SIEMENS

Preliminary Data
MOS IC

Features

- On-chip PLL
- Full frame display for $50 / 60 \mathrm{~Hz}$ in order to increase the vertical resolution and to suppress moving artifacts.
- Compatibility to the $16: 9$ display format by means of independent setting of the vertical and horizontal decimation factors and the width of the border frame
- Decimation of the $\mathrm{Y}, \mathrm{U}, \mathrm{V}$ data for pictures sizes $1 / 9$ and $1 / 16$ with 6 bits width of the input word without rounding error

- Intermediate storage of the inset picture (on-chip-memory)
- RGB- or Y-, U-, V-signal generation
- 100% pin- and software compatible with SDA 9188X if external PLL is used
- Increased bandwith of analog outputs due to higher output currents
- New select function for multi-PIP feature

Type	Ordering Code	Package
SDA 9188-3X	Q67100-H5142	P-DSO-28-3 (350 mil) (SMD)

Functional Description

The SDA 9188-3X Picture-in-Picture (PIP) processor with on-chip PLL combines two asynchronous picture sources so that a small moving picture (the inset picture) can be superimposed in a moving picture of normal size (the parent picture).
The components of the video signal of the inset source have to be fed in a digitized form to the SDA 9188-3X (figure 1). Amplitude resolution of the signal components is 6 bit at a sampling rate of 13.5 MHz for the luminance signal and 3.375 MHz for the chrominance signals.

The PIP processor SDA 9188-3X handles picture reduction (decimation with horizontally and vertically acting filters), intermediate data storage in an integrated image memory (169.812 bits) as well as the output of the decimated picture.
The picture can be set $1 / 9$ or $1 / 16$ of its original size. In order to indicate the border between parent picture and inset picture the inset picture can be surrounded with a frame: its width is adjustable in 2 stages and its brightness in 16 stages. Different signal sources can be identified by using different framing colors. The four corners of the parent picture are possible positions for the inset picture. The inset picture can also be inserted as a still picture, independently of the parent picture.
The output signals of the SDA 9188-3X are analog. Either RGB or Y, U, V signals can be output, whereby a 6 -bit broadband conversion is obtained for all components. Clamping for RGB output signal is performed in an RGB processor (e.g. TDA 4685).

Only a few additional devices are required for a complete picture-in-picture system. Application circuits 1a and 1b illustrate the use of the PIP device.
If the CVBS input signal is to be decoded using an analog color decoder for the PIP, the analog/ digital interface for the inset picture (3 A/D Converter, SDA 9187-2X) performs the conversion of the $\mathrm{Y}, \mathrm{U}, \mathrm{V}$ components into digital signals as well as the generation of the inset clocks BLNI and LL3I.
The SDA 9188-3X processes both $50 \mathrm{~Hz} / 625$ and $60 \mathrm{~Hz} / 525$ line signals. The field frequency can be $50 / 60 \mathrm{~Hz}$ or $100 / 120 \mathrm{~Hz}$. For systems with Siemens Dig TV Featurebox a field frequency of 100 Hz or 120 Hz is also possible by doubling the clock frequency LL3P (LL1.5P). Frame mode display with 50 Hz or 60 Hz can also be set via the $\mathrm{I}^{2} \mathrm{C}$ bus. Adaptation to the number of lines occurs automatically. If the field frequency in the parent and inset channels are different, artifacts may result in the picture.

Synchronization with the parent channel is performed via the horizontal and vertical sync signals HSP/SAND and VSP. The clock fequency is 13.5 MHz (LL3P) without standard conversion and 27 MHz (LL1.5P) with standard conversion ($100 / 120 \mathrm{~Hz}$). The display clock is generated on chip. Optionally the external clock generator SDA 9086-3 can be used in the same way as with the SDA 9188X.
The horizontal and vertical sync signals BLNI and VSI plus the LL3I clock (13.5 MHz) are used for synchronization with the inset source.
The interface between inset and parent channel is done by the on-chip memory. The memory write access is controlled by the inset clock and the read access is controlled by the parent clock.
The SELECT output signal inserts the inset picture into the parent picture driving an external analog switch, e.g. the TDA 4685. All operation modes of the SDA 9188-3X can be controlled via the $\mathrm{I}^{2} \mathrm{C}$ bus. Nine registers can be used.

