CALL !addr and CALLF !faddr instructions are used, the machine cycle becomes longer by one machine cycle. Therefore, use the Mk I mode if the RAM efficiency and processing performance are more important than software compatibility.

4.2 Setting Method of Stack Bank Select Register (SBS)

Switching between the Mk I mode and Mk II mode can be done by the stack bank select register (SBS). Figure 4-1 shows the format.

The SBS is set by a 4-bit memory manipulation instruction.
When using the Mk I mode, the SBS must be initialized to $100 \times B^{\text {Note }}$ at the beginning of a program. When using the Mk II mode, it must be initialized to 000xB Note.

Note Set the desired value in the x position.

Figure 4-1. Stack Bank Select Register Format

Caution Since SBS. 3 is set to " 1 " after a RESET signal is generated, the CPU operates in the Mk I mode. When executing an instruction in the Mk II mode, set SBS. 3 to " 0 " to select the Mk II mode.

5. MEMORY CONFIGURATION

- Program Memory (ROM) 4096×8 bits (μ PD753104)
.... 6144×8 bits (μ PD753106)
.... 8192×8 bits (μ PD753108)
- Addresses 0000 H and 0001 H

Vector table wherein the program start address and the values set for the RBE and MBE at the time a $\overline{\text { RESET }}$ signal is generated are written. Reset start is possible from any address.

- Addresses 0002H to 000DH

Vector table wherein the program start address and the values set for the RBE and MBE by each vectored interrupt are written. Interrupt processing can start from any address.

- Addresses 0020H to 007FH

Table area referenced by the GETI instruction Note.

Note The GETI instruction realizes a 1-byte instruction on behalf of any 2-byte instruction, 3-byte instruction, or two 1-byte instructions. It is used to decrease the number of program steps.

- Data Memory (RAM)
- Data area ... 512 words $\times 4$ bits (000 H to 1 FFH)
- Peripheral hardware area ... 128 words x 4 bits (F80H to FFFH)

Figure 5-1. Program Memory Map (1/3)
(a) μ PD753104

Note Can be used in Mk II mode only.

Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order eight bits of PC by executing the BR PCDE or BR PCXA instruction.

Figure 5-1. Program Memory Map (2/3)
(b) μ PD753106

Note Can be used in Mk II mode only.
Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order eight bits of PC by executing the BR PCDE or BR PCXA instruction.

Figure 5-1. Program Memory Map (3/3)
(c) μ PD753108

Note Can be used in Mk II mode only.
Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order eight bits of PC by executing the BR PCDE or BR PCXA instruction.

Figure 5-2. Data Memory Map

Note Either memory bank 0 or 1 can be selected for the stack area.

6. PERIPHERAL HARDWARE FUNCTION

6.1 Digital I/O Port

There are three kinds of I/O port.

- CMOS input ports (PORT 0, 1) : 8
- CMOS input/output ports (PORT 2, 3, 6, 8, 9) : 20

- N-ch open-drain input/output ports (PORT 5)	$: 4$
Total	32

Table 6-1. Types and Features of Digital Ports

Port name	Function	Operation and features		Remarks
PORT0	4-bit input	When the serial interface function is used, the dual function pins function as output ports depending on the operation mode.		Also used for the INT4, $\overline{\text { SCK }}$, SO/SB0, SI/SB1 pins.
PORT1		4-bit input only port.		Also used for the INT0-INT2/ TI1/TI2, TIO pins.
PORT2	4-bit input/ output	Can be set to input mode or output mode in 4-bit units.		Also used for the PTOOPTO2/PCL, BUZ pins.
PORT3		Can be set to input mode or output mode bit-wise.		Also used for the LCDCL, SYNC pins.
PORT5	4-bit input/ output (N -ch opendrain, 13 V withstand voltage)	Can be set to input mode or output mode in 4-bit units. On-chip pull-up resistor can be specified bit-wise by mask option.		-
PORT6	4-bit input/ output	Can be set to input mode or output mode bit-wise.		Also used for the KR0-KR3 pins.
PORT8		Can be set to input mode or output mode in 4-bit units.	Ports 8 and 9 are paired and data can be input/ output in 8 -bit units.	Also used for the S20-S23 pins.
PORT9				Also used for the S16-S19 pins.

6.2 Clock Generator

The clock generator is a device that generates the clock which is supplied to peripheral hardware on the CPU and is configured as shown in Figure 6-1.

The clock generator operates according to how the processor clock control register (PCC) and system clock control register (SCC) are set.

There are two kinds of clocks, main system clock and subsystem clock.
The instruction execution time can also be changed.

- $0.95,1.91,3.81,15.3 \mu$ (main system clock: in $4.19-\mathrm{MHz}$ operation)
- $0.67,1.33,2.67,10.7 \mu$ (main system clock: in $6.0-\mathrm{MHz}$ operation)
- 122μ s (subsystem clock: in $32.768-\mathrm{kHz}$ operation)

Figure 6-1. Clock Generator Block Diagram

Note Instruction execution

Remarks 1. $\mathrm{fx}_{\mathrm{x}}=$ Main system clock frequency
2. $\mathrm{fxt}=$ Subsystem clock frequency
3. $\Phi=$ CPU clock
4. PCC: Processor Clock Control Register
5. SCC: System Clock Control Register
6. One clock cycle (tcy) of the CPU clock is equal to one machine cycle of the instruction.

6.3 Subsystem Clock Oscillator Control Functions

The μ PD753108 subsystem clock oscillator has the following two control functions.

- Selects by software whether an on-chip feedback resistor is to be used or not Note.
- Reduces current consumption by decreasing the drive current of the on-chip inverter when the supply voltage is high ($\mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$).
$\star \quad$ Note When the subsystem clock is not used, set SOS. 0 to 1 (so as not to use the on-chip feedback resistor) by software, connect XT1 to Vss or Vod, and open XT2. This makes it possible to reduce the current consumption in the subsystem clock oscillator.

The above functions can be used by switching the bits 0 and 1 of the sub-oscillator control register (SOS). (See Figure 6-2.)

Figure 6-2. Subsystem Clock Oscillator

6.4 Clock Output Circuit

The clock output circuit is provided to output the clock pulses from the P22/PTO2/PCL pin to the remote control wave outputs and peripheral LSI's.

- Clock output (PCL): $\Phi, 524,262,65.5 \mathrm{kHz}$ (main system clock: in $4.19-\mathrm{MHz}$ operation)
$\Phi, 750,375,93.8 \mathrm{kHz}$ (main system clock: in $6.0-\mathrm{MHz}$ operation)

Figure 6-3. Clock Output Circuit Block Diagram

Remark Special care has been taken in designing the chip so that small-width pulses may not be output when switching clock output enable/disable.

6.5 Basic Interval Timer/Watchdog Timer

The basic interval timer/watchdog timer has the following functions.

- Interval timer operation to generate a reference time interrupt
- Watchdog timer operation to detect a runaway of program and reset the CPU
- Selects and counts the wait time when the standby mode is released
- Reads the contents of counting

Figure 6-4. Basic Interval Timer/Watchdog Timer Block Diagram

Note Instruction execution

6.6 Watch Timer

The μ PD753108 has one watch timer channel which has the following functions.

- Sets the test flag (IRQW) at 0.5 -second intervals. The standby mode can be released by the IRQW.
- 0.5-second interval can be created by both the main system clock (4.194304 MHz) and subsystem clock (32.768 kHz).
- Convenient for program debugging and checking as interval becomes 128 times longer (3.91 ms) with the fast feed mode.
- Outputs the frequencies (2.048, 4.096, 32.768 kHz) to the P23/BUZ pin, usable for buzzer and trimming of system clock oscillation frequencies.
- Clears the frequency divider to make the watch start with zero seconds.

Figure 6-5. Watch Timer Block Diagram

Remark The values enclosed in parentheses are applied when $\mathrm{fx}=4.194304 \mathrm{MHz}$ and $\mathrm{fx}=32.768 \mathrm{kHz}$.

6.7 Timer/Event Counter

The μ PD753108 has three channels of timer/event counters. Its configuration is shown in Figures 6-6 to 6-8. The timer/event counter has the following functions.

- Programmable interval timer operation
- Square wave output of any frequency to the PTOn pin ($\mathrm{n}=0$ to 2)
- Event counter operation
- Divides the frequency of signal input via the TIn pin to $1-\mathrm{Nth}$ of the original signal and outputs the divided frequency to the PTOn pin (frequency divider operation).
- Supplies the serial shift clock to the serial interface circuit.
- Reads the count value.

The timer/event counter operates in the following four modes as set by the mode register.

Table 6-2. Operation Modes of Timer/Event Counter

Mode	Channel			
8-bit timer/event counter mode	Channel 0	Channel 1	Channel 2	
	Gate control function	No Note	No	
PWM pulse generator mode	No	No	Yes	
16-bit timer/event counter mode				
	Gate control function	No Note	Yes	
Carrier generator mode	No	Yes		

Note Used for gate control signal generation
^ Figure 6-6. Timer/Event Counter (Channel 0) Block Diagram

Note Instruction execution
Caution When setting data to TMO, be sure to set bit 1 to 0 .
Figure 6-7. Timer/Event Counter (Channel 1) Block Diagram

Figure 6-8. Timer/Event Counter (Channel 2) Block Diagram

6.8 Serial Interface

The μ PD753108 incorporates a clock-synchronous 8 -bit serial interface. The serial interface can be used in the following four modes.

- Operation stop mode
- 3-wire serial I/O mode
- 2-wire serial I/O mode
- SBI mode
Figure 6-9. Serial Interface Block Diagram

6.9 LCD Controller/Driver

The μ PD753108 incorporates a display controller which generates segment and common signals according to the display data memory contents and incorporates segment and common drivers which can drive the LCD panel directly.

The μ PD753108 LCD controller/driver has the following functions:

- Display data memory is read automatically by DMA operation and segment and common signals are generated.
- Display mode can be selected from among the following five:
<1> Static
$<2>1 / 2$ duty (time multiplexing by 2), $1 / 2$ bias
$<3>1 / 3$ duty (time multiplexing by 3), $1 / 2$ bias
$<4>1 / 3$ duty (time multiplexing by 3), $1 / 3$ bias
$<5>1 / 4$ duty (time multiplexing by 4), $1 / 3$ bias
- A frame frequency can be selected from among four in each display mode.
- A maximum of 24 segment signal output pins (S0 to S 23) and four common signal output pins (COM0 to COM3).
- The segment signal output pins (S0 to S23) can be changed to the I/O ports (PORT8 and PORT9).
- Split resistor can be incorporated to supply LCD drive power (mask option).
- Various bias methods and LCD drive voltages are applicable.
- When display is off, current flowing through the split resistor is cut.
- Display data memory not used for display can be used for normal data memory.
- It can also operate by using the subsystem clock.
Figure 6-10. LCD Controller/Driver Block Diagram

6.10 Bit Sequential Buffer 16 Bits

The bit sequential buffer (BSB) is a special data memory for bit manipulation and the bit manipulation can be easily performed by changing the address specification and bit specification in sequence, therefore it is useful when processing a long data bit-wise.

