SCLS429H - MAY 1999 - REVISED APRIL 2005 - 2-V to 5.5-V V_{CC} Operation - Support Mixed-Mode Voltage Operation on All Ports - Fast Switching - High On-Off Output-Voltage Ratio - Low Crosstalk Between Switches - Extremely Low Input Current - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model (A114-A) - 200-V Machine Model (A115-A) - 1000-V Charged-Device Model (C101) #### description/ordering information These dual 4-channel CMOS analog multiplexers/demultiplexers are designed for 2-V to 5.5-V V_{CC} operation. The 'LV4052A devices handle both analog and digital signals. Each channel permits signals with amplitudes up to 5.5 V (peak) to be transmitted in either direction. Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems. #### SN54LV4052A . . . J OR W PACKAGE SN74LV4052A . . . D, DB, DGV, N, NS, OR PW PACKAGE (TOP VIEW) # SN74LV4052A ... RGY PACKAGE (TOP VIEW) #### **ORDERING INFORMATION** | TA | PACKA | GE† | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING | |----------------|----------------------------------|--------------|--------------------------|---------------------| | | PDIP – N Tube of 25 SN74LV4052AN | | SN74LV4052AN | SN74LV4052AN | | | QFN – RGY | Reel of 1000 | SN74LV4052ARGYR | LW052A | | | 0010 B | Tube of 40 | SN74LV4052AD | 11/40504 | | | SOIC – D | Reel of 2500 | SN74LV4052ADR | LV4052A | | 4000 1- 0500 | SOP – NS | Reel of 2000 | SN74LV4052ANSR | 74LV4052A | | –40°C to 85°C | SSOP – DB | Reel of 2000 | SN74LV4052ADBR | LW052A | | | | Tube of 90 | SN74LV4052APW | | | | TSSOP – PW | Reel of 2000 | SN74LV4052APWR | LW052A | | | | Reel of 250 | SN74LV4052APWT | | | | TVSOP – DGV | Reel of 2000 | SN74LV4052ADGVR | LW052A | | –55°C to 125°C | CDIP – J | Tube of 25 | SNJ54LV4052AJ | SNJ54LV4052AJ | | -55 C to 125°C | CFP – W | Tube of 150 | SNJ54LV4052AW | SNJ54LV4052AW | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SCLS429H - MAY 1999 - REVISED APRIL 2005 #### **FUNCTION TABLE** | | INPUTS | | ON | |-----|--------|---|----------| | INH | В | Α | CHANNEL | | L | L | L | 1Y0, 2Y0 | | L | L | Н | 1Y1, 2Y1 | | L | Н | L | 1Y2, 2Y2 | | L | Н | Н | 1Y3, 2Y3 | | Н | Χ | Χ | None | ## logic diagram (positive logic) SCLS429H - MAY 1999 - REVISED APRIL 2005 ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} | –0.5 V to 7.0 V | |--|---| | Input voltage range, V _I (see Note 1) | –0.5 V to 7.0 V | | Switch I/O voltage range, V _{IO} (see Notes 1 and 2) | \cdot . -0.5 V to V _{CC} + 0.5 V | | Input clamp current, I _{IK} (V _I < 0) | –20 mA | | I/O diode current, I _{IOK} (V _{IO} < 0) | –50 mA | | Switch through current, I _T (V _{IO} = 0 to V _{CC}) | | | Continuous current through V _{CC} or GND | ±50 mA | | Package thermal impedance, θ _{JA} (see Note 3): D package | 73°C/W | | (see Note 3): DB package | 82°C/W | | (see Note 3): DGV package | 120°C/W | | (see Note 3): N package | 67°C/W | | (see Note 3): NS package | 64°C/W | | (see Note 3): PW package | 108°C/W | | (see Note 4): RGY package | 39°C/W | | Storage temperature range, T _{stq} | –65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. - 2. This value is limited to 5.5 V maximum. - 3. The package thermal impedance is calculated in accordance with JESD 51-7. - 4. The package thermal