Pin Configuration

(top view)

Pin Definitions and Functions

Pin No.	Symbol	Function	Descriptions
1	BLNI	Blanking inset	Inset line synchronization
2	VSI	Vertical synchronous inset	Inset field synchronization
3	$V_{\text {DD A }}$	Analog supply	V_{DD}-power supply for D/A converter and PLL
4	$V_{\text {REF }}$	Reference voltage	External resistor can be used for generation of the internal reference voltage
5-7	OUT1-OUT3	Analog R, G, B, Y, -U, -Voutputs	Analog RGB or YUV outputs
8	$V_{\text {SS }}$	Analog ground	Ground for D/A converter and PLL
9	SELECT	SELECT	Valid signals at OUT1-OUT3
10	HSP/SAND	Horizontal synchronous/ Sandcastle parent	Parent line synchronization
11	VSP	Vertical synchronous parent	Parent field synchronization
12	LL3P/QX1	Line locked clock parent/ Output of the oscillator	Parent system clock or to be connected to the crystal
13	QX2	Input of the oscillator	To be connected to the crystal
14	$V_{\text {ss }}$	Digital ground	Ground
15	SDA	Serial Data	$\mathrm{I}^{2} \mathrm{C}$ Data
16	SCL	Serial Clock	$\mathrm{I}^{2} \mathrm{C}$ Clock
17	LL3I	Line locked clock inset	Inset system clock
18-27	$\begin{aligned} & \text { UVO-UV3, } \\ & \text { Y0-Y5 } \end{aligned}$	UV, Y-Data	Digital YUV input data
28	$V_{\text {D }}$	Digital supply	$V_{\text {DD }}$ supply

Block Diagram

Circuit Description

Data Transfer

The digital data are transferred under the control of LL3I, BLNI and VSI on pins YS0-YS5 and UVS0-UVS3. The decimated data are stored automatically. Either R, G, B, or Y, -U, -V analog signals are available at the outputs OUT1-OUT3. The validity of the signals is identified by SELECT = 1 . In a digital system environment the input is controlled by LL3P, HSP and VSP.

Inset Data Reduction

The data rate at the inputs YS0-YS5, UVS0-UVS3 is 13.5 MHz in multiplexed format, see figure 1. In order to reduce the quantity of data which have to be stored and to prevent artifacts in the inset picture, nine pixels are processed into one inset pixel for a $1 / 9$ picture. For the $1 / 16$ picture 16 pixels are processed into one inset pixel.

This is done by horizontal and vertical averaging of pixels:
The characteristic of decimation for the luminance signal is 1-1-1 for $1 / 9$ - and 1-1-1-1 for $1 / 16$ picture. Crominance signal: 1-2-1 for $1 / 9$ and 1-1-1-1 for $1 / 16$ picture.

Figure 1

Input Data Format

During the decimation process the following parts of the original picture are processed:

1. $D E C H O R / D E C V E R=0(1 / 9-$ Picture $)$ during 625 line mode: during 525 line mode:

Line 36 ... 302; Pixel 13 ... 636
Line 26 ... 256; Pixel 13 ... 636
2. $\mathrm{SIZE}=1$ (1/16-Picture):
during 625 line mode:
during 525 line mode:
Line 36 ... 303; Pixel 17 ... 640
Line 26 ... 257; Pixel 17 ... 640

Temporary Storage of Inset Picture

The PIP memory has a capacity of 169.812 bits. The memory organisation is $89 \times 212 \times 9$ bits.
Data are written in with the inset and read out with the parent clock frequency.
For standard video signals with 50 or 60 Hz a full frame display is possible. To assure a correct display of the two fields, the control of the memory is done dependendly of the field and the phase relation of the Inset and Parent channel. Frame mode display is only possible for standard $50 \mathrm{~Hz} /$ 60 Hz video signals. Certain VCR-functions (e.g. fast forward-mode), non interlaced signals and $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ mixed-mode would cause inacceptable picture distortions. Under these conditions the SDA 9188-3X switches automatically into field mode display.
Also freezed pictures can only be displayed in the field-mode.

Output of Data in Parent Window

The four corners of the parent picture are foreseen as positions for inserting the inset picture. To enable compatibility to different system configurations, readout from memory can be shifted horizontally in 63 steps by max. 252 LL3P cycles and vertically in 15 steps by max. 30 lines in the parent field setting the control bits RDH and RDV in control register 2 and 3.

The coordinates BRP, BRL of the normal location of all four insertion positions are given in table 3 for RDH $=$ RDV $=8$.

