SCBS192E - JANUARY 1991 - REVISED JUNE 1997

- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C
- High-Impedance State During Power Up and Power Down
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OI})
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Plastic (NT) and Ceramic (JT) DIPs

description

'ABT657A The transceivers have eight noninverting buffers with parity-generator/ checker circuits and control signals. transmit/receive (T/\overline{R}) input determines the direction of data flow. When T/\overline{R} is high, data flows from the A port to the B port (transmit mode); when T/\overline{R} is low, data flows from the B port to the A port (receive mode). When the output-enable (OE) input is high, both the A and B ports are in the high-impedance state.

Odd or even parity is selected by a logic high or low level on the ODD/EVEN input. PARITY carries the parity-bit value; it is an output from the parity generator/checker in the transmit mode and an input to the parity generator/checker in the receive mode.

SN54ABT657A . . . JT PACKAGE SN74ABT657A . . . DW OR NT PACKAGE (TOP VIEW)

SN54ABT657A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

In the transmit mode, after the A bus is polled to determine the number of high bits, PARITY is set to the logic level that maintains the parity sense selected by the level at ODD/EVEN. For example, if ODD/EVEN is low (even parity selected) and there are five high bits on the A bus, PARITY is set to the logic high level so that an even number of the nine total bits (eight A-bus bits plus parity bit) are high.

In the receive mode, after the B bus is polled to determine the number of high bits, the error (ERR) output logic level indicates whether or not the data to be received exhibits the correct parity sense. For example, if ODD/EVEN is high (odd parity selected), PARITY is high, and there are three high bits on the B bus, ERR is low, indicating a parity error.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC-IIB is a trademark of Texas Instruments Incorporated.

SCBS192E - JANUARY 1991 - REVISED JUNE 1997

description (continued)

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT657A is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABT657A is characterized for operation from -40° C to 85° C.

FUNCTION TABLE

NUMBER OF A OR B		INPL	JTS	I/O	OUTPUTS			
INPUTS THAT ARE HIGH	OE	T/R	ODD/EVEN	PARITY	ERR	OUTPUT MODE		
	L	Н	Н	H Z		Transmit		
	L	Н	L	L	Z	Transmit		
02469	0, 2, 4, 6, 8	Н	Receive					
0, 2, 4, 0, 8	L	L	Н	L	L	Receive		
	L	L	L	Н	L	Receive		
	L	L	L	L	Н	Receive		
	L	Н	Н	L	Z	Transmit		
	L	Н	L	Н	Z	Transmit		
1, 3, 5, 7	L	L	Н	Н	L	Receive		
1, 3, 5, 7	L	L	Н	L	Н	Receive		
	L	L	L	Н	Н	Receive		
	L	L	L	L	L	Receive		
Don't care	Н	Χ	Х	Z	Z	Z		

SCBS192E - JANUARY 1991 - REVISED JUNE 1997

logic symbol†

 $[\]dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DW, JT, and NT packages.

logic diagram (positive logic)

Pin numbers shown are for the DW, JT, and NT packages.

SCBS192E - JANUARY 1991 - REVISED JUNE 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, VO	–0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT657A	96 mA
SN74ABT657A	128 mA
Input clamp current, I_{IK} ($V_I < 0$)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	
Package thermal impedance, θ _{JA} (see Note 2): DW package	81°C/W
NT package	67°C/W
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 3)

		SN54AB	T657A	SN74ABT657A		UNIT	
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage				4.5	5.5	V
VIH	High-level input voltage				2		V
V _{IL}	Low-level input voltage		0.8		0.8	V	
VI	Input voltage	0	Vcc	0	VCC	V	
loн	High-level output current	1	-24		-32	mA	
loL	Low-level output current	22	48		64	mA	
Δt/Δν	Input transition rise or fall rate	Outputs enabled	70,	5		5	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200	·	μs/V
TA	Operating free-air temperature				-40	85	°C

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.