impedance is calculated in accordance with JESD 51-5. ## recommended operating conditions (see Note 5) | | | | SN54L\ | SN54LV4052A | | /4052A | LIMIT | |-------|------------------------------------|----------------------------------|----------------------|----------------------|----------------------|---------------------|-------| | | | | MIN | MAX | MIN | MAX | UNIT | | Vcc | Supply voltage | | 2‡ | 5.5 | 2‡ | 5.5 | V | | | | V _{CC} = 2 V | 1.5 | | 1.5 | | | | V | High-level input voltage, | V _{CC} = 2.3 V to 2.7 V | V _{CC} ×0.7 | | V _{CC} ×0.7 | | ., | | VIH | control inputs | V _{CC} = 3 V to 3.6 V | V _{CC} ×0.7 | | $V_{CC} \times 0.7$ | | V | | | | V _{CC} = 4.5 V to 5.5 V | V _{CC} ×0.7 | N. | $V_{CC} \times 0.7$ | | | | | | V _{CC} = 2 V | | 0.5 | | 0.5 | | | ., | Low-level input voltage, | V _{CC} = 2.3 V to 2.7 V | 4 | $V_{CC} \times 0.3$ | | $V_{CC} \times 0.3$ | V | | VIL | control inputs | V _{CC} = 3 V to 3.6 V | , C | V _{CC} ×0.3 | | $V_{CC} \times 0.3$ | V | | | | V _{CC} = 4.5 V to 5.5 V | 20 | $V_{CC} \times 0.3$ | | $V_{CC} \times 0.3$ | | | ٧ı | Control input voltage | | 0 | 5.5 | 0 | 5.5 | V | | VIO | Input/output voltage | | 0 | Vcc | 0 | Vcc | V | | | | V _{CC} = 2.3 V to 2.7 V | | 200 | | 200 | | | Δt/Δν | Input transition rise or fall rate | V _{CC} = 3 V to 3.6 V | | 100 | | 100 | ns/V | | | | V _{CC} = 4.5 V to 5.5 V | | 20 | · | 20 | | | TA | Operating free-air temperature | | - 55 | 125 | -40 | 85 | °C | [‡] With supply voltages at or near 2 V, the analog switch on-state resistance becomes very nonlinear. It is recommended that only digital signals be transmitted at these low supply voltages. NOTE 5: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. SCLS429H - MAY 1999 - REVISED APRIL 2005 # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | | | | ., | T, | Δ = 25°C | ; | SN54LV | 4052A | SN74LV | 4052A | | |---------------------|----------------------------------|--|---------------|-----|----------|------|--------|-------|--------|-------|------| | | PARAMETER | TEST CONDITIONS | vcc | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNIT | | | | $I_T = 2 \text{ mA},$ | 2.3 V | | 43 | 180 | | 225 | | 225 | | | ron | On-state switch resistance | V _I = V _{CC} or GND, | 3 V | | 34 | 150 | | 190 | | 190 | Ω | | | SWITCH Tesistance | V _{INH} = V _{IL}
(see Figure 1) | 4.5 V | | 25 | 75 | | 100 | | 100 | | | | | I _T = 2 mA, | 2.3 V | | 133 | 500 | | 600 | | 600 | | | ron(p) | Peak
on-state resistance | $V_I = V_{CC}$ to GND, | 3 V | | 63 | 180 | | 225 | | 225 | Ω | | - (1) | On-state resistance | V _{INH} = V _{IL} | 4.5 V | | 35 | 100 | | 125 | | 125 | | | | Difference in | I _T = 2 mA, | 2.3 V | | 1.5 | 30 | | 40 | | 40 | | | ∆ron | on-state resistance | $V_I = V_{CC}$ to GND, | 3 V | | 1.1 | 20 | | 30 | | 30 | Ω | | | between switches | VINH = VIL | 4.5 V | | 0.7 | 15 | | 20 | | 20 | | | I _I | Control input current | V _I = 5.5 V or GND | 0 to
5.5 V | | | ±0.1 | | ±1 | | ±1 | μΑ | | I _{S(off)} | Off-state switch leakage current | $V_I = V_{CC}$ and $V_O = GND$, or $V_I = GND$ and $V_O = V_{CC}$, $V_{INH} = V_{IH}$ (see Figure 2) | 5.5 V | | | ±0.1 | Sobucy | ±1 | | ±1 | μΑ | | I _{S(on)} | On-state switch leakage current | V _I = V _{CC} or GND,