Figure 6-11. Bit Sequential Buffer Format

Remarks 1. In the pmem.@L addressing, the specified bit moves corresponding to the L register.
2. In the pmem.@L addressing, the BSB can be manipulated regardless of MBE/MBS specification.

7. INTERRUPT FUNCTION AND TEST FUNCTION

The μ PD753108 has eight types of interrupt sources and two types of test sources. Of these test sources, INT2 has two types of edge detection testable inputs.

The interrupt control circuit of the μ PD753108 has the following functions.

(1) Interrupt function

- Vectored interrupt function for hardware control, enabling/disabling the interrupt acceptance by the interrupt enable flag (IExxx) and interrupt master enable flag (IME).
- Can set any interrupt start address.
- Multiple interrupts wherein the order of priority can be specified by the interrupt priority select register (IPS).
- Test function of interrupt request flag (IRQxxx). An interrupt generation can be checked by software.
- Release the standby mode. An interrupt to be released can be selected by the interrupt enable flag.
(2) Test function
- Test request flag (IRQxxx) generation can be checked by software.
- Release the standby mode. The test source to be released can be selected by the test enable flag.
Figure 7-1. Interrupt Control Circuit Block Diagram

Note Noise elimination circuit (Standby release is disabled when noise elimination circuit is selected.)

8. STANDBY FUNCTION

In order to reduce power dissipation while a program is in a standby mode, two types of standby modes (STOP mode and HALT mode) are provided for the μ PD753108.

Table 8-1. Operation Status in Standby Mode

Item Mode		STOP mode	HALT mode
Set instruction		STOP instruction	HALT instruction
System clock when set		Settable only when the main system clock is used.	Settable both by the main system clock and subsystem clock.
Operation status	Clock generator	Main system clock stops oscillation.	Only the CPU clock Φ halts (oscillation continues).
	Basic interval timer/ watchdog timer	Operation stops.	Operable only when the main system clock is oscillated. $\left(\begin{array}{c} \mathrm{BT} \text { mode }: \\ \text { : IRQBT is set in the } \\ \text { reference time interval } \\ W T \text { mode }: \\ \text { Reset signal is generated } \\ \text { by BT overflow } \end{array}\right)$
	Serial interface	Operable only when an external $\overline{\text { SCK }}$ input is selected as the serial clock.	Operable only when an external $\overline{\text { SCK }}$ input is selected as the serial clock or when the main system clock is oscillated.
	Timer/event counter	Operable only when a signal input to the TIO to TI2 pins is specified as the count clock.	Operable only when a signal input to the TIO to TI2 pins is specified as the count clock or when the main system clock is oscillated.
	Watch timer	Operable when $\mathrm{fxt}_{\mathrm{t}}$ is selected as the count clock.	Operable.
	LCD controller/driver	Operable only when $\mathrm{fxt}_{\mathrm{t}}$ is selected as the LCDCL.	Operable.
	External interrupt	The INT1, 2, and 4 are operable. Only the INTO is not operated Note.	
	CPU	The operation stops.	
Release signal		Interrupt request signal sent from the operable hardware enabled by the interrupt enable flag or $\overline{\text { RESET }}$ signal input.	

Note Can operate only when the noise elimination circuit is not used (IMO2 = 1) by bit 2 of the edge detection mode register (IMO).

9. RESET FUNCTION

There are two reset inputs: external reset signal ($\overline{\mathrm{RESET}}$) and reset signal sent from the basic interval timer/ watchdog timer. When either one of the reset signals are input, an internal reset signal is generated. Figure 91 shows the configuration of the above two inputs.

Figure 9-1. Configuration of Reset Function

Generation of the $\overline{\text { RESET }}$ signal initializes each hardware as listed in Table 9-1. Figure 9-2 shows the timing chart of the reset operation.

Figure 9-2. Reset Operation by RESET Signal Generation

Note The following two times can be selected by the mask option. $2^{17} / \mathrm{fx}$ (21.8 ms : @ 6.00-MHz operation, 31.3 ms : @ 4.19-MHz operation) $2^{15} / \mathrm{fx}$ (5.46 ms : @ 6.00-MHz operation, 7.81 ms : @ 4.19-MHz operation)

Table 9-1. Status of Each Hardware After Reset (1/2)

Table 9-1. Status of Each Hardware After Reset (2/2)

Hardware		$\overline{\text { RESET }}$ signal generation in the standby mode	$\overline{\text { RESET }}$ signal generation in operation
Serial interface	Shift register (SIO)	Held	Undefined
	Operation mode register (CSIM)	0	0
	SBI control register (SBIC)	0	0
	Slave address register (SVA)	Held	Undefined
Clock generator, clock output circuit	Processor clock control register (PCC)	0	0
	System clock control register (SCC)	0	0
	Clock output mode register (CLOM)	0	0
Sub-oscillator control register (SOS)		0	0
LCD controller/ driver	Display mode register (LCDM)	0	0
	Display control register (LCDC)	0	0
	LCD/port selection register (LPS)	0	0
Interrupt function	Interrupt request flag (IRQxxx)	Reset (0)	Reset (0)
	Interrupt enable flag (IExxx)	0	0
	Interrupt priority selection register (IPS)	0	0
	INT0, 1, 2 mode registers (IM0, IM1, IM2)	0, 0, 0	0, 0, 0
Digital port	Output buffer	Off	Off
	Output latch	Cleared (0)	Cleared (0)
	I/O mode registers (PMGA, B, C)	0	0
	Pull-up resistor setting register (POGA, B)	0	0
Bit sequential buffer (BSB0 to BSB3)		Held	Undefined

10. MASK OPTION

The μ PD753108 has the following mask options.

- P50-P53 mask options

Selects whether or not to internally connect a pull-up resistor.
$<1>$ Connect pull-up resistor internally bit-wise.
<2> Do not connect pull-up resistor internally.

- Vlco-Vlcz pins, BIAS pin mask option

Selects whether or not to internally connect LCD-driving split resistors.
<1> Do not connect split resistor internally.
<2> Connect four $10-\mathrm{k} \Omega$ (typ.) split resistors simultaneously internally.
$<3>$ Connect four 100-k Ω (typ.) split resistors simultaneously internally.

- Standby function mask option

Selects the wait time with the $\overline{\text { RESET }}$ signal.
$<1>2^{17} / \mathrm{fx}(21.8 \mathrm{~ms}:$ When $\mathrm{fx}=6.0 \mathrm{MHz}, 31.3 \mathrm{~ms}$: When $\mathrm{fx}=4.19 \mathrm{MHz}$)
$<2>2^{15} / \mathrm{fx}(5.46 \mathrm{~ms}$: When $\mathrm{fx}=6.0 \mathrm{MHz}, 7.81 \mathrm{~ms}$: When $\mathrm{fx}=4.19 \mathrm{MHz}$)

- Subsystem clock mask option

Selects whether or not to use an internal feedback resistor.
<1> Use internal feedback resistor.
(Switch internal feedback resistor ON/OFF by software)
<2> Do not use internal feedback resistor.
(Disconnect internal feedback resistor by hardware)

11. INSTRUCTION SET

(1) Expression formats and description methods of operands

The operand is described in the operand column of each instruction in accordance with the description method for the operand expression format of the instruction. For details, refer to "RA75X ASSEMBLER PACKAGE USERS' MANUAL——LANGUAGE (EEU-1363)". If there are several elements, one of them is selected. Capital letters and the + and - symbols are key words and are described as they are. For immediate data, appropriate numbers and labels are described.
Instead of the labels such as mem, fmem, pmem, and bit, the symbols of the register flags can be described. However, there are restrictions in the labels that can be described for fmem and pmem. For details, see
User's Manual.

Expression format	Description method
$\begin{aligned} & \text { reg } \\ & \text { reg1 } \end{aligned}$	$\begin{aligned} & \text { X, A, B, C, D, E, H, L } \\ & \text { X, B, C, D, E, H, L } \end{aligned}$
rp rp1 rp2 rp' rp'1	```XA, BC, DE, HL BC, DE, HL BC, DE XA, BC, DE, HL, XA', BC', DE', HL' BC, DE, HL, XA', BC', DE', HL'```
$\begin{aligned} & \text { rpa } \\ & \text { rpa1 } \end{aligned}$	$\begin{aligned} & \mathrm{HL}, \mathrm{HL}+, \mathrm{HL}-, \mathrm{DE}, \mathrm{DL} \\ & \mathrm{DE}, \mathrm{DL} \end{aligned}$
$\begin{aligned} & \text { n4 } \\ & \text { n8 } \end{aligned}$	4-bit immediate data or label 8-bit immediate data or label
mem bit	8-bit immediate data or label Note 2-bit immediate data or label
fmem pmem	FBOH-FBFH, FFOH-FFFH immediate data or label FCOH-FFFH immediate data or label
addr addr1 (Mk II mode only) caddr faddr	0000H-0FFFH immediate data or label (μ PD753104) $0000 \mathrm{H}-17 \mathrm{FFH}$ immediate data or label (μ PD753106) $0000 \mathrm{H}-1 \mathrm{FFFH}$ immediate data or label ($\mu \mathrm{PD} 753108$) $0000 \mathrm{H}-0 \mathrm{FFFH}$ immediate data or label ($\mu \mathrm{PD} 753104$) $0000 \mathrm{H}-17 \mathrm{FFH}$ immediate data or label (μ PD753106) $0000 \mathrm{H}-1 \mathrm{FFFH}$ immediate data or label ($\mu \mathrm{PD} 753108$) 12-bit immediate data or label 11-bit immediate data or label
taddr	20H-7FH immediate data (where bit0 $=0$) or label
PORTn IExxx RBn MBn	PORTO-PORT3, PORT5, PORT6, PORT8, PORT9 IEBT, IETO-IET2, IEO-IE2, IE4, IECSI, IEW RB0-RB3 MB0, MB1, MB15

Note mem can be only used for even address in 8-bit data processing.
(2) Legend in explanation of operation

A	: A register, 4-bit accumulator
B	: B register
C	: C register
D	: D register
E	: E register
H	: H register
L	: L register
X	: X register
XA	: XA register pair; 8-bit accumulator
BC	: BC register pair
DE	: DE register pair
HL	: HL register pair
XA'	: XA' expanded register pair
BC'	: BC' expanded register pair
DE'	: DE' expanded register pair
HL'	: HL' expanded register pair
PC	: Program counter
SP	: Stack pointer
CY	: Carry flag, bit accumulator
PSW	: Program status word
MBE	: Memory bank enable flag
RBE	: Register bank enable flag
PORTn	: Port n (n = 0 to 3, 5, 6, 8, 9)
IME	: Interrupt master enable flag
IPS	: Interrupt priority selection register
IExxx	: Interrupt enable flag
RBS	: Register bank selection register
MBS	: Memory bank selection register
PCC	: Processor clock control register
P	: Separation between address and bit
(xx)	: The contents addressed by xx
xxH	: Hexadecimal data