SCBS192E - JANUARY 1991 - REVISED JUNE 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

Vic	PARAMETER		TEST CONDITIONS		T _A = 25°C			SN54ABT657A		SN74ABT657A		UNIT	
VOH VOH VOC = 4.5 V, IOH = -3 mA 2.5 2.5 2.5 2.5 V V V V V V V V V					MIN	TYP†	MAX	MIN	MAX	MIN	MAX	UNII	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VIK		V _{CC} = 4.5 V,	I _I = -18 mA			-1.2		-1.2		-1.2	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 4.5 \text{ V},$	I _{OH} = -3 mA	2.5			2.5		2.5			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VOH		V _{CC} = 5 V,	I _{OH} = -3 mA	3			3		3		V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V00 - 4 5 V	I _{OH} = -24 mA	2			2					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2		1	
Vhys IO_E = 64 mA 0.55 0.55 0.55 I₁ Control inputs V _{CC} = 0 to 5.5 V, V _I = V _{CC} or GND ±1	\/01		V00 - 45 V	I _{OL} = 48 mA			0.55		0.55			V	
$ \begin{array}{ c c c c c c } \hline I_{1} & Control inputs & V_{CC} = 0 \text{ to } 5.5 \text{ V, } V_{1} = V_{CC} \text{ or } GND & \pm 1 & \pm 1 & \pm 1 \\ \hline A \text{ or } B \text{ ports} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V, } V_{1} = V_{CC} \text{ or } GND & \pm 20 & \pm 20 & \pm 20 \\ \hline \hline I_{OZPU}^{\ddagger} & V_{CC}^{\ast} = 0 \text{ to } 2.1 \text{ V, } V_{O} = 0.5 \text{ V to } 2.7 \text{ V,} \\ \hline OE = X & \pm 50 & \pm 50 & \pm 50 & \pm 50 \\ \hline \hline U_{CDPD}^{\ddagger} & V_{CC}^{\ast} = 2.1 \text{ V to } 0, V_{O} = 0.5 \text{ V to } 2.7 \text{ V,} \\ \hline OE = 2 & V & \pm 50 & \pm 50 & \pm 50 \\ \hline \hline U_{CD}^{\ast} & V_{CC}^{\ast} = 2.1 \text{ V to } 5.5 \text{ V, } V_{O} = 2.7 \text{ V,} \\ \hline OE \geq 2 & V & \pm 10 & 10 & 10 & 10 \\ \hline \hline I_{OZI}^{\$} & V_{CC}^{\ast} = 2.1 \text{ V to } 5.5 \text{ V, } V_{O} = 2.7 \text{ V,} \\ \hline OE \geq 2 & V & \pm 100 & \pm 10 & \pm 100 \\ \hline \hline I_{OZI}^{\$} & V_{CC}^{\ast} = 2.1 \text{ V to } 5.5 \text{ V, } V_{O} = 0.5 \text{ V,} \\ \hline OE \geq 2 & V & \pm 100 & \pm 100 & \pm 100 \\ \hline \hline I_{OZI}^{\$} & V_{CC}^{\ast} = 5.5 \text{ V,} \\ \hline I_{OT}^{\ast} & V_{CC} = 5.5 \text{ V,} \\ \hline V_{O} = 5.5 \text{ V,} & Outputs high & 50 & 50 & 50 & \mu A \\ \hline \hline I_{CC} & V_{CC}^{\ast} = 5.5 \text{ V,} & Outputs high & 250 & 250 & 250 & \mu A \\ \hline I_{CC}^{\ast} & V_{CC}^{\ast} = 5.5 \text{ V,} & Outputs high & 250 & 250 & 250 & \mu A \\ \hline V_{CC} = 5.5 \text{ V,} & Outputs high & 250 & 250 & 250 & \mu A \\ \hline V_{CC} = 5.5 \text{ V,} & Outputs high & 250 & 250 & 250 & \mu A \\ \hline V_{CC} = 5.5 \text{ V,} & Outputs high & 250 & 250 & 250 & \mu A \\ \hline V_{CC} = 5.5 \text{ V,} & Outputs disabled & 250 & 250 & 250 & \mu A \\ \hline V_{CC} = 5.5 \text{ V,} & Outputs disabled & 250 & 250 & 250 & 250 & \mu A \\ \hline V_{CC} = 5.5 \text{ V,} & Outputs disabled & 0.25 & 0.25 & 0.25 & 0.25 \\ \hline Control inputs & V_{CC} = 5.5 \text{ V,} & Other inputs at V_{CC} \text{ or } GND & 1.5 & 1.5 & 1.5 \\ \hline C_{i} & Control inputs & V_{I} = 2.5 \text{ V Or } 0.5 \text{ V} & 4 & 4 & 4 & 4 & 4 \\ \hline \end{array}$	VOL		VCC = 4.5 V	I _{OL} = 64 mA			0.55*				0.55		