V _{INH} = V _{IL}
(see Figure 3) | 5.5 V | | | ±0.1 | Q | ±1 | | ±1 | μΑ | | Icc | Supply current | $V_I = V_{CC}$ or GND | 5.5 V | | | | | 20 | | 20 | μΑ | | C _{IC} | Control input capacitance | f = 10 MHz | 3.3 V | | 2.1 | | | | | | pF | | C _{IS} | Common terminal capacitance | | 3.3 V | | 13.1 | | | | | | pF | | COS | Switch terminal capacitance | | 3.3 V | | 5.6 | | | | | | pF | | C _F | Feedthrough capacitance | | 3.3 V | | 0.5 | | | | | | pF | SCLS429H - MAY 1999 - REVISED APRIL 2005 # switching characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) | | | FROM | то | TEST | T, | λ = 25°C | ; | SN54LV4 | 052A | SN74LV | 4052A | | |--------------------------------------|------------------------|----------|----------|---|-----|----------|-----|---------|------|--------|-------|------| | PAF | RAMETER | (INPUT) | (OUTPUT) | CONDITIONS | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNIT | | ^t PLH
^t PHL | Propagation delay time | COM or Y | Y or COM | C _L = 15 pF,
(see Figure 4) | | 1.9 | 10 | | 16 | | 16 | ns | | ^t PZH
^t PZL | Enable
delay time | INH | COM or Y | C _L = 15 pF,
(see Figure 5) | | 8 | 18 | | 23 | | 23 | ns | | ^t PHZ
^t PLZ | Disable
delay time | INH | COM or Y | C _L = 15 pF,
(see Figure 5) | | 8.3 | 18 | QQ. | 23 | | 23 | ns | | ^t PLH
^t PHL | Propagation delay time | COM or Y | Y or COM | C _L = 50 pF,
(see Figure 4) | | 3.8 | 12 | 'Ong | 18 | | 18 | ns | | ^t PZH
^t PZL | Enable
delay time | INH | COM or Y | C _L = 50 pF,
(see Figure 5) | | 9.4 | 28 | Hd. | 35 | | 35 | ns | | ^t PHZ
^t PLZ | Disable
delay time | INH | COM or Y | C _L = 50 pF,
(see Figure 5) | | 12.4 | 28 | | 35 | | 35 | ns | # switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) | | | FROM | то | TEST | T | λ = 25°C | ; | SN54LV4 | 052A | SN74LV | 4052A | | |--------------------------------------|------------------------|----------|----------|---|-----|----------|-----|----------------|------|--------|-------|------| | PAR | RAMETER | (INPUT) | (OUTPUT) | CONDITIONS | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNIT | | ^t PLH
^t PHL | Propagation delay time | COM or Y | Y or COM | C _L = 15 pF,
(see Figure 4) | | 1.2 | 6 | | 10 | | 10 | ns | | ^t PZH
^t PZL | Enable
delay time | INH | COM or Y | C _L = 15 pF,
(see Figure 5) | | 5.7 | 12 | | 15 | | 15 | ns | | ^t PHZ
^t PLZ | Disable
delay time | INH | COM or Y | C _L = 15 pF,
(see Figure 5) | | 6.6 | 12 | "QQ" | 15 | | 15 | ns | | tPLH
tPHL | Propagation delay time | COM or Y | Y or COM | C _L = 50 pF,
(see Figure 4) | | 2.5 | 9 | Snac | 12 | | 12 | ns | | ^t PZH
^t PZL | Enable
delay time | INH | COM or Y | C _L = 50 pF,
(see Figure 5) | | 6.7 | 20 | d _d | 25 | | 25 | ns | | ^t PHZ
^t PLZ | Disable
delay time | INH | COM or Y | C _L = 50 pF,
(see Figure 5) | | 9.5 | 20 | | 25 | | 25 | ns | SCLS429H - MAY 1999 - REVISED APRIL 2005 # switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) | DAT | DAMETED. | FROM | то | TEST | T | λ = 25°C | ; | SN54LV40 | 52A | SN74LV | 4052A | LINUT | |--------------------------------------|------------------------|----------|----------|---|-----|----------|-----|----------|-----|--------|-------|-------| | PAI | RAMETER | (INPUT) | (OUTPUT) | CONDITIONS | MIN | TYP | MAX | MIN I | MAX | MIN | MAX | UNIT | | ^t PLH