(3) Explanation of symbols under addressing area column

*1	$\begin{aligned} & \mathrm{MB}=\mathrm{MBE} \cdot \mathrm{MBS} \\ & (\mathrm{MBS}=0,1,15) \end{aligned}$		Data memory addressing
*2	$\mathrm{MB}=0$		
*3	$\begin{aligned} \mathrm{MBE}=0: \mathrm{MB} & =0(000 \mathrm{H} \text { to } 07 \mathrm{FH}) \\ \mathrm{MB} & =15(\mathrm{~F} 80 \mathrm{H} \text { to FFFH }) \\ \mathrm{MBE}=1: \mathrm{MB} & =\mathrm{MBS}(\mathrm{MBS}=0,1,15) \end{aligned}$		
*4	$\mathrm{MB}=15, \mathrm{fmem}=\mathrm{FBOH}$ to FBFH, FFOH to FFFH		
*5	$\mathrm{MB}=15, \mathrm{pmem}=\mathrm{FCOH}$ to FFFH		γ
*6	μ PD753104	addr $=000 \mathrm{H}$ to FFFH	Program memory addressing
	μ PD753106	addr $=0000 \mathrm{H}$ to 17 FFH	
	μ PD753108	addr $=0000 \mathrm{H}$ to 1FFFH	
*7	$\begin{aligned} \text { addr }= & (\text { Current PC) }-15 \text { to }(\text { Current PC) }-1 \\ & (\text { Current PC) }+2 \text { to }(\text { Current PC) }+16 \end{aligned}$		
	$\begin{aligned} \text { addr1 }= & (\text { Current PC) }-15 \text { to }(\text { Current PC) }-1 \\ & (\text { Current PC) }+2 \text { to }(\text { Current PC) }+16 \end{aligned}$		
*8	μ PD753104	caddr $=000 \mathrm{H}$ to FFFH	
	μ PD753106	$\begin{aligned} \text { caddr }= & 0000 \mathrm{H} \text { to } 0 \text { FFFH }\left(\mathrm{PC}_{12}=0\right) \text { or } \\ & 1000 \mathrm{H} \text { to } 17 \mathrm{FFH}\left(\mathrm{PC}_{12}=1\right) \end{aligned}$	
	μ PD753108	$\begin{aligned} \text { caddr }= & 0000 \mathrm{H} \text { to } 0 \text { FFFH }\left(\mathrm{PC}_{12}=0\right) \text { or } \\ & 1000 \mathrm{H} \text { to } 1 \text { FFFH }\left(\mathrm{PC}_{12}=1\right) \end{aligned}$	
*9	faddr $=0000 \mathrm{H}$ to 07 FFH		
*10	taddr $=0020 \mathrm{H}$ to 007FH		
${ }^{*} 11$	μ PD753104	addr1 $=000 \mathrm{H}$ to FFFH	
	μ PD753106	addr1 $=0000 \mathrm{H}$ to 17 FFH	
	μ PD753108	addr1 $=0000 \mathrm{H}$ to 1 FFFF	

Remarks 1. MB indicates memory bank that can be accessed.
2. In *2, MB = 0 independently of how MBE and MBS are set.
3. In * 4 and ${ }^{*} 5, M B=15$ independently of how MBE and MBS are set.
4. *6 to *11 indicate the areas that can be addressed.
(4) Explanation of number of machine cycles column
S denotes the number of machine cycles required by skip operation when a skip instruction is executed. The value of S varies as follows.

- When no skip is made: $S=0$
- When the skipped instruction is a 1 - or 2-byte instruction: $S=1$
- When the skipped instruction is a 3-byte instruction ${ }^{\text {Note }: ~} \mathrm{~S}=2$

Note 3-byte instruction: BR !addr, BRA !addr1, CALL !addr or CALLA !addr1 instruction

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle is equal to one cycle of CPU clock (= tcy); time can be selected from among four types by setting PCC.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Transfer	MOV	A, \#n4	1	1	A <-n4		String effect A
		reg1, \#n4	2	2	reg1 <- n4		
		XA, \#n8	2	2	XA <- n8		String effect A
		HL, \#n8	2	2	HL <- n8		String effect B
		rp2, \#n8	2	2	rp2 <- n8		
		A, @HL	1	1	A <- (HL)	*1	
		A, @HL+	1	$2+$ S	A <- (HL), then L <- L+1	*1	$\mathrm{L}=0$
		A, @HL-	1	$2+$ S	A <- (HL), then $\mathrm{L}<-\mathrm{L}-1$	*1	$\mathrm{L}=\mathrm{FH}$
		A, @rpa1	1	1	A <- (rpa1)	*2	
		XA, @HL	2	2	XA <- (HL)	*1	
		@HL, A	1	1	$(\mathrm{HL})<-\mathrm{A}$	*1	
		@HL, XA	2	2	$(\mathrm{HL})<-\mathrm{XA}$	*1	
		A, mem	2	2	A <- (mem)	*3	
		XA, mem	2	2	XA <- (mem)	*3	
		mem, A	2	2	(mem) <- A	*3	
		mem, XA	2	2	$(\mathrm{mem})<-\mathrm{XA}$	*3	
		A, reg	2	2	A <-reg		
		XA, rp'	2	2	$X A<-r p '$		
		reg1, A	2	2	reg $1<-\mathrm{A}$		
		rp'1, XA	2	2	rp'1 <- XA		
	XCH	A, @HL	1	1	A <-> (HL)	*1	
		A, @HL+	1	2+S	A <-> (HL), then L <- L+1	*1	$\mathrm{L}=0$
		A, @HL-	1	2+S	A <-> (HL), then L <- L-1	*1	$L=F H$
		A, @rpa1	1	1	A <-> (rpa1)	*2	
		XA, @HL	2	2	XA <-> (HL)	*1	
		A, mem	2	2	A <-> (mem)	*3	
		XA, mem	2	2	XA <-> (mem)	*3	
		A, reg1	1	1	A <-> reg1		
		XA, rp'	2	2	X $A<->r p^{\prime}$		

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Table reference	MOVT	XA, @PCDE	1	3	$\begin{aligned} & \text { - } \mu \text { PD753104 } \\ & \text { XA <- (PC } 11-8+\text { DE })_{\text {Rом }} \end{aligned}$		
					$\begin{aligned} & \text { - } \mu \text { PD753106, } 753108 \\ & \text { XA <- }\left(\text { PC }_{12-8}+\mathrm{DE}\right)_{\text {Roм }} \end{aligned}$		
		XA, @PCXA	1	3	$\begin{aligned} & \text { - } \mu \text { PD753104 } \\ & \text { XA <- (PC } 11-8+X A)_{\text {Roм }} \end{aligned}$		
					$\begin{aligned} & \text { - } \mu \text { PD753106, } 753108 \\ & \text { XA <- }\left(\text { PC }_{12-8+}{ }^{2} A\right)_{\text {Rом }} \end{aligned}$		
		XA, @BCDE	1	3	XA <- (BCDE)rom Note	*6	
		XA, @BCXA	1	3	XA <- (BCXA) rom Note	*6	
Bit transfer	MOV1	CY, fmem. bit	2	2	CY <- (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY <- $\left(\right.$ pmem $\left.\left._{7-2+L_{3-2} .} \mathrm{bit}^{(} \mathrm{L}_{1-0}\right)\right)$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY}<-\left(\mathrm{H}+\mathrm{mem}_{3-0}\right.$. bit$)$	*1	
		fmem.bit, CY	2	2	(fmem.bit) <- CY	*4	
		pmem.@L, CY	2	2	$\left(\right.$ pmem ${ }_{\left.7-2+L_{3-2} . \operatorname{bit}\left(\mathrm{L}_{1-0}\right)\right)<-\mathrm{CY}}$	*5	
		@H+mem.bit, CY	2	2	$\left(\mathrm{H}+\mathrm{mem}_{3-0.0}\right.$ bit) <- CY	*1	
Operation	ADDS	A, \#n4	1	1+S	A <- A+n4		carry
		XA, \#n8	2	$2+$ S	$X A<-X A+n 8$		carry
		A, @HL	1	1+S	A <- A+(HL)	*1	carry
		XA, rp'	2	2+S	$X A<-X A+r p^{\prime}$		carry
		rp'1, XA	2	$2+$ S	rp' $1<-r p ' 1+X A$		carry
	ADDC	A, @HL	1	1	$A, C Y<-A+(H L)+C Y$	*1	
		XA, rp'	2	2	$X A, C Y<-X A+r p^{\prime}+C Y$		
		rp'1, XA	2	2	rp'1, CY <-rp'1+XA+CY		
	SUBS	A, @HL	1	1+S	A <- A-(HL)	*1	borrow
		XA, rp'	2	2+S	$X A<-X A-r p^{\prime}$		borrow
		rp'1, XA	2	2+S	rp' $1<-\mathrm{rp}$ '1-XA		borrow
	SUBC	A, @HL	1	1	A, CY <- A-(HL)-CY	*1	
		XA, rp'	2	2	XA, CY <- XA-rp'-CY		
		rp'1, XA	2	2	rp'1, CY <-rp'1-XA-CY		