The SELECT signal goes high during the display of the inset picture. Outside of the inset picture SELECT signal is low and the analog outputs OUT1-OUT3 provide the black level. The external wiring can produce a delay between the SELECT signal and the analog outputs. This delay can be compensated by bits SD0-SD2 in register 2 via the $\mathrm{I}^{2} \mathrm{C}$ bus.
A frame with one of eight colors can be inserted using control bits FRON, COL0-2. The width of the frame is fixed by FRWV at three or two lines and by FRWH at six or four pixels. The brightness can be adjusted in 16 stages.

Figure 2
Insertion Positions of Inset Picture

Table 3
Display of Inset Picture

Position	TV Standard (Parent) (Frame Line Number)	Picture Size	Location of Top Left Corner Point for FRWH = 1, FRWV = 1		
			TV Line (FL)		Pixel (FP)
		NINT	INT		
0	625	X	57	29	54
0	525	$1 / 9$	57	29	448
1	625	$1 / 9$	41	21	448
1	525	$1 / 16$	57	29	502
1	625	$1 / 16$	41	21	502
$\mathbf{2}$	525	$1 / 9$	365	183	54
2	625	$1 / 9$	293	147	54
2	625^{*}	$1 / 16$	409	205	54
2	525	$1 / 16$	333	167	54

Position	TV Standard (Parent) (Frame Line Number)	Picture Size	Location of Top Left Corner Point for FRWH = 1, FRWV = 1		
			TV Line (FL)		Pixel (FP)
			NINT	INT	
3	625	$1 / 9$	365	183	448
3	525 *	$1 / 9$	293	147	448
3	625	$1 / 16$	409	205	502
3	525^{*}	$1 / 16$	333	167	502

Pixel data related to positive HSP edge
Line data related to positive VSP edge

* If the System is in the $50 / 60 \mathrm{~Hz}$ mixed mode RDV in Register 2 is forced to the logical "0" state.

If FRWV is set to "0" during the INT Mode the inset position will be shifted by one line.
The width of the borderframe is depending on the programming of the bits FRWV and FRWH (in Register 5) 3 or 2 lines and 6 or 4 pixels.
The pixels and line number of the inset picture depend on the standard of the inset channel and on the selected picture size.

Table 1
Inset Picture Size

Picture Size	TV Standard (Inset) (Frame Line Number)	Pixel Number P			Line Number L
		Y	U	V	
$1 / 9$	625	212	53	53	88
$1 / 9$	525	212	53	53	76
$1 / 16$	625	160	40	40	66
$1 / 16$	525	160	40	40	57

Interpolation of Chrominance Data Rate to Luminance Data Rate

To avoid chrominance artifacts after D/A conversion and for digital RGB conversion, the data rate of the chrominance signals is quadrupled in order to match the luminance data rate. This is done by repeating the chrominance data twice followed by low-pass filtering.

RGB, Y, U, V Outputs

A digital RGB matrix converts the $\mathrm{Y}, \mathrm{U}, \mathrm{V}$ data in $\mathrm{R}, \mathrm{G}, \mathrm{B}$ data.
The equation of the implemented RGB Matrix are:
$R=Y+0.75 \mathrm{~V}$
$G=Y-0.375 \mathrm{~V}-0.1875 \mathrm{U}$
$B=Y+U$
For a signal with 100 \% white and 75 \% color saturation the amplitudes of the analog input signals have to be set according the following relation:

Y / U / V = 0.72 / 0.95 / 1
By means of an internal switch at the output of the RGB matrix it is possible to by-pass the matrix with the digital data for Y, U and V and feed them directly into the D / A converters. During this operation mode the chrominance data U and V will be inverted.

D/A Conversion

SDA 9188-3X includes three 6-bits D/A converters. Each D/A converter delivers a current through an external resistor that is to be connected between OUT1-OUT3 and $V_{\text {sSA }}$. The resistor value determines the output voltages (see application circuit). The assignment of outputs OUT1-OUT3 to R, G, B and Y, U, V is shown in table 5 . It is possible to change the output voltage via $I^{2} \mathrm{C}$ bus Register 4.
The tolerances of the output voltages can be reduced significantly if the resistor at $V_{\text {REF }}$ is replaced by means of a constant current source.