^t PHL | Propagation delay time | COM or Y | Y or COM | C _L = 15 pF,
(see Figure 4) | | 0.7 | 4 | | 7 | | 7 | ns | | ^t PZH
^t PZL | Enable
delay time | INH | COM or Y | C _L = 15 pF,
(see Figure 5) | | 4 | 8 | | 10 | | 10 | ns | | ^t PHZ
^t PLZ | Disable
delay time | INH | COM or Y | C _L = 15 pF,
(see Figure 5) | | 5 | 8 | PAG | 10 | | 10 | ns | | ^t PLH
^t PHL | Propagation delay time | COM or Y | Y or COM | C _L = 50 pF,
(see Figure 4) | | 1.5 | 6 | Ong | 8 | | 8 | ns | | ^t PZH
^t PZL | Enable
delay time | INH | COM or Y | C _L = 50 pF,
(see Figure 5) | | 4.7 | 14 | d'd | 18 | | 18 | ns | | ^t PHZ
^t PLZ | Disable
delay time | INH | COM or Y | C _L = 50 pF,
(see Figure 5) | | 6.9 | 14 | | 18 | | 18 | ns | # analog switch characteristics over recommended operating free-air temperature range (unless otherwise noted) | DADAMETED | FROM | то | TE | ST | Vcc | T, | λ = 25°C | ; | | | |--|----------|----------|--|--|-------|-------|----------|-----|------|--| | PARAMETER | (INPUT) | (OUTPUT) | UTPUT) CONDITIONS | | | | TYP | MAX | UNIT | | | | | | C _L = 50 pF, | 2.3 V | | 30 | | | | | | Frequency response (switch on) | COM or Y | Y or COM | $R_L = 600 \Omega$,
$f_{in} = 1 MHz$ (sine | e wave) | 3 V | | 35 | | MHz | | | (evilleri ell) | | | (see Note 6 and | | 4.5 V | | 50 | | | | | | | | C _L = 50 pF, | | 2.3 V | | -45 | | | | | Crosstalk (between any switches) | COM or Y | Y or COM | $R_L = 600 \Omega$,
$f_{in} = 1 MHz$ (sine | e wave) | 3 V | | -45 | | dB | | | (| | | ` , | | 4.5 V | | -45 | | | | | | | | C _L = 50 pF, | C _L = 50 pF, | | | 20 | | | | | Crosstalk (control input to signal output) | INH | COM or Y | R_L = 600 Ω,
f_{in} = 1 MHz (squ | 3 V | | 35 | | mV | | | | (control input to digital output) | | | (see Figure 8) | 4.5 V | | 65 | | | | | | | | | C _L = 50 pF, | | 2.3 V | | -45 | | | | | Feedthrough attenuation (switch off) | COM or Y | Y or COM | $R_L = 600 \Omega$,
$f_{in} = 1 MHz$ (sine | wave) | 3 V | | -45 | -45 | | | | (Gillian Gil) | | | (see Note 7 and | | 4.5 V | | -45 | | | | | | | | | $C_L = 50 \text{ pF},$ $V_I = 2 V_{p-p}$ | | 2.3 V | | 0.1 | | | | Sine-wave distortion | COM or Y | Y or COM | $R_L = 10 kΩ$,
$f_{in} = 1 kHz$ | $V_{I} = 2.5 V_{p-p}$ | 3 V | | 0.1 | | % | | | | | | (sine wave)
(see Figure 10) | V _I = 4 V _{p-p} | 4.5 V | | 0.1 | | | | NOTES: 6. Adjust f_{in} voltage to obtain 0 dBm at output. Increase f_{in} frequency until dB meter reads –3 dB. ## operating characteristics, $T_A = 25^{\circ}C$ | | PARAMETER | TEST COI | TEST CONDITIONS | | | |-----------------|-------------------------------|------------------------|-----------------|------|----| | C _{pd} | Power dissipation capacitance | $C_L = 50 \text{ pF},$ | f = 10 MHz | 11.8 | pF | ^{7.