Note Set "0" in B register if the μ PD753104 is used. Only low-order one bit of B register will be valid if the μ PD753106 or 753108 is used.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Operation	AND	A, \#n4	2	2	$A<-A \wedge n 4$		
		A, @HL	1	1	$\mathrm{A}<-\mathrm{A} \wedge(\mathrm{HL})$	*1	
		XA, rp'	2	2	$X A<-X A \wedge r p^{\prime}$		
		rp'1, XA	2	2	rp'1<-rp'1^XA		
	OR	A, \#n4	2	2	$A<-A \vee n 4$		
		A, @HL	1	1	$A<-A \vee(H L)$	*1	
		XA, rp'	2	2	$X A<-X A \vee r p^{\prime}$		
		rp'1, XA	2	2	rp'1 <-rp'1 v XA		
	XOR	A, \#n4	2	2	$A<-A \forall n 4$		
		A, @HL	1	1	$A<-A \forall(H L)$	*1	
		XA, rp'	2	2	$X A<-X A \forall r p^{\prime}$		
		rp'1, XA	2	2	$r p^{\prime} 1<-r p^{\prime} 1 \forall X A$		
Accumulator manipulation	RORC	A	1	1	$C Y<-A_{0}, A_{3}<-C Y, A_{n-1}<-A_{n}$		
	NOT	A	2	2	$\mathrm{A}<-\overline{\mathrm{A}}$		
Increment and decrement	INCS	reg	1	1+S	reg <-reg+1		$\mathrm{reg}=0$
		rp1	1	1+S	rp1 <- rp1+1		$\mathrm{rp1}=00 \mathrm{H}$
		@HL	2	2+S	$(\mathrm{HL})<-(\mathrm{HL})+1$	*1	$(\mathrm{HL})=0$
		mem	2	2+S	$(\mathrm{mem})<-(\mathrm{mem})+1$	*3	$(\mathrm{mem})=0$
	DECS	reg	1	1+S	reg <- reg-1		$\mathrm{reg}=\mathrm{FH}$
		rp'	2	2+S	rp' <- rp'-1		$\mathrm{rp}^{\prime}=\mathrm{FFH}$
Comparison	SKE	reg, \#n4	2	2+S	Skip if reg $=\mathrm{n} 4$		$\mathrm{reg}=\mathrm{n} 4$
		@HL, \#n4	2	2+S	Skip if (HL) $=\mathrm{n} 4$	*1	$(\mathrm{HL})=\mathrm{n} 4$
		A, @HL	1	1+S	Skip if $A=(H L)$	*1	$\mathrm{A}=(\mathrm{HL})$
		XA, @HL	2	2+S	Skip if $\mathrm{XA}=(\mathrm{HL})$	*1	$X A=(H L)$
		A, reg	2	2+S	Skip if $\mathrm{A}=\mathrm{reg}$		A = reg
		XA, rp'	2	2+S	Skip if $X A=r p^{\prime}$		$X A=r p '$
Carry flag manipulation	SET1	CY	1	1	CY <-1		
	CLR1	CY	1	1	CY <- 0		
	SKT	CY	1	1+S	Skip if $C Y=1$		$C Y=1$
	NOT1	CY	1	1	$C Y<-\overline{C Y}$		

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Memory bit manipulation	SET1	mem.bit	2	2	(mem.bit) <-1	*3	
		fmem.bit	2	2	(fmem.bit) <-1	*4	
		pmem.@L	2	2	$\left(\right.$ pmem $\left._{7-2+L_{3-2} . \operatorname{bit}\left(L_{1-0}\right)}\right)<-1$	*5	
		@H+mem.bit	2	2	(H+mem ${ }_{3-0}$. bit) <-1	*1	
	CLR1	mem.bit	2	2	(mem.bit) <- 0	*3	
		fmem.bit	2	2	(fmem.bit) <- 0	*4	
		pmem.@L	2	2	$\left(\right.$ pmem $_{\left.7-2+L_{3-2} . \operatorname{bit}\left(L_{1-0}\right)\right)<-000}$	*5	
		@ $\mathrm{H}+$ mem.bit	2	2	($\mathrm{H}+$ mem $_{3-0}$. ${ }^{\text {bit }}$) <- 0	*1	
	SKT	mem.bit	2	$2+$ S	Skip if (mem. bit) $=1$	*3	$($ mem. bit $)=1$
		fmem.bit	2	$2+$ S	Skip if (fmem.bit) $=1$	*4	$($ fmem. bit $)=1$
		pmem.@L	2	2+S		*5	(pmem.@L) = 1
		@H+mem.bit	2	$2+S$	Skip if $\left(H+\right.$ mem $_{3-0}$. bit $)=1$	*1	$(@ H+m e m$. bit $)=1$
	SKF	mem.bit	2	$2+$ S	Skip if (mem.bit) $=0$	*3	(mem.bit) $=0$
		fmem.bit	2	$2+$ S	Skip if (fmem.bit) $=0$	*4	(fmem.bit) $=0$
		pmem.@L	2	2+S	Skip if $\left(\right.$ pmem $\left.\left._{7-2+L_{3-2 .}} \operatorname{bit}^{\text {(}} \mathrm{L}_{1-0}\right)\right)=0$	*5	(pmem.@L) = 0
		@H+mem.bit	2	$2+$ S	Skip if $\left(\mathrm{H}+\right.$ mem $_{3-0}$. bit $)=0$	*1	$(@ H+m e m . b i t)=0$
	SKTCLR	fmem.bit	2	$2+$ S	Skip if (fmem.bit) = 1 and clear	*4	$($ fmem. bit $)=1$
		pmem.@L	2	2+S	Skip if $\left(\right.$ pmem $_{7-2+L_{3-2}}$.bit $\left.\left(\mathrm{L}_{1-0}\right)\right)=1$ and clear	*5	(pmem.@L) = 1
		@H+mem.bit	2	2+S	Skip if $\left(\mathrm{H}+\mathrm{mem}_{3-0}\right.$. bit $)=1$ and clear	*1	$(@ H+$ mem.bit $)=1$
	AND1	CY, fmem.bit	2	2	CY <- CY ^(fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY}<-\mathrm{CY} \wedge\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3}-2 . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY}<-\mathrm{CY} \wedge\left(\mathrm{H}+\right.$ mem $_{3-\text { - }}$.bit $)$	*1	
	OR1	CY, fmem. bit	2	2	CY <- CY \vee (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY <-CY $\vee\left(\right.$ pmem $_{7-2+L_{3-2}}$.bit $\left.\left(L_{1-0}\right)\right)$	*5	
		CY, @H+mem.bit	2	2	CY <- CY $\vee\left(\mathrm{H}+\mathrm{mem}_{3}\right.$-o.bit)	*1	
	XOR1	CY, fmem.bit	2	2	$C Y<-C Y \forall$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY <-CY \quad (pmem ${ }_{\left.7-2+L_{3-2} . \operatorname{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	CY <-CY \forall ($\mathrm{H}+\mathrm{mem}_{3}$-o.bit $)$	*1	

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Branch	BR Note	addr	-	-	$\left.\left.\begin{array}{\|l\|}\hline-\mu \text { PD753104 }^{2} \\ \text { PC. } \\ \text { (Select appropriate instruction from among } \\ \text { BR !addr, BRCB !caddr and BR \$addr } \\ \text { according to the assembler being used. }\end{array}\right) \left\lvert\, \begin{array}{l}\text { - } \mu \text { PD753106, } 753108 \\ \text { PC }_{12-0}<- \text { addr } \\ \text { (Select appropriate instruction from } \\ \text { among BR !addr, BRCB !caddr and BR } \\ \text { \$addr according to the assembler } \\ \text { being used. }\end{array}\right.\right]$	*6	
		addr1	-	-		*11	
		!addr	3	3	- μ PD753 $^{2} 104$ PC $_{11-0}<-$ addr - μ PD753106, $^{2} 753108$ PC $_{12-0}$ <- addr	*6	
		\$addr	1	2		*7	
		\$addr1	1	2	- μ PD753104 PC $_{11-0}<-$ addr1$\|$- μ PD753106, $^{2} 533108$ PC $_{12-0}<-$ addr1		

Note The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Branch	BR	PCDE	2	3	$\begin{aligned} & \bullet \mu \text { PD753104 }^{\text {PC }} 111-0<-\mathrm{PC}_{11-8+\mathrm{DE}} \\ & \mathrm{P}_{10} \end{aligned}$		
					$\begin{aligned} & \text { - } \mu \text { PD }^{2} 53106,753108 \\ & \text { PC }_{12-0}<-\mathrm{PC}_{12-8}+\mathrm{DE} \end{aligned}$		
		PCXA	2	3	$\begin{array}{\|l} \bullet \mu \text { PD753104 }^{2} \\ \text { PC }_{11-0}<-\mathrm{PC}_{11-8+} \end{array}$		
					$\begin{aligned} & \text { - } \mu \mathrm{PD}_{2} 753106,753108 \\ & \mathrm{PC}_{12-0}<-\mathrm{PC}_{12-8}+\mathrm{XA} \end{aligned}$		
		BCDE	2	3	$\begin{aligned} & \bullet \mu \text { PD753104 }^{\text {PC }} \\ & \text { PC }{ }_{11-0}<- \text { BCDE Note } \end{aligned}$	*6	
					$\begin{aligned} & \text { - } \mu \text { PD }^{2} 53106,753108 \\ & \text { PC }_{12-0}<- \text { BCDE Note } 2 \end{aligned}$		
		BCXA	2	3	$\begin{array}{\|l} \text { - } \mu \text { PD753104 } \\ \text { PC }_{11-0} \text { <- BCXA Note } 1 \end{array}$	*6	
					$\begin{aligned} & \text { - } \mu \text { PD753106, } 753108 \\ & \text { PC }_{12-0}<- \text { BCXA Note } 2 \end{aligned}$		
	BRA ${ }^{\text {Note } 3}$	laddr1	3	3	$\begin{aligned} & \hline \text { - } \mu \text { PD753104 } \\ & \text { PC }_{11-0} \text { <- addr1 } \end{aligned}$	*11	
					$\begin{aligned} & \text { - } \mu \text { PD753106, } 753108 \\ & \text { PC }_{12-0}<- \text { addr1 } \end{aligned}$		
	BRCB	!caddr	2	2	$\begin{aligned} & \text { - } \mu \text { PD753104 }^{\text {PC }} \begin{array}{l} 11-0 \\ \text { <- caddr } \\ 11-0 \end{array} \end{aligned}$	*8	
Subroutine stack control	CALLA ${ }^{\text {Note } 3}$!addr1	3	3	$\begin{aligned} & -\mu \text { PD753104 } \\ & (\text { SP-2) <-x, x, MBE, RBE } \\ & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4)<-\mathrm{PC}_{11-0} \\ & (\mathrm{SP}-5)<-0,0,0,0 \\ & \mathrm{PC}_{11-0}<- \text { addr1, SP <- SP-6 } \end{aligned}$	*11	
					$\begin{aligned} & \hline \text { - } \mu \text { PD753106, } 753108 \\ & (\mathrm{SP}-2)<-\mathrm{x}, \mathrm{x}, \mathrm{MBE}, \mathrm{RBE} \\ & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4)<-\mathrm{PC}_{11-0} \\ & (\mathrm{SP}-5)<-0,0,0, \mathrm{PC}_{12} \\ & \mathrm{PC}_{12-0}<- \text { addr1, SP <- SP-6 } \end{aligned}$		