Table 5
Assignment of Output Signals to OUT1-OUT3

Output	RGB	YUV
OUT1	R	- V
OUT2	G	Y
OUT3	B	- U

Borderframe

The width of the border frame can be adjusted in two steps, the intensity of the frame can be set in 16 steps via the $\mathrm{I}^{2} \mathrm{C}$ bus.
$\mathbf{I}^{2} \mathrm{C}$ BUS

Organization of $\mathrm{I}^{2} \mathrm{C}$ Bus Registers

SDA 9188-3X has the device address

$$
00101110=2 \mathrm{E}_{\mathrm{H}}
$$

Applying the supply voltage $V_{D D}$ produces a power-up reset. The bus lines SDA and SCL are enabled. All bits in the registers except bit PL27 (D3 in Register 0) are set to 0. Bit PL27 is set to 1. The $\mathrm{I}^{2} \mathrm{C}$ bus interface works as a slave receiver and only functions if the inset clock LL3I is available.

Write Operation

After writing a byte into any register, the register address is automatically incremented for the write access to the next register.
The following table shows the functions that can be set on the $\mathrm{I}^{2} \mathrm{C}$ bus and define the data bytes. Not used data bits have to be written with "0". Before PON = 1 all other bits have to be defined in relation to the used hardware.

Function	SUB- address								
		D7	D6	D5	D4	D3	D2	D1	D0
CONTROL 0	00	0	0	STILL	SIZE	PL27	NINT	OUT	PON
CONTROL 1	01	0	0	0	FRY	COL2	COL1	COL0	FRON
CONTROL 2	02	0	SD2	SD1	SD0	RDV 3	RDV 2	RDV 1	RDV 0
CONTROL 3	03	POS 1	POS 0	RDH 5	RDH 4	RDH 3	RDH 2	RDH 1	RDH 0
CONTROL 4	04	CON0	CON1	CON2	CON3	0	SOP	PLLOFF	HSP5
CONTROL 5	05	DECVER	DECHOR	FRWV	FRWH	PMOD1	PMOD0	IMOD1	IMOD0
CONTROL 6	06	FRAME	STATI	VSIIS	VSIDEL4	VSIDEL3	VSIDEL2	VSIDEL1	VSIDEL0
CONTROL 7	07	AMSEC	STATP	VSPIS	VSPDEL4	VSPDEL3	VSPDEL2	VSPDEL1	VSPDEL0
CONTROL 8	08	0	0	0	FRYEN	FRY5	FRY4	FRY3	FRY2
CONTROL 9	09	0	PLLTC	SOS	VCOSEL3	VCOSEL2	VCOSEL1	VCOSEL0	0

Table 6: I ${ }^{2}$ C Bus Register

The bits are numbered in the reverse order to the data stream of the $\mathrm{I}^{2} \mathrm{C}$ bus.
If the control software addresses the internal register number 8 or 9 there is no longer any software compatibility to the devices SDA 9088-2 and SDA 9089X. This is caused by the fact that in these devices register 0 and 1 can also be accessed via the subaddress 08 and 09 .

Register 0 (Address 00H)

Bit	Function	Name	Remarks
d 0	$0=$ PIP OFF $1=$ PIP ON	PON	If d0 $=0$, no SELECT generated PON $=1$ should be set after the initialization
d 1	$0=$ Y, -U, -V $1=$ RGB	OUT	Output format
d 2	$0=$ Normal picture $1=$ Double scan	NINT	Reproduction mode
d 3	$0=13.5 \mathrm{MHz}$ PLL $1=27 \mathrm{MHz} \mathrm{PLL}$	PL27	Switching of the clock prescaler of the PLL for $50 / 60$ Hz or $100 / 120$ Hz operation mode
d 4	$0=1 / 9$ $1=1 / 16$	SIZE	Picture size; if d4 $=0$ the picture size depends on DECHOR, DECVER in Register 5
d 5	$0=$ normal picture $1=$ still picture	STILL	Still/moving picture

Register 1 (Address 01H)

Bit	Function	Name	Remarks
d0	0 = without frame 1 = with frame	FRON	FRON
d1-d3		$\begin{array}{\|l\|l\|} \hline \text { COLO- } \\ \text { COL2 } \end{array}$	
d4-d7	Intensity of the border frame 1 = dark frame for white, yellow,orange and cyan bright frame for blue, violet, green and red $0=$ bright frame for white, yellow, orange and cyan dark frame for blue, violet, green and red	FRY	Only valid if FRYEN $=0$
d7-d5	without function		