$ \begin{array}{ c c c c c } \hline II & A \ or \ B \ ports & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_I = V_{CC} \ or \ GND & \pm 20 & \pm 20 & \pm 20 & \pm 20 \\ \hline \hline IOZPU^{\ddagger} & V_{CC} = 0 \ to \ 2.1 \ V, \ V_O = 0.5 \ V \ to \ 2.7 \ V, \\ \hline \hline OE = X & & V_{CC} = 2.1 \ V \ to \ 0, \ V_O = 0.5 \ V \ to \ 2.7 \ V, \\ \hline \hline OE = X & & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_O = 2.7 \ V, \\ \hline \hline IOZH^{\$} & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_O = 2.7 \ V, \\ \hline \hline IOZL^{\$} & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_O = 2.7 \ V, \\ \hline \hline IOZL^{\$} & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_O = 0.5 \ V, \\ \hline \hline IOZL^{\$} & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_O = 0.5 \ V, \\ \hline \hline IOZL^{\$} & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_O = 0.5 \ V, \\ \hline \hline IOZL^{\$} & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_O = 0.5 \ V, \\ \hline \hline IOZL^{\$} & V_{CC} = 5.5 \$	V _{hys}					100						mV	
$ \begin{array}{ c c c c c c c } \hline & A \text{ or B ports} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V, } V_{I} = V_{CC} \text{ or GND} & \pm 20 & \pm 20 & \pm 20 & \pm 20 \\ \hline & V_{CC} = 0 \text{ to } 2.1 \text{ V, } V_{O} = 0.5 \text{ V to } 2.7 \text{ V,} & \pm 50 & \pm 50 & \pm 50 & \pm 50 & \mu A \\ \hline & I_{OZPD}^{\ddagger} & V_{CC} = 2.1 \text{ V to } 0.5 \text{ V, } V_{O} = 0.5 \text{ V to } 2.7 \text{ V,} & \pm 50 & \pm 50 & \pm 50 & \mu A \\ \hline & I_{OZH}^{\$} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V, } V_{O} = 2.7 \text{ V,} & \pm 50 & \pm 50 & \mu A \\ \hline & I_{OZH}^{\$} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V, } V_{O} = 2.7 \text{ V,} & 10 & 10 & 10 & \mu A \\ \hline & I_{OZL}^{\$} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V, } V_{O} = 0.5 \text{ V,} & -10 & -10 & -10 & -10 & \mu A \\ \hline & I_{OZL}^{\$} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V, } V_{O} = 0.5 \text{ V,} & -10 & -10 & -10 & \mu A \\ \hline & I_{OT} & V_{CC} = 0. & V_{I} \text{ or } V_{O} \leq 4.5 \text{ V} & \pm 100 & \pm 100 & \mu A \\ \hline & I_{OT} & V_{CC} = 5.5 \text{ V,} & Outputs high & 50 & 50 & 50 & 50 & \mu A \\ \hline & I_{OT} & V_{CC} = 5.5 \text{ V,} & V_{O} = 2.5 \text{ V} & -50 & -100 & -200 & -50 & -200 & -50 & -200 & mA \\ \hline & I_{OT} & V_{CC} = 5.5 \text{ V,} & Outputs high & 250 & 250 & 250 & \mu A \\ \hline & V_{CC} = 5.5 \text{ V,} & Outputs high & 250 & 250 & 250 & \mu A \\ \hline & Outputs \text{ disabled} & 250 & 250 & 250 & 250 & \mu A \\ \hline & Outputs \text{ disabled} & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 \\ \hline & Control \text{ inputs} & V_{CC} = 5.5 \text{ V, One input at } 3.4 \text{ V,} \\ \hline & Other \text{ inputs at } V_{CC} \text{ or GND} & 1.5 & 1.5 & 1.5 \\ \hline & C_{i} & \text{ Control inputs} & V_{I} = 2.5 \text{ V or } 0.5 \text{ V} & 4 & 0 & 0 & 0 \\ \hline \end{array}$	١.	