Notes 1. "0" must be set to B register.
2. Only low-order one bit is valid in B register.
3. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the MkI mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Subroutine stack control	CALL Note	!addr	3	3	- μ PD753104 (SP-3) <- MBE, RBE, 0, 0 (SP-4) (SP-1) (SP-2) <- PC ${ }_{11-0}$ $\mathrm{PC}_{11-0}<-$ addr, SP <- SP-4 - μ PD753106, 753108 (SP-3) <- MBE, RBE, 0, PC_{12} (SP-4) (SP-1) (SP-2) <- PC ${ }_{11-0}$ $\mathrm{PC}_{12-0}<-$ addr, $\mathrm{SP}<-\mathrm{SP}-4$ - P PD53104 (SP-2) <- x, x, MBE, RBE (SP-6) (SP-3) (SP-4) <- PC ${ }_{11-0}$ (SP-5) <- 0, 0, 0, 0 $\mathrm{PC}_{11-0}<-$ addr, SP <- SP-6 μ PD753106, 753108 (SP-2) <- x, x, MBE, RBE (SP-6) (SP-3) (SP-4) <- PC ${ }_{11-0}$ $(S P-5)<-0,0,0, P_{12}$ $\mathrm{PC}_{12-0}<-$ addr, $\mathrm{SP}<-\mathrm{SP}-6$	*6	
	CALLF Note	! faddr	2	2 3	- μ PD753104 (SP-3) <- MBE, RBE, 0, 0 (SP-4) (SP-1) (SP-2) <- PC ${ }_{11-0}$ PC ${ }_{11-0}<-0+$ faddr, $S P<-S P-4$ μ PD753106, 753108 (SP-3) <- MBE, RBE, 0, PC ${ }_{12}$ (SP-4) (SP-1) (SP-2) <- PC ${ }_{11-0}$ $\mathrm{PC}_{12-0}<-00+$ faddr, $\mathrm{SP}<-\mathrm{SP}-4$ μ PD753104 (SP-2) <- x, x, MBE, RBE (SP-6) (SP-3) (SP-4) <- PC ${ }_{11-0}$ (SP-5) <- 0, 0, 0, 0 $\mathrm{PC}_{11-0}<-0+$ faddr, SP <- SP-6 μ PD753106, 753108 (SP-2) <- x, x, MBE, RBE (SP-6) (SP-3) (SP-4) <- PC ${ }_{11-0}$ $(S P-5)<-0,0,0, P_{12}$ $\mathrm{PC}_{12-0}<-00+$ faddr, $S P<-S P-6$	*9	

Note The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the MkI mode.

Note The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Subroutine stack control	RETI Note 1		1	3	- μ PD753104 MBE, RBE, $0,0<-(S P+1)$ $\mathrm{PC}_{11-0}<-(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$ $\text { PSW <- (SP+4) }(S P+5), S P<-S P+6$ $\begin{aligned} & \text { - } \mu \text { PD753106, } 753108 \\ & \text { MBE, RBE, 0, PC }{ }_{12}<-(\mathrm{SP}+1) \\ & \mathrm{PC}_{11-0}<-(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{PSW}^{<-}(\mathrm{SP}+4)(\mathrm{SP}+5), \mathrm{SP}<-\mathrm{SP}+6 \end{aligned}$		
	PUSH	rp	1	1	(SP-1) (SP-2) <-rp, SP <- SP-2		
		BS	2	2	$(\mathrm{SP}-1)<-\mathrm{MBS},(\mathrm{SP}-2)<-\mathrm{RBS}, \mathrm{SP}<-\mathrm{SP}-2$		
	POP	rp	1	1	$\mathrm{rp}<-(\mathrm{SP}+1)(\mathrm{SP}), \mathrm{SP}<-\mathrm{SP}+2$		
		BS	2	2	MBS <- (SP+1), RBS <- (SP), SP <- SP+2		
Interrupt control	El		2	2	IME (IPS.3) <-1		
		IExxx	2	2	IExxx <- 1		
	DI		2	2	IME (IPS.3) <- 0		
		IExxx	2	2	IExxx <- 0		
Input/output	IN Note 2	A, PORTn	2	2	A $<-$ PORTn $\quad(\mathrm{n}=0-3,5,6,8,9)$		
		XA, PORTn	2	2	XA $<-$ PORTn+1, PORTn $\quad(\mathrm{n}=8)$		
	OUT Note 2	PORTn, A	2	2	PORTn <- A $\quad(\mathrm{n}=3,5,6,8,9)$		
		PORTn, XA	2	2	PORTn+1, PORTn <- XA $\quad(\mathrm{n}=8)$		
CPU control	HALT		2	2	Set HALT Mode (PCC. 2 <-1)		
	STOP		2	2	Set STOP Mode (PCC. 3 <-1)		
	NOP		1	1	No Operation		
Special	SEL	RBn	2	2	RBS $<-\mathrm{n} \quad(\mathrm{n}=0-3)$		
		MBn	2	2	MBS <- $\mathrm{n} \quad(\mathrm{n}=0,1,15)$		

Notes 1. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.
2. While the IN instruction and OUT instruction are being executed, the MBE must be set to 0 or 1 , and MBS must be set to 15 .

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Special	GETI Note 1,2	taddr	1	3	- μ PD753104 - When TBR instruction $\mathrm{PC}_{11-0}<-(\text { taddr })_{3-0}+($ taddr+1)	*10	
					- When TCALL instruction $\begin{aligned} & (S P-4)(S P-1)(S P-2)<-C_{11-0} \\ & (S P-3)<- \text { MBE, RBE, } 0,0 \\ & \mathrm{PC}_{11-0}<-(\text { taddr }) 3-0+(\text { taddr }+1) \\ & S P<- \text { SP-4 } \end{aligned}$		
					- When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed.		Depending on the reference instruction
					- μ PD753106, 753108 - When TBR instruction $\mathrm{PC}_{12-0}<-(\text { taddr })_{4-0}+($ taddr +1$)$		
					- When TCALL instruction (SP-4) (SP-1) (SP-2) <- PC ${ }_{11-0}$ (SP-3) <- MBE, RBE, 0, PC ${ }_{12}$ $\mathrm{PC}_{12-0}<-($ taddr) $4-0+($ taddr +1$)$ SP <- SP-4		
					- When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed.		Depending on the reference instruction
				3	- μ PD753104 - When TBR instruction $\mathrm{PC}_{11-0}<-(\text { taddr })_{3-0}+($ taddr +1$)$	*10	
				4	- When TCALL instruction $\begin{aligned} & (S P-6)(S P-3)(S P-4)<-\mathrm{PC}_{11-0} \\ & (\mathrm{SP}-5)<-0,0,0,0 \\ & (\mathrm{SP}-2)<-\mathrm{x}, \mathrm{x}, \mathrm{MBE}, \mathrm{RBE} \\ & \mathrm{PC}_{11-0}<-(\text { taddr })_{3-0}+(\text { taddr}+1) \\ & \mathrm{SP}_{<- \text {SP-6 }} \end{aligned}$		
				3	- When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed.		Depending on the reference instruction
				3	- μ PD753106, 753108 - When TBR instruction $\mathrm{PC}_{12-0}<-($ taddr $) 4-0+($ taddr +1$)$		
				4	- When TCALL instruction $\begin{aligned} & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4)<-\mathrm{PC}_{11-0} \\ & (\mathrm{SP}-5)<-0,0,0, \mathrm{PC}_{12} \\ & (\mathrm{SP}-2)<-\mathrm{x}, \mathrm{x}, \mathrm{MBE}, \mathrm{RBE} \\ & \mathrm{PC}_{12-0}<-(\text { taddr }) 4-0+(\text { taddr}+1) \\ & \mathrm{SP}_{4-}<-6 \mathrm{SP}-6 \end{aligned}$		
				3	- When instruction other than TBR and TCALL instructions (taddr) (taddr +1) instruction is executed.		Depending on the reference instruction

Notes 1. The TBR and TCALL instructions are the table definition assembler pseudo instructions of the GETI instruction.
2. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

12. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions		Rating	
Supply voltage	VDD			-0.3 to +7.0	V
Input voltage	V_{11}	Except port 5		-0.3 to $V_{\text {DD }}+0.3$	V
	V_{12}	Port 5	On-chip pull-up resistor	-0.3 to VDD +0.3	V
			When N -ch open-drain	-0.3 to +14	V
Output voltage	Vo			-0.3 to $V_{\text {DD }}+0.3$	V
Output current high	Іон	Per pin		-10	mA
		Total of all pins		-30	mA
Output current low	IoL	Per pin		30	mA
		Total of all pins		220	mA
Operating ambient temperature	TA			-40 to +85 Note	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Note When LCD is driven in normal mode: $\mathrm{T}_{\mathrm{A}}=-10$ to $+85{ }^{\circ} \mathrm{C}$

Caution Exposure to Absolute Maximum Ratings even for instant may affect device reliability; exceeding the ratings could cause parmanent damage. The parameters apply independently. The device should be operated within the limits specified under DC and AC Characteristics.

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .			15	pF
Output capacitance	Cout				15	pF
I/O capacitance	Cıo				15	pF

MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS ($T_{A}=-40$ to $+85{ }^{\circ} \mathrm{C}$, $\mathrm{VDD}_{\mathrm{DD}}=1.8$ to 5.5 V)

Notes 1. The oscillation frequency and X 1 input frequency indicate characteristics of the oscillator only. For the instruction execution time, refer to the $A C$ characteristics.
2. When the oscillation frequency is $4.19 \mathrm{MHz}<\mathrm{fx} \leq 6.0 \mathrm{MHz}$ at $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$, setting the processor clock control register (PCC) to 0011 results in 1 machine cycle time being less than the required 0.95 $\mu \mathrm{s}$. Therefore, set PCC to a value other than 0011.
3. The oscillation stabilization time is necessary for oscillation to stabilize after applying Vdd or releasing the STOP mode.

Caution When using the main system clock oscillator, wiring in the area enclosed with the dotted line in the above figure should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vdd.
- Do not ground to the ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VDD}=1.8$ to 5.5 V)

Resonator	Recommended constant	Parameter	Test conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillation frequency (fxt) Note 1		32	32.768	35	kHz
		Oscillation	$V_{\text {DD }}=4.5$ to 5.5 V		1.0	2	s
		stabilization time ${ }^{\text {Note } 2}$				10	
External clock		XT1 input frequency (fxt) Note 1		32		100	kHz
		X1 input high/low-level width ($\mathrm{tx} \mathbf{\tau}, \mathrm{tx} \mathrm{t}$)		5		15	$\mu \mathrm{s}$

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. The oscillation stabilization time is necessary for oscillation to stabilize after applying Vdd.

Caution When using the subsystem clock oscillator, wiring in the area enclosed with the dotted line in the above figure should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vdo.
- Do not ground to the ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

The subsystem clock oscillator is designed as a low amplification circuit to provide low consumption current, causing misoperation by noise more frequently than the main system clock oscillator. Special care should therefore be taken for wiring method when the subsystem clock is used.