Register 2 (Address 02H)

Bit	Function	Name	Remarks
d0-d3	Vertical read delay in HSP period $\begin{array}{llll} d 3 & d 2 & d 1 & d 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & =2 \\ 0 & 0 & 1 & 0 \end{array}=4$	$\begin{aligned} & \hline \text { RDV0- } \\ & \text { RDV3 } \end{aligned}$	Increment in two HSP periods. If $\operatorname{POS} 1=1$ is selected, i.e. 525 -lines parent picture and 625-lines inset picture are displayed, then RDV bits are not evaluated.
d4-d6	SELECT delay in LL3P period d6 d5 d4	$\begin{array}{\|l\|} \hline \text { SD0- } \\ \text { SD2 } \end{array}$	
d7	without function		

Register 3 (Address 03_{H})

Bit	Function	Name	Remarks
d0-d5	Horizontal read delay in LL3P period $\begin{array}{lllllll} d 5 & d 4 & d 3 & d 2 & d 1 & d 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & =0 \\ 0 & 0 & 0 & 0 & 0 & 1 & =4 \\ 0 & 0 & 0 & 0 & 1 & 0 & =8 \\ & & : & & & \\ 1 & 1 & 1 & 1 & 0 & 1 & =244 \\ 1 & 1 & 1 & 1 & 1 & 0 & =248 \\ 1 & 1 & 1 & 1 & 1 & 1 & =252 \end{array}$	$\begin{aligned} & \text { RDH0- } \\ & \text { RDH5 } \end{aligned}$	Increment in four LL3P periods
d6, d7	Inset picture location	$\begin{aligned} & \text { POSO- } \\ & \text { POS1 } \end{aligned}$	

Register 4 (Address 04H)

Bit	Function	Name	Remarks
d0	1 = TTL level at HSP	HSP5	Set to '1'
d1	$\begin{aligned} & 0=\text { Internal PLL } \\ & 1=\text { External PLL } \end{aligned}$	PLLOFF	Switching between internal and external clock generation
d2	0 = SELECT PULLUP INTERN 1 = SELECT PULLUP EXTERN	SOP	Open Drain for SELECT output
d3			Without function, has to be set to 0
d4-d7	Contrast DA-Converter $\begin{array}{llll} d 7 & d 6 & d 5 & d 4 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{array}$	CON 0-3	with an external resistor of $10 \mathrm{k} \Omega$ between $V_{\text {SS }}$ and $V_{\text {REF }}$ the output level for (d7 ... d4) = 0001 is nearly the same as for $3.9 \mathrm{k} \Omega$ and $(d 7 \ldots d 4)=0000$ Contrast minimal

Register 5 (Address 05H)

Bit	Function	Name	Remarks
d1, d0	$\begin{aligned} & 00=\text { Automatic TV standard recognition } \\ & 01=50 \mathrm{~Hz} \\ & 10=60 \mathrm{~Hz} \\ & 11=\text { Freeze the current mode } \end{aligned}$	IMOD0, 1	For multistandard applicat. Fixed setting Fixed setting Undisturbed switching during the change of the received station
d3, d2	same like d1, d0	PMOD0, 1	as above but for the parent channel
d4	$0=$ Frame width horizontal: 6 Pixel 1 = Frame width horizontal: 4 Pixel	FRWH	Separated setting of the frame width and height is possible i.e. for 16:9 operation
d5	0 = Frame width vertical: 3 lines 1 = Frame width vertical: 2 lines	FRWV	Separated setting of the frame width and height is possible i.e. for 16:9 operation
d6	$0=$ Horizontal decimation 3:1 1 = Horizontal decimation 4:1	DECHOR	Separated setting of the picture width and height is possible i.e. for 16:9 operation, but only if Size $=0$ in Register 0
d7	$\begin{aligned} & 0=\text { Vertical decimation 3:1 } \\ & 1=\text { Vertical decimation 4:1 } \end{aligned}$	DECVER	Separated setting of the picture width and height is possible i.e. for 16:9 operation, but only if Size $=0$ in Register 0

Register 6 (Address 06H)

Bit	Function	Name	Remarks		
d4:d0	Setting the delay of VSI (see test circuit 6)	$0=$ Vertical noise reduction inactive $1=$ Vertical noise reduction active $0=$ Check for correct TV standard inactive $1=$ Check for correct TV standard active	STATI		d6
:---					

Register 7 (Address 07H)