} Adjust fin voltage to obtain 0 dBm at input. Figure 1. On-State Resistance Test Circuit Condition 2: $V_I = V_{CC}$, $V_O = 0$ Figure 2. Off-State Switch Leakage-Current Test Circuit Figure 3. On-State Switch Leakage-Current Test Circuit Figure 4. Propagation Delay Time, Signal Input to Signal Output Figure 5. Switching Time (t_{PZL} , t_{PLZ} , t_{PZH} , t_{PHZ}), Control to Signal Output NOTE A: fin is a sine wave. Figure 6. Frequency Response (Switch On) Figure 7. Crosstalk Between Any Two Switches Figure 8. Crosstalk Between Control Input and Switch Output Figure 9. Feedthrough Attenuation (Switch Off) Figure 10. Sine-Wave Distortion #### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |-------------------|-----------------------|-----------------|--------------------|------|----------------|----------------------------|------------------|------------------------------| | SN74LV4052AD | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052ADBR | ACTIVE | SSOP | DB | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052ADBRE4 | ACTIVE | SSOP | DB | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052ADE4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052ADGVR | ACTIVE | TVSOP | DGV | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052ADGVRE4 | ACTIVE | TVSOP | DGV | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052ADR | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052ADRE4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052AN | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | Level-NC-NC-NC | | SN74LV4052ANSR | ACTIVE | SO | NS | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052ANSRE4 | ACTIVE | SO | NS | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052APW | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052APWE4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052APWG4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052APWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052APWRE4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052APWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS &
no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052APWT | ACTIVE | TSSOP | PW | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052APWTE4 | ACTIVE | TSSOP | PW | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74LV4052ARGYR | ACTIVE | QFN | RGY | 16 | 1000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-2-260C-1YEAR | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. ⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. #### PACKAGE OPTION ADDENDUM 9-Aug-2005 **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # N (R-PDIP-T**) ## PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. ### DGV (R-PDSO-G**) #### 24 PINS SHOWN #### **PLASTIC SMALL-OUTLINE** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side. D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 # D (R-PDSO-G16) ## PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-012 variation AC. NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. QFN (Quad Flatpack No-Lead) package configuration. - The package thermal pad must be soldered to the board for thermal and mechanical performance. - Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature. - F. Package complies to JEDEC MO-241 variation BB. ### **MECHANICAL DATA** ## NS (R-PDSO-G**) # 14-PINS SHOWN #### PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. ### DB (R-PDSO-G**) ### PLASTIC SMALL-OUTLINE #### **28 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150 ### PW (R-PDSO-G**) #### 14 PINS SHOWN ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2005, Texas Instruments Incorporated