RECOMMENDED OSCILLATOR CONSTANT
Ceramic Resonator ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 2 0}$ to $+85^{\circ} \mathrm{C}$)

Manufacturer	Product name	Frequency(MHz)	Oscillator constant (pF)		Oscillation voltage range (VDd)		Remarks
			C1	C2	MIN.	MAX.	
Kyocera Corporation	KBR-1000F/Y	1.0	100	100	1.8	5.5	-
	KBR-2.0MS	2.0	82	82	2.2		
	KBR-4.19MSA	4.19	33	33	1.8		
	KBR-4.19MKS		-	-			On-chip capacitor product
	PBRC 4.19A		33	33			-
	PBRC 4.19B		-	-			On-chip capacitor product
	KBR-6.0MSA	6.0	33	33			-
	KBR-6.0MKS		-	-			On-chip capacitor product
	PBRC 6.00A		33	33			-
	PBRC 6.00B		-	-			On-chip capacitor product

Ceramic Resonator ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}$)

Manufacturer	Product name	Frequency(MHz)	Oscillator constant (pF)		Oscillation voltage range (VDD)		Remarks
			C1	C2	MIN.	MAX.	
TDK	CCR1000K2	1.0	150	150	2.3	5.5	-
	CCR2.0MC33	2.0	-	-	2.0		On-chip capacitor product
	FCR4.19MC5	4.19					
	CCR4.19MC3						
	FCR6.0MC5	6.0			2.2		
	CCR6.0MC3						

Ceramic Resonator ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 2 0}$ to $+80{ }^{\circ} \mathrm{C}$)

Manufacturer	Product name	Frequency(MHz)	Oscillator constant (pF)		Oscillation voltage range (VDD)		Remarks
			C1	C2	MIN.	MAX.	
Murata Mfg. Co., Ltd.	CSB1000J	1.0	100	100	2.4	5.5	$\mathrm{Rd}=5.6 \mathrm{k} \Omega^{\text {Note }}$
	CSA2.00MG	2.0	30	30	1.8		-
	CST2.00MGW		-	-			On-chip capacitorproduct
	CSA3.00MG	3.0	30	30			-
	CST3.00MGW		-	-			On-chip capacitorproduct
	CSA4.19MG	4.19	30	30			-
	CST4.19MGW		-	-			On-chip capacitorproduct
	CSA5.00MG	5.0	30	30	2.2		-
	CSA5.00MGU				1.8		
	CST5.00MGW		-	-	2.2		On-chip capacitor product
	CST5.00MGWU				1.8		
	CSA6.00MG	6.0	30	30	2.5		-
	CSA6.00MGU				1.8		
	CST6.00MGW		-	-	2.5		On-chip capacitor product
	CST6.00MGWU				1.8		

Note If using the CSB1000J (1.0-MHz) ceramic resonator manufactured by Murata Mfg. Co., Ltd., a limiting resistor $(R d=5.6 \mathrm{k} \Omega)$ is required (see figure below). A limiting resistor is not required if using the other recommended resonators.

Recommended Main System Clock Circuit Example (using Murata Mfg. Co., Ltd. CSB1000J)

Crystal Resonator

Manufacturer	Product name	Frequency(MHz)	Oscillator constant (pF)		Oscillation voltage range (Vdo)		Remarks
			C1	C2	MIN.	MAX.	
Kinseki	HC-49/U	2.0	15	15	1.8	5.5	$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C}$
		4.19					
		6.0			2.5	5.5	
	HC-49/U-S	4.19			1.8	5.5	$\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C}$
		6.0			2.5	5.5	

Caution The oscillator constant and the oscillation voltage range represent conditions for stable oscillation, but do not guarantee an accurate oscillation frequency. For an application circuit requiring an accurate oscillation frequency, it may be necessary to adjust the oscillation frequency of the resonator in the application circuit, in which case inquiries should be directed to the manufacturer of the resonator.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Test conditions			MIN.	TYP.	MAX.	Unit
Output current low	Iot	Per pin					15	mA
		Total of all pins					150	mA
Input voltage high	$\mathrm{V}_{\mathrm{H} 1}$	Ports 2, 3, 8, 9		$2.7 \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0.7VDD		VDD	V
				$1.8 \leq \mathrm{VDD}^{2} 2.7 \mathrm{~V}$	0.9VDD		VDD	V
	V ${ }^{\text {H2 }}$	Ports 0, 1, 6, $\overline{\text { RESET }}$		$2.7 \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0.8VDD		VDD	V
				$1.8 \leq \mathrm{VDD}^{2} 2.7 \mathrm{~V}$	0.9VDD		VDD	V
	V_{1+3}	Port 5	On-chip pull-up resistor	$2.7 \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0.7Vdo		Vdo	V
				$1.8 \leq \mathrm{VDD}^{2} 2.7 \mathrm{~V}$	0.9VDD		VDD	V
			When N -ch open-drain	$2.7 \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0.7 VDD		13	V
				$1.8 \leq \mathrm{VDD}^{2} 2.7 \mathrm{~V}$	0.9VDD		13	V
	VIH4	X1, XT1			Vod-0.1		VDD	V
Input voltage low	VIL1	Ports 2, 3, 5, 8, 9		$2.7 \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0		0.3 VDD	V
				$1.8 \leq \mathrm{VDD}^{2} \times 2.7 \mathrm{~V}$	0		0.1 VDD	V
	VIL2	Ports 0, 1, 6, $\overline{\text { RESET }}$		$2.7 \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0		0.2 Vdo	V
				$1.8 \leq \mathrm{VDD}^{<} 2.7 \mathrm{~V}$	0		0.1 VDD	V
	Vıı3	X1, XT1			0		0.1	V
Output voltage high	Vон	$\overline{\overline{\mathrm{SCK}}, \text { SO, ports } 2,3,6,8,9 \text { Іон }=-1.0 \mathrm{~mA}}$			Voo-0.5			V
Output voltage low	Vol1	$\overline{\text { SCK, }}$, SO, ports $2,3,5,6,8,9$		$\begin{aligned} & \mathrm{loL}=15 \mathrm{~mA}, \\ & \mathrm{~V} \mathrm{DD}=4.5 \text { to } 5.5 \mathrm{~V} \end{aligned}$		0.2	2.0	V
				$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
	VoL2	SB0, SB1	N-ch open-drain pull-up resistor $\geq 1 \mathrm{k} \Omega$				0.2 VDD	V
Input leakage current high	ІІІн1	$\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{DD}}$	Pins other than $\mathrm{X} 1, \mathrm{XT1}$				3	$\mu \mathrm{A}$
	ІІІн2		X1, XT1				20	$\mu \mathrm{A}$
	ІІнз	V IN $=13 \mathrm{~V}$	Port 5 (When N-ch open-drain)				20	$\mu \mathrm{A}$
Input leakage current low	ILLIT	$\mathrm{VIN}=0 \mathrm{~V}$	Pins other than $\mathrm{X} 1, \mathrm{XT} 1$, port 5				-3	$\mu \mathrm{A}$
	ILlı2		X1, XT1				-20	$\mu \mathrm{A}$
	ILLI3		Port 5 (When N-ch open-drain) When input instruction is not executed				-3	$\mu \mathrm{A}$
			Port 5 (When N -ch open-drain) When input instruction is executed				-30	$\mu \mathrm{A}$
				V DD $=5.0 \mathrm{~V}$		-10	-27	$\mu \mathrm{A}$
				$\mathrm{V} D \mathrm{DD}=3.0 \mathrm{~V}$		-3	-8	$\mu \mathrm{A}$
Output leakage current high	ILOH1	Vout $=\mathrm{V}_{\text {D }}$	$\overline{\text { SCK, SO/SB0, SB1, ports } 2,3,6,8,9, ~}$ port 5 (When N-ch open-drain)				3	$\mu \mathrm{A}$
	ILOH2	Vout $=13 \mathrm{~V}$	Port 5 (When N-ch open-drain)				20	$\mu \mathrm{A}$
Output leakage current low	Itol	Vout $=0 \mathrm{~V}$					-3	$\mu \mathrm{A}$
On-chip pull-up resistor	RL1	V IN $=0 \mathrm{~V}$	Ports 0 to 3, 6, 8, 9 (Excluding P00 pin)		50	100	200	k Ω
	RL2		Port 5 (mask option)		15	30	60	k Ω

$\star \quad$ Notes 1. Clear VACO to 0 in the low current consumption mode and STOP mode. When VAC0 is set to 1 , the current increases by about $1 \mu \mathrm{~A}$.
2. Either Rlcd1 or Rlcd2 can be selected by the mask option.
3. The voltage deviation is the difference from the output voltage corresponding to the ideal value of the segment and common outputs (VLCDn; $\mathrm{n}=0,1,2$).
4. Not including currents flowing in on-chip pull-up resistors or LCD split resistors.
5. Including oscillation of the subsystem clock.
6. When the processor clock control register (PCC) is set to 0011 and the device is operated in the highspeed mode.
7. When PCC is set to 0000 and the device is operated in the low-speed mode.
8. When the system clock control register (SCC) is set to 1001 and the device is operated on the subsystem clock, with main system clock oscillation stopped.
9. When the sub-oscillator control register (SOS) is set to 0000.
10. When the SOS is set to 0010 .
11. When the SOS is set to 00×1, and the sub-oscillator feedback resistor is not used (x : don't care).

AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VDD}=1.8$ to 5.5 V)

Parameter	Symbol	Test conditions		MIN.	TYP.	MAX.	Unit
CPU clock cycle	toy	Operating on main system clock	$V_{D D}=2.7$ to 5.5 V	0.67		64	$\mu \mathrm{s}$
time Note 1				0.95		64	$\mu \mathrm{s}$
(minimum instruction execution time = 1 machine cycle)		Operating on subsystem clock		114	122	125	$\mu \mathrm{s}$
TIO, TI1, TI2 input frequency	f_{T}	$V_{D D}=2.7$ to 5.5 V		0		1.0	MHz
				0		275	kHz
TIO, TI1, TI2 input high/low-level width	ttin, ttil	$V_{D D}=2.7$ to 5.5 V		0.48			$\mu \mathrm{s}$
				1.8			$\mu \mathrm{s}$
Interrupt input high/ low-level width	tinth, tinti	INT0	$\mathrm{IM} 02=0$	Note 2			$\mu \mathrm{s}$
			$\mathrm{IM} 02=1$	10			$\mu \mathrm{s}$
		INT1, 2, 4		10			$\mu \mathrm{s}$
		KR0-KR3		10			$\mu \mathrm{s}$
$\overline{\text { RESET }}$ low-level width	trsL			10			$\mu \mathrm{s}$

Notes 1. The cycle time (minimum instruction execution time) of the CPU clock (Φ) is determined by the oscillation frequency of the connected resonator (and external clock), the system clock control register (SCC) and the processor clock control register (PCC). The figure at the right indicates the cycle time tcy versus supply voltage VDD characteristic with the main system clock operating.
2. 2 tcy or $128 / \mathrm{fx}$ is set by setting the interrupt mode register (IMO).