Bit	Function	Name	Remarks
d4:d0	Delay of the VSP pulse	VSPDEL	Setting is possible in steps of $2,37 \mu \mathrm{~s}(50 \mathrm{~Hz}$ or $1,185 \mu \mathrm{~s} 100 \mathrm{~Hz}$) (see measuring circuit 6)
d5	0 = Vertical noise reduction OFF 1 = Vertical noise reduction ON	VSPIS	Noise reduction for the vertical pulse of the parent channel (should be set to ' 1 ' under normal conditions).
d6	0 = Check for correct TV standard inactive 1 = Check for correct TV standard active	STATP	If the check for the correct TV standard is active a full frame display is only possible if the number of lines is exactly according the TV standard: $\begin{aligned} & 312.5(50 \mathrm{~Hz}) \\ & 262.5(60 \mathrm{~Hz}) \end{aligned}$
d7	$\begin{aligned} & 0=\mathrm{PAL} / \text { NTSC } \\ & 1=\text { SECAM } \end{aligned}$	AMSEC	Doubling of the gain if a sufficient SECAM decoder without delay line is used

Register 8 (Address 08 ${ }_{\mathrm{H}}$)

Bit	Function	Name	Remarks		
$\mathrm{d} 3: \mathrm{d} 0$	0000 = min. brightness of the border frame $1111=$ max. brightness of the border frame	FRY5:2	Setting only valid if the bit d4 is set to '1'		
d 4	$0=$ brightness of the border frame can be selected by FRY	FRYEN			
$1=$ brightness of the border frame can be					
selected by FRY5:2				\quad	not used to be set to "0".
:---					

Register 9 (Address 09H)

Bit	Function	Name	Remarks
d0	-		Set to '0'
d1 ... d4	VCO Nominal Frequency	VCOSEL	Set to '0' under nominal conditions
d5	Select open Source	SOS	If d5 =1 Pulldown-transistor of select output is switched OFF Resistor to ground required
d6	PLL-Time constant	PLLTC	$0=$ fast time constant $1=$ slow time constant Set to '0'

Absolute Maximum Ratings

$T_{\mathrm{A}}=0 \ldots 70{ }^{\circ} \mathrm{C}$ (all voltages are referred to V_{SS})

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
Supply voltage	$V_{\text {D }}$	-1	6	V	
Pin voltages	$V_{\text {IN }}$	-1	$V_{\text {DD }}+0.5$	V	
Difference between	$V_{\text {DD }} / V_{\text {DDA }}$	-0.25	0.25	V	
Ambient temperature	$T_{\text {A }}$	- 20	70	${ }^{\circ} \mathrm{C}$	
Storage temperature	$T_{\text {stg }}$	-20	125	${ }^{\circ} \mathrm{C}$	
Power dissipation	$P_{\text {tot }}$		1	W	
Thermal resistance	$R_{\text {th Su }}$		55	K/W	
Operating Range$T_{\mathrm{A}}=0 \ldots 70^{\circ} \mathrm{C}$					
Supply voltage	$V_{\text {D }}$	4.5	5.5	V	
Ambient temperature	$T_{\text {A }}$	0	70	${ }^{\circ} \mathrm{C}$	

Characteristics

$T_{\mathrm{A}}=0 \ldots 70^{\circ} \mathrm{C}$ (all voltages are referred to V_{SS})

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Supply voltage	$V_{\text {DD }} / V_{\text {DDA }}$	4.5	5	5.5	V	
Current consumption digital analog	$\begin{aligned} & I_{\mathrm{DD}} \\ & I_{\mathrm{DDA}} \end{aligned}$	$\begin{aligned} & 13 \\ & 5 \end{aligned}$	$\begin{aligned} & 40 \\ & 10 \end{aligned}$	$\begin{array}{\|l\|} \hline 120 \\ 18 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { without load } \\ & L L 3 \mathrm{I}=13.5 \mathrm{MHz} \\ & \mathrm{LL3P}=27 \mathrm{MHz} \end{aligned}$

Inputs
YS0-YS5, UVS0-UVS3
LL3I, BLNI, VSI, LL3P, VSP
$\left.\begin{array}{l|l|l|l|l|l|l}\hline \begin{array}{l}\text { H-input voltage } \\ \text { L-input voltage }\end{array} & V_{\mathrm{IH}} & \begin{array}{l}2.3 \\ V_{\mathrm{LL}}\end{array} & -1.0\end{array}\right)$

