SN54ABT16821, SN74ABT16821 20-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS
 SCBS216B - JUNE 1992 - REVISED JANUARY 1997

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Typical $\mathrm{V}_{\text {OLP }}$ (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{C C}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs ($-32-\mathrm{mA} \mathrm{I}_{\mathrm{OH}}$, 64-mA IOL)
- Package Options Include Plastic Thin Shrink Small-Outline (DGG), 300-mil Shrink Small-Outline (DL) Packages and 380 -mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

These 20-bit flip-flops feature 3 -state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.

The 'ABT16821 can be used as two 10-bit flip-flops or one 20 -bit flip-flop. The 20 flip-flops are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the device provides true data at the Q outputs.

SN54ABT16821... WD PACKAGE
SN74ABT16821...DGG OR DL PACKAGE (TOP VIEW)

A buffered output-enable ($\overline{\mathrm{OE}})$ input can be used to place the ten outputs in either a normal logic state (high or low logic level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.
$\overline{\mathrm{OE}}$ does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{C} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT16821 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16821 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

c		
FUNCTION TABLE (each flip-flop)		
INPUTS $\overline{\text { OE }}$ OUTPUT CLK D Q L \uparrow H H L \uparrow L L L L X Q_{0} H X X Z		

logic symbol \dagger

1 $\overline{O E}$	1 N	EN2		
CLK	56			
	28			
	29	EN4		
2CLK	29	C3		
		\square		
1D1	55	1D $\quad 2 \nabla$	2	1Q1
	54		3	
2	52		5	1Q2
	51		6	1Q3
1D4				1Q4
1D5			8	1Q5
	48		9	
	47		10	
7	45		12	1Q7
1D8	44		13	1Q8
1D9				1Q9
D10	43		14	1 Q10
2D1	42	3D 4∇	15	
	41		16	
2D3	40		17	
	38		19	
	37		20	2Q4
2 D 5	36		21	2Q5
2D6	34		23	2Q6
2D7				2 Q7
2D8	33		24	208
	31		26	
	30		27	
D10				2Q10

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Nine Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.
recommended operating conditions (see Note 3)

			SN54AB	6821	SN74AB	16821	
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2	5	2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\text {IOH }}$	High-level output current			-24		-32	mA
IOL	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		10		10	ns / V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 3: Unused inputs must be held high or low to prevent them from floating.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT16821	SN74ABT16821		UNIT
				MIN	TYP \dagger	MAX	MIN MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$			2.5			2.5	2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3$			3			3	3		
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-24 \mathrm{~mA}$		2			2			
		IOH		2^{*}				2		
		$\mathrm{IOL}^{\text {a }}$				0.55	0.55			
	$V_{\text {c }}$	IOL $=$				0.55*			0.55	
$\mathrm{V}_{\text {hys }}$					100		4			mV
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=$				± 1	4 ± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=$				50	Q 50		50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	V_{O}				-50) -50		-50	$\mu \mathrm{A}$
loff	$V_{C C}=0$,	V_{1} or				± 100	\bigcirc		± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=$	Outputs high			50	\% 50		50	$\mu \mathrm{A}$
10^{\ddagger}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=$		-50	-100	-200	-50 -200	-50	-200	mA
			Outputs high			500	500		500	$\mu \mathrm{A}$
ICC	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V},$		Outputs low			89	89		89	mA
			Outputs disabled			500	500		500	$\mu \mathrm{A}$
${ }^{1} \mathrm{CCC}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V},$ Other inputs	One inp $V_{C C}$				1.5	1.5		1.5	mA
C_{i}	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5	5 V			3.5					pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or	0.5 V			7.5					pF

* On products compliant to MIL-PRF-38535, this parameter does not apply.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\S This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16821		SN74ABT16821		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			150			150	S	150		MHz
tPLH	CLK	Q	1.3	3.7	5.1	1.3	S.7	1.3	6.1	ns
tPHL			1.6	3.9	5.1	1.6	5.8	1.6	5.4	
tPZH	$\overline{\mathrm{OE}}$	Q	1.1	3.2	4.7	$1.1 /$	5.8	1.1	5.7	ns
tPZL			1.6	3.8	5	1.6	5.7	1.6	5.6	
tPHZ	$\overline{\mathrm{OE}}$	Q	2	4.5	5.7	2	6.6	2	6.5	ns
tPLZ			1.8	4.1	5.8	Q 1.8	8.4	1.8	7.1	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
$\mathbf{t}^{\mathbf{P L H}} / \mathbf{t}^{\prime} \mathbf{P H L}$	Open
$\mathbf{t}^{\mathbf{P L Z}} / \mathbf{t} \mathbf{P Z L}$	7 V
$\mathbf{t}_{\text {PHZ }} / \mathbf{t} \mathbf{P Z H}$	Open

VOLTAGE WAVEFORMS

 PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS
IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