SERIAL TRANSFER OPERATION

2-Wire and 3-Wire Serial I/O Modes ($\overline{S C K}$...Internal clock output): ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Test conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy1	$V_{D D}=2.7$ to 5.5 V		1300			ns
				3800			ns
$\overline{\text { SCK }}$ high/low-level width	tkL1, tkH1	$V_{\text {DD }}=2.7$ to 5.5 V		tкcy/2-50			ns
				tkcri/2-150			ns
SI Note 1 setup time (to $\overline{\mathrm{SCK}} \uparrow$)	tsik1	$V_{D D}=2.7$ to 5.5 V		150			ns
				500			ns
SI Note 1 hold time (from $\overline{\mathrm{SCK}} \uparrow$)	tks 11	VDD $=2.7$ to 5.5 V		400			ns
				600			ns
SO Note 1 output delay time from $\overline{\text { SCK }} \downarrow$	tksol	$\mathrm{RL}=1 \mathrm{k} \Omega, \quad$ Note 2	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V	0		250	ns
		$C L=100 \mathrm{pF}$		0		1000	ns

Notes 1. Read as SB0 or SB1 when using the 2 -wire serial I/O mode.
2. $R L$ and $C L$ are the load resistance and load capacitance of the SO output line.

2-Wire and 3-Wire Serial I/O Modes (SCK...External clock input): ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Test conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tксү2	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		800			ns
				3200			ns
$\overline{\text { SCK high/low-level }}$ width	tкı2, tкн2	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		400			ns
				1600			ns
SI Note 1 setup time (to $\overline{\text { SCK } \uparrow \text {) }}$	tsik2	$V_{\text {DD }}=2.7$ to 5.5 V		100			ns
				150			ns
SI Note 1 hold time (from $\overline{\mathrm{SCK}} \uparrow$)	tks12	$V_{D D}=2.7$ to 5.5 V		400			ns
				600			ns
SO Note 1 output delay time from $\overline{\text { SCK }} \downarrow$	tksoz	$\begin{aligned} & \mathrm{RL}=1 \mathrm{k} \Omega, \\ & \mathrm{CL}=100 \mathrm{pF} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V	0		300	ns
				0		1000	ns

Notes 1. Read as SB0 or SB1 when using the 2-wire serial I/O mode.
2. $R L$ and $C L$ are the load resistance and load capacitance of the SO output line.

SBI Mode ($\overline{\mathrm{SCK}} . .$. Internal clock output (master)): $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VDD}=1.8$ to 5.5 V)

Note $R\llcorner$ and $C l$ are the load resistance and load capacitance of the SB0, 1 output line.

SBI Mode ($\overline{\text { SCK }} . .$. External clock input (slave)): $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Note $R\llcorner$ and $C l$ are the load resistance and load capacitance of the SB0, 1 output line.
$\star \quad$ AC Timing Test Point (Excluding X1, XT1 inputs)

	$\mathrm{V}_{\mathrm{IH}}(\mathrm{MIN} .)$ $\mathrm{V}_{\mathrm{IL}} \text { (MAX.) }$
$\begin{aligned} & \text { Vон (MIN.) } \\ & \text { Vol (MAX.) } \end{aligned}$	$\begin{aligned} & \text { Vон (MIN.) } \\ & \text { Vol (MAX.) } \end{aligned}$

Clock Timing

TIO, TI1, TI2 Timing

TIO, TI1, TI2

Serial Transfer Timing

3-wire serial I/O mode

2-wire serial I/O mode

Serial Transfer Timing

Bus release signal transfer

Command signal transfer

Interrupt input timing

INTO, 1, 2, 4 KRO to 3

RESET input timing

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Release signal set time	tsrel		0			$\mu \mathrm{S}$
Oscillation stabilization wait time Note 1	twait	Release by $\overline{\mathrm{RESET}}$		Note 2		ms
		Release by interrupt request		Note 3		ms

Notes 1. The oscillation stabillization wait time is the time during which the CPU operation is stopped to prevent unstable operation at the oscillation start.
2. Either $2^{17} / f x$ or $2^{15} / f x$ can be selected by the mask option.
3. Depends on the basic interval timer mode register (BTM) settings (see the table below).

BTM3	BTM2	BTM1	BTM0	Wait time	
				$\mathrm{fx}=$ at 4.19 MHz	$\mathrm{fx}=$ at 6.0 MHz
-	0	0	0	20/fx (approx. 250 ms)	20/fx (approx. 175 ms)
-	0	1	1	217/fx (approx. 31.3 ms)	$2^{17 / f x}$ (approx. 21.8 ms)
-	1	0	1	$2^{15 / f x}$ (approx. 7.81 ms)	$2^{15 / f x}$ (approx. 5.46 ms)
-	1	1	1	$2^{13} / \mathrm{fx}$ (approx. 1.95 ms)	$2^{13} / \mathrm{fx}$ (approx. 1.37 ms)

Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)

13. CHARACTERISTIC CURVES (FOR REFERENCE ONLY)

Idd vs Vdd (Main System Clock: 6.0-MHz Crystal Resonator)

Idd vs Vdd (Main System Clock: 4.19-MHz Crystal Resonator)

Іон vs $\mathrm{VdD}_{\mathrm{DD}} \mathrm{Voh}_{\text {(Ports 2, 3, 6, }} 8$ and 9)

Iol vs Vol (Ports 2, 3, 6, 8 and 9)

14. PACKAGE DRAWINGS

64-PIN PLASTIC QFP (14 x 14 mm)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM		MILLIMETERS
P64GC-80-AB8-3		
A	17.6 ± 0.4	0.693 ± 0.016
B	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.6 ± 0.4	0.693 ± 0.016
F	1.0	0.039
G	1.0	0.039
H	0.35 ± 0.10	$0.014_{-0.005}^{+0.004}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.8 ± 0.2	0.071 ± 0.008
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	$0.15_{-0.05}^{+0.00}$	$0.006_{-0.003}^{+0.004}$
N	0.10	0.004
P	2.55	0.100
Q	0.1 ± 0.1	0.004 ± 0.004
S	2.85 MAX.	0.112 MAX.

64-PIN PLASTIC LQFP (12 x 12 mm)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	14.8 ± 0.4	0.583 ± 0.016
B	12.0 ± 0.2	$0.472_{-0.008}^{+0.009}$
C	12.0 ± 0.2	$0.472_{-0.008}^{+0.009}$
D	14.8 ± 0.4	0.583 ± 0.016
F	1.125	0.044
G	1.125	0.044
H	0.30 ± 0.10	$0.012_{-0.005}^{+0.004}$
I	0.13	0.005
J	$0.65($ T.P. $)$	$0.026($ T.P. $)$
K	1.4 ± 0.2	0.055 ± 0.008
L	0.6 ± 0.2	$0.024_{-0.008}^{+0.008}$
M	$0.15+0.10$	$0.006_{-0.000}^{+0.004}$
N	0.10	0.004
P	1.4	0.055
Q	0.125 ± 0.075	0.005 ± 0.003
R	$5 \infty \pm 5 \infty$	$5 \infty \pm 5 \infty$
S	1.7 MAX.	0.067 MAX.
		P64GK-65-8A8-1

15. RECOMMENDED SOLDERING CONDITIONS

The μ PD753108 should be soldered and mounted under the conditions recommended in the table below. For details of recommended soldering conditions, refer to the information document "Semiconductor Device Mounting Technology Manual" (C10535E).

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 15-1. Surface Mounting Type Soldering Conditions
(1) μ PD753104GC-xxx-AB8 : 64-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.8-\mathrm{mm}$ pitch) μ PD753106GC-xxx-AB8 : 64-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.8-\mathrm{mm}$ pitch) μ PD753108GC-xxx-AB8 : 64-pin plastic QFP (14 x $14 \mathrm{~mm}, 0.8-\mathrm{mm}$ pitch)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Peak package's surface temperature: $235{ }^{\circ} \mathrm{C}$, Reflow time: 30 seconds or less (at $210^{\circ} \mathrm{C}$ or higher), Number of reflow processes: 3 max.	IR35-00-3
VPS	Peak package's surface temperature: $215^{\circ} \mathrm{C}$, Reflow time: 40 seconds or less (at $200^{\circ} \mathrm{C}$ or higher), Number of reflow processes: 3 max.	VP15-00-3
Wave soldering	Solder temperature: $260{ }^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or less, Number of flow processes: 1, Preheating temperature: $120^{\circ} \mathrm{C}$ or below (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ or below, Time: 3 seconds or less (per device side)	-

Caution Use of more than one soldering method should be avoided (except for partial heating).
(2) μ PD753104GK-xxx-8A8 : 64-pin plastic QFP ($12 \times 12 \mathrm{~mm}, 0.65-\mathrm{mm}$ pitch) μ PD753106GK-xxx-8A8 : 64-pin plastic QFP (12 x $12 \mathrm{~mm}, 0.65-\mathrm{mm}$ pitch) μ PD753108GK-xxx-8A8 : 64-pin plastic QFP (12 x $12 \mathrm{~mm}, 0.65-\mathrm{mm}$ pitch)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Peak package's surface temperature: $235^{\circ} \mathrm{C}$, Reflow time: 30 seconds or less (at $210^{\circ} \mathrm{C}$ or higher), Number of reflow processes: 2 max.	IR35-00-2
VPS	Peak package's surface temperature: $215^{\circ} \mathrm{C}$, Reflow time: 40 seconds or less (at $200^{\circ} \mathrm{C}$ or higher), Number of reflow processes: 2 max.	VP15-00-2
Wave soldering	Solder temperature: $260{ }^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or less, Number of flow processes: 1, Preheating temperature: $120^{\circ} \mathrm{C}$ or below (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ or below, Time: 3 seconds or less (per device side)	-

Caution Use of more than one soldering method should be avoided (except for partial heating).