Characteristics (cont'd)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Output Select

H-output voltage	V_{QH}	2.4			$\begin{aligned} & -I_{O H}=0.2 \mathrm{~mA}, \\ & \mathrm{SOP}=0 \end{aligned}$
	V_{QH}	1.5	$V_{\text {DD }}$	V	$\begin{aligned} & -I_{\mathrm{OH}}=4.5 \mathrm{~mA},{ }^{2)} \\ & \mathrm{SOS}=1, \mathrm{SOP}=0 \end{aligned}$
L-output voltage	$V_{\text {QL }}$	0	0.4	V	$\begin{aligned} & I_{\mathrm{OH}}=1.6 \mathrm{~mA} \\ & \mathrm{SOP}=0, \mathrm{SOS}=0 \end{aligned}$
H-output voltage L-output voltage	$\begin{aligned} & V_{\mathrm{QH}} \\ & V_{\mathrm{QL}} \end{aligned}$	0	$\begin{aligned} & V_{\mathrm{DD}} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{SOP}=1 \\ & I_{\mathrm{OL}}=5 \mathrm{~mA} \\ & \mathrm{SOP}=1, \mathrm{SOS}=0 \end{aligned}$
Transition period	$t_{\mathrm{r}}, t_{\mathrm{f}}$		15	ns	$\begin{aligned} & \mathrm{SOP}=0, \mathrm{SOS}=0 \\ & C_{1}=30 \mathrm{pF} \end{aligned}$

${ }^{1)}$ Measuring Circuit 9a
${ }^{2}$) Measuring Circuit 9b

Input HSP / SAND

H-input voltage	V_{H}	2.3		V_{DD}	V	$\mathrm{HSP} 5=1$
	V_{L}	-1.0		0.8	V	$\mathrm{HSP} 5=1$
L-input voltage	C_{I}			7	pF	
Input capacitance	I_{L}	-10		10	$\mu \mathrm{~A}$	$0 \leq V \leq V_{\mathrm{DD}}+0.5 \mathrm{~V}$
Input leakage current						

Characteristics (cont'd)

Parameter	Symbol	Limit Values		Unit	Test Condition	Measuring Circuit
		min.	nom.	max.		

Input SCL,
In/Output SDA

L-input voltage	V_{IL}	-1		1.5	V		
H-input voltage	V_{HH}	3		V_{DD}	V		
Input leakage current	I_{L}			10	$\mu \mathrm{~A}$	$V_{\mathrm{HH}}=5,5 \mathrm{~V}$	
Input capacitance	C_{l}			7	pF		
Input frequency	f_{SCL}			100	kHz		
Transition period	$t_{\mathrm{r}}, t_{\mathrm{f}}$			2	$\mu \mathrm{~s}$		
Max. capacitance at bus	$C_{\max }$			400	pF		
Fall time	t_{f}			0.2	$\mu \mathrm{~s}$	from 3 V to 1 V	
SDA by acknowledge	V_{AL}	0		0.4	V	$I_{\mathrm{AL}}=3 \mathrm{~mA}$	

Output OUT1 ... 3 *
$\left.\begin{array}{l|l|l|l|l|l|l|l}\hline \begin{array}{l}\text { Output current } \\ \text { Output voltage Range }\end{array} & \begin{array}{l}I_{\mathrm{O}} \\ V_{\text {OH }}\end{array} & 0 & -1.61 & -1.79 \\ 1.0\end{array}\right)$

[^0]Maximum frequency tolerance $\pm 7 \%$ (includes variation of horizontal-frequency and resonator tolerance). Attention: Voltage at pins QX1, QX2 must be below the limit values of absolute maximum ratings under all conditions.
Minimum input amplitude at pin $\mathrm{QX} 2=1 \mathrm{~V}_{\mathrm{PP}}$.
Maximum series resistor of quartz or ceramic resonator.