APPENDIX A. μ PD75308B, 753108 AND 75P3116 FUNCTIONAL LIST

Parameter		μ PD75308B	μ PD753108	μ PD75P3116
Program memory		Mask ROM 0000 H to 1F7FH (8064×8 bits)	Mask ROM 0000 H to 1 FFFH (8192 x 8 bits)	One-time PROM 0000H to 3FFFH (16384 x 8 bits)
Data memory		000 H to 1 FFH (512 $\times 4$ bits)		
CPU		75X Standard	75XL CPU	
Instruction execution time	When main system clock is selected	$0.95,1.91,15.3 \mu \mathrm{~s}$ (during $4.19-\mathrm{MHz}$ operation)	- $0.95,1.91,3.81,15.3 \mu$ s (during $4.19-\mathrm{MHz}$ operation) - $0.67,1.33,2.67,10.7 \mu \mathrm{~s}$ (during $6.0-\mathrm{MHz}$ operation)	
	When subsystem clock is selected	122μ s (32.768-kHz operation)		
Stack	SBS register	None	SBS. 3 = 1: Mk I mode selection SBS. $3=0$: Mk II mode selection	
	Stack area	000H to 0FFH	000 H to 1FFH	
	Subroutine call instruction stack operation	2-byte stack	When Mk I mode: 2-byte stack When Mk II mode: 3-byte stack	
Instruction	BRA !addr1 CALLA !addr1	Unavailable	When Mk I mode: unavailable When Mk II mode: available	
	MOVT XA, @BCDE MOVT XA, @BCXA BR BCDE BR BCXA		Available	
	CALL !addr	3 machine cycles	Mk I mode: 3 machine cycles, Mk II mode: 4 machine cycles	
	CALLF !faddr	2 machine cycles	Mk I mode: 2 machine cycles, Mk II mode: 3 machine cycles	
I/O port	CMOS input	8	8	
	CMOS input/output	16	20	
	Bit port output	8	0	
	N-ch open-drain input/output	8	4	
	Total	40	32	
LCD controller/driver		Segment selection: 24/28/32 segments (can be changed to CMOS input/output port in 4 timeunit; max. 8)	Segment selection: 16/20/24 segments (can be changed to CMOS input/output port in 4 time-unit; max. 8)	
		Display mode selection: static, $1 / 2$ duty ($1 / 2$ bias), $1 / 3$ duty ($1 / 2$ bias), $1 / 3$ duty ($1 / 3$ bias), $1 / 4$ duty ($1 / 3$ bias)		
		On-chip split resistor for LCD driver can be specified by using mask option.		No on-chip split resistor for LCD driver
Timer		3 channels - Basic interval timer: 1 channel - 8-bit timer/event counter: 1 channel - Watch timer: 1 channel	5 channels - Basic interval timer/watchdog timer: 1 channel - 8-bit timer/event counter: 3 channels (can be used as 16 -bit timer/event counter) - Watch timer: 1 channel	

	Parameter	μ PD75308B	μ PD753108 $\quad \mu$ PD75P3116
Clock output (PCL)		- Ф, 524, 262, 65.5 kHz (Main system clock: during 4.19-MHz operation)	- $\Phi, 524,262,65.5 \mathrm{kHz}$ (Main system clock: during $4.19-\mathrm{MHz}$ operation) - Ф, $750,375,93.8 \mathrm{kHz}$ (Main system clock: during $6.0-\mathrm{MHz}$ operation)
BUZ output (BUZ)		- 2 kHz (Main system clock: during 4.19-MHz operation)	- 2, 4, 32 kHz (Main system clock: during $4.19-\mathrm{MHz}$ operation or subsystem clock: during $32.768-\mathrm{kHz}$ operation) - 2.93, 5.86, 46.9 kHz (Main system clock: 6.0-MHz operation)
Serial interface		3 modes are available - 3-wire serial I/O mode ... MSB/LSB can be selected for transfer first bit - 2-wire serial I/O mode - SBI mode	
SOS register	Feedback resistor cut flag (SOS.0)	None	Contained
	Sub-oscillator current cut flag (SOS.1)	None	Contained
Register bank selection register (RBS)		None	Yes
Standby release by INT0		Unavailable	Available
Vectored interrupt		External: 3, internal: 3	External: 3, internal: 5
Supply voltage		$V_{D D}=2.0$ to 6.0 V	$V_{\text {DD }}=1.8$ to 5.5 V
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	
Package		- 80-pin plastic QFP ($14 \times 20 \mathrm{~mm}$) - 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$) - 80-pin plastic TQFP (Fine pitch) ($12 \times 12 \mathrm{~mm}$)	-64-pin plastic QFP (14 $\times 14 \mathrm{~mm}, 0.8-\mathrm{mm}$ pitch) - 64-pin plastic QFP ($12 \times 12 \mathrm{~mm}, 0.65-\mathrm{mm}$ pitch $)$

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are provided for system development using the μ PD753108.
In the 75XL Series, the relocatable assembler which is common to the series is used in combination with the device file of each product.

Language processor

RA75X relocatable assembler	Host machine			Part number (product name)
		OS	Supply media	
	PC-9800 Series	MS-DOS ${ }^{\text {M }}$	3.5-inch 2HD	μ S5A13RA75X
		$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2 \text { Note }}$	5-inch 2HD	μ S5A10RA75X
	IBM PC/AT ${ }^{\text {TM }}$ and compatible machines	Refer to "OS for IBM PC"	3.5-inch 2HC	μ S7B13RA75X
			5-inch 2HC	μ S7B10RA75X

Device file	Host machine			Part number (product name)
		OS	Supply media	
	PC-9800 Series	MS-DOS	3.5-inch 2HD	μ S5A13DF753108
		$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2 \text { Note }}$	5-inch 2HD	μ S5A10DF753108
	IBM PC/AT and compatible machines	Refer to "OS for IBM PC"	3.5-inch 2HC	μ S7B13DF753108
			5-inch 2HC	μ S7B10DF753108

Note Ver. 5.00 and later have the task swap function, but it cannot be used for this software.

Remark Operation of the assembler and the device file is guaranteed only on the above host machines and OSs.

PROM write tools

Hardware	PG-1500	PG-1500 is a PROM programmer which enables you to program single-chip microcontrollers including PROM by stand-alone or host machine operation by connecting an attached board and optional programmer adapter to PG-1500. It also enables you to program typical PROM devices of 256 K bits to 4 M bits.			
	PA-75P3116GC	PROM programmer adapter for the μ PD75P3116GC. Connect the programmer adapter to PG-1500 for use.			
	PA-75P3116GK	PROM programmer adapter for the μ PD75P3116GK. Connect the programmer adapter to PG-1500 for use.			
Software	PG-1500 controller	PG-1500 and a host machine are connected by serial and parallel interfaces and PG-1500 is controlled on the host machine.			
		Host machine	OS	Supply media	Part number (product name)
		PC-9800 Series	MS-DOS	3.5-inch 2HD	μ S5A13PG1500
			$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note }}}$	5-inch 2HD	μ S5A10PG1500
		IBM PC/AT and compatible machines	Refer to "OS for IBM PC"	3.5-inch 2HD	μ S7B13PG1500
				5-inch 2HC	μ S7B10PG1500

Note Ver. 5.00 and later have the task swap function, but it cannot be used for this software.

Remark Operation of the PG-1500 controller is guaranteed only on the above host machines and OSs.

Debugging tool

The in-circuit emulators (IE-75000-R and IE-75001-R) are available as the program debugging tool for the μ PD753108.

The system configurations are described as follows.

Hardware	IE-75000-R Note 1	In-circuit emulator for debugging the hardware and software when developing the application systems that use the 75X Series and 75XL Series. When developing a μ PD753108 Subseries, the emulation board (IE-75300-R-EM) and emulation probe (EP-753108GC-R or EP-753108GK-R) that are sold separately must be used with the IE-75000-R. By connecting with the host machine and the PROM programmer, efficient debugging can be made. It contains the emulation board (IE-75000-R-EM) which is connected.			
	IE-75001-R	In-circuit emulator for debugging the hardware and software when developing the application systems that use the 75X Series and 75XL Series. When developing a μ PD753108 Subseries, the emulation board (IE-75300-R-EM) and emulation probe (EP-753108GC-R or EP-753108GK-R) that are sold separately must be used with the IE-75001-R. It can debug the system efficiently by connecting the host machine and PROM programmer.			
	IE-75300-R-EM	Emulation board for evaluating the application systems that use a μ PD753108 Subseries. It must be used with the IE-75000-R or IE-75001-R.			
	EP-753108GC-R EV-9200GC-64	Emulation probe for the μ PD753108GC. It must be connected to IE-75000-R (or IE-75001-R) and IE-75300-R-EM. It is supplied with the 64-pin conversion socket EV-9200GC-64 which facilitates connection to a target system.			
	EP-753108GK-R TGK-064SBW Note 2	Emulation probe for the μ PD753108GK. It must be connected to the IE-75000-R (or IE-75001-R) and IE-75300-R-EM. It is supplied with the 64-pin conversion adapter TGK-064SBW which facilitates connection to a target system.			
Software	IE control program	Connects the IE-75000-R or IE-75001-Rto a hostmachine via RS-232-C and Centronics interface and controls the IE-75000-R or IE-75001-R on a host machine.			
		Host machine	OS	Supply media	Part No. (product name)
		PC-9800 Series	$\begin{gathered} \text { MS-DOS } \\ \binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note } 3}} \end{gathered}$	3.5-inch 2HD	μ S5A13IE75X
				5 -inch 2HD	μ S5A10IE75X
		IBM PC/AT and compatible machines	Refer to "OS for IBM PC"	3.5-inch 2HC	μ S7B13IE75X
				5-inch 2HC	μ S7B10IE75X

Notes 1. Maintenance product.
2. This is a product of TOKYO ELETECH CORPORATION (Tokyo 03-5295-1661). For purchasing, contact an NEC sales representative.
3. Ver. 5.00 and later have the task swap function, but it cannot be used for this software.

Remarks 1. Operation of the IE control program is guaranteed only on the above host machines and OSs.
2. The μ PD753104, 753106, 753108 and 75P3116 are commonly referred to as the μ PD753108 Subseries.

OS for IBM PC

The following IBM PC OS's are supported.

OS	Version
PC DOS	
MS	Ver. 3.1 to Ver. 6.3 J6.1/V Note to J6.3/V Note
IBM DOS	Ver. 5.0 to Ver. 6.22 5.0/V Note to 6.2/V Note

Note Only the English mode is supported.

Caution Ver. 5.0 and later have the task swap function, but it cannot be used for this software.

\star
 APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such

Device Related Documents

Document Name	Document No.	
	English	Japanese
μ PDD753104, 753106, 753108 Data Sheet	U10086E (This document)	U10086J
μ PD75P3116 Data Sheet	U11369E	U11369J
μ PD753108 User's Manual	U10890E	U10890J
μ PD753108 Instruction Application Table	-	IEM-5600
75XL Series Selection Guide	U10453E	U10453J

Development Tool Related Documents

Document Name			Document No.	
			English	Japanese
Hardware	IE-75000-R/IE-75001-R User's Manual		EEU-1416	EEU-846
	IE-75300-R-EM User's Manual		U11354E	U11354J
	EP-753108GC/GK-R User's Manual		EEU-1495	EEU-968
	PG-1500 User's Manual		EEU-1335	U11940J
Software	RA75X Assembler Package User's Manual	Operation	EEU-1346	EEU-731
		Language	EEU-1363	EEU-730
	PG-1500 Controller User's Manual	PC-9800 Series (MS-DOS) base	EEU-1291	EEU-704
		IBM PC Series (PC DOS) base	U10540E	EEU-5008

Other Related Documents

Document Name	Document No.	
	English	
Japanese		
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Electrostatic Discharge (ESD) Test	-	MEM-539
Guide to Quality Assurance for Semiconductor Devices	MEI-1202	C11893J
Microcomputer Product Series Guide	-	U11416J

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1. Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States and/ or other countries.
IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.
The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