	Load capacitance at pin 12, 13	$R_{\text {S }}$	
	$\begin{aligned} & 33 \mathrm{pF} \\ & 22 \mathrm{pF} \\ & 15 \mathrm{pF} \\ & 10 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 10 \Omega \\ & 20 \Omega \\ & 30 \Omega \\ & 40 \Omega \end{aligned}$	
Horizontal Frequency	min	max.	Conditions
	$\begin{aligned} & 14.53 \\ & 29.06 \end{aligned}$	$\begin{aligned} & 16.72 \mathrm{kHz} \\ & 33.47 \mathrm{kHz} \end{aligned}$	Quartz Frequency 20.48 MHz Bit d3 of Reg. $0=0$ Bit d3 of Reg. $0=1$
	30	34.375 kHz	Bit d3 of Reg. $0=1$ Quartz Frequency 21.09 MHz

\qquad

Timing Diagram 1

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	

LL3I

Period time	$\mathrm{T}_{\mathrm{LL3}}$	68	74	80	ns
Rise time	t_{r}			5	ns
Fall time	t_{f}		4	ns	
Low time	T_{L}	30		4	ns
High time	T_{H}	28			ns

Timing Diagram 2

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	

LL3P

Period time	$\mathrm{T}_{\mathrm{LL} 1.5}$	34	37	40	ns
Rise time	t_{r}			4	ns
Fall time	t_{t}			4	ns
Low time	T_{L}	14			ns
High time	T_{H}	12			ns

Timing Diagram 3

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
BLNI					
Period time 625 lines Period time 525 lines High time Set-up time	$t_{\text {BLN }}$ t_{BLN} $t_{\text {BLN H }}$ t_{SU}	$\begin{aligned} & 864 \\ & 858 \\ & 1 \\ & 12 \end{aligned}$	$\begin{array}{\|l\|} \hline 864 \\ 864 \end{array}$	$\begin{aligned} & 864 \\ & 864 \\ & 857 \end{aligned}$	$\begin{aligned} & \hline \mathrm{T}_{\text {LL31 }} \\ & \mathrm{T}_{\text {LLL31 }} \\ & \mathrm{T}_{\mathrm{LL} 31} \\ & \mathrm{~ns} \end{aligned}$

HSP

Period time 625 lines	$t_{\text {HSP }}$	864	864	864	$T_{\text {LL3P }} / T_{\text {LL1.5P }}$
Period time 525 lines	$t_{\text {HSP }}$	858	864	864	$T_{\text {LL.3P }} / \mathrm{T}_{\text {LL1.5P }}$
High time	$t_{\text {HSPH }}$	4		854	$\mathrm{~T}_{\text {LL3P }} / \mathrm{T}_{\mathrm{LL1.5P}}$
Set-up time	$t_{\text {SU }}$	12			ns

Timing Diagram 4

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	

VSI

Period time 625 lines	t_{Vs}		312.5		$\mathrm{~T}_{\text {BLNI }}$
Period time 525 lines	t_{Vs}		262.5		$\mathrm{~T}_{\text {BLNI }}$
High time	t_{VSH}	1			$\mathrm{~T}_{\text {LL3I }}$
Set-up time	$t_{\text {SU }}$	15			

VSP

Period time 625 lines	t_{Vs}		312.5		$\mathrm{~T}_{\text {HSP }}$
Period time 525 lines	t_{Vs}		262.5		$\mathrm{~T}_{\text {HSP }}$
High time	$t_{\text {Vs }}$	1			
Set-up time	$t_{\text {SU }}$	15			$\mathrm{~T}_{\text {LLSP }}$

Full frame display is possible if the input signal is fully according the TV standard.
The phase relation of the VSI/BLNI or the VSP/HSP signals has to be programmed in a way that the rising edge is neither close to the rising edge of the HS pulse nor in the middle of the TV line. (Test circuit 6).
\qquad

Timing Diagram 5

Parameter	Symbol	Limit Values		Unit
		min.	max.	
YS, UVS				
Set-up time	t_{SU}	15		ns
Hold time	t_{SH}	5	ns	

Timing Diagram 6: Allowed phase relation of the VSP/HSP or the VSI/BLNI pulse if the VSPDEL 0:4 or VSIDEL 0:4 $=00000$.

Measuring Circuit 1
Wiring of D/A Converter Outputs

Measuring Circuit 2 a
Wiring of SELECT Output Circuit, if register 4, bit d2 = 1

Measuring Circuit 2 b Wiring of SELECT Output, if register 4, bit d2 = 0
register 9 , bit d5 = 1
\qquad

External PLL SDA 9086-3 can be used optionally

Application Circuit 1a

Application Circuit 1b

[^0]: * The nominal color saturation is achieved in RGB mode by an amplitude ratio of $0.72 / 0.95 / 1$ for $\mathrm{Y} / \mathrm{U} / \mathrm{V}$ at the inputs.
 ** of D/A converter