Control inputs	$V_{CC} = 0 \text{ to } 5.5 \text{ V, V}_{I}$	$CC = 0$ to 5.5 V, $V_I = V_{CC}$ or GND			±1		±1		±1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	'1	A or B ports	$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}$			±20		±20	±20		μΑ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) = 0.5 V to 2.7 V,			±50		±50		±50	μΑ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lozpd [‡]						±50		±50		±50	μА	
$ \begin{array}{ c c c c c c c c } \hline IOZL^3 & \overline{OE} \geq 2 \ V & -10 & -10 & -10 & -10 & \mu A \\ \hline I_{Off} & V_{CC} = 0, & V_{I} \text{ or } V_{O} \leq 4.5 \ V & \pm 100 & \pm 100 & \mu A \\ \hline I_{CEX} & V_{O} = 5.5 \ V, & Outputs high & 50 & 50 & 50 & 50 & \mu A \\ \hline I_{O} & V_{CC} = 5.5 \ V, & V_{O} = 2.5 \ V & -50 & -100 & -200 & -50 & -200 & -50 & -200 & mA \\ \hline I_{CC} & V_{CC} = 5.5 \ V, & Outputs high & 250 & 250 & 250 & \mu A \\ \hline I_{CC} & V_{I} = V_{CC} \text{ or } GND & Outputs low & 40 & 40 & 40 & mA \\ \hline I_{CC} & Data inputs & V_{CC} = 5.5 \ V, & One input at 3.4 \ V, & Other inputs at V_{CC} \text{ or } GND & Outputs disabled & 0.25 & 0.25 & 0.25 \\ \hline I_{Ci} & Control inputs & V_{I} = 2.5 \ V \text{ or } 0.5 \ V \\ \hline I_{O} = 0, & V_{I} = V_{CC} \text{ or } GND & Outputs disabled & 0.25 & 0.25 & 0.25 \\ \hline I_{I} = 0, & I_$	I _{OZH} §						10	, 4	10		10	μА	
$ \begin{array}{ c c c c c c c c c } \hline I_{CEX} & V_{CC} = 5.5 \ V, \\ V_O = 5.5 \ V & Outputs \ high & 50 & 50 & 50 & \mu A \\ \hline \hline I_{O} & V_{CC} = 5.5 \ V, & V_O = 2.5 \ V & -50 & -100 & -200 & -50 & -200 & -50 & -200 & mA \\ \hline \hline I_{CC} & V_{CC} = 5.5 \ V, & Outputs \ high & 250 & 250 & 250 & \mu A \\ \hline \hline I_{CC} & V_{CC} = 5.5 \ V, & Outputs \ high & 250 & 250 & 250 & \mu A \\ \hline \hline I_{CC} & Outputs \ disabled & 250 & 250 & 250 & \mu A \\ \hline \hline \hline I_{CC} & Data \ inputs & V_{CC} = 5.5 \ V, & One \ input \ at \ 3.4 \ V, & Other \ inputs \ at \ V_{CC} \ or \ GND & Outputs \ disabled & 0.25 & 0.25 & 0.25 \\ \hline \hline \hline \hline I_{Ci} & Control \ inputs & V_{I} = 2.5 \ V \ or \ 0.5 \ V \\ \hline \hline \hline \hline \hline I_{Ci} & Control \ inputs & V_{I} = 2.5 \ V \ or \ 0.5 \ V \\ \hline \hline$	lozL§						-10	SPRO	-10		-10	μА	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l _{off}		$V_{CC} = 0$,	V _I or V _O ≤ 4.5 V			±100	S. S.			±100	μА	
	ICEX			Outputs high			50		50		50	μА	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IOI		$V_{CC} = 5.5 \text{ V},$	V _O = 2.5 V	-50	-100	-200	-50	-200	-50	-200	mA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Vcc = 5.5 V.	Outputs high			250		250		250	μΑ	
$ \Delta l_{CC}^{\#} $	ICC		$I_{O}=0$,	Outputs low			40		40		40	mA	
$ \Delta I_{CC}^{\#} $			$V_I = V_{CC}$ or GND	Outputs disabled			250		250		250	μΑ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Data inputs	One input at 3.4 V, Other inputs at	Outputs enabled			1.5		1.5		1.5		
Control inputs Other inputs at V_{CC} or GND 1.5 1.5 1.5 Ci Control inputs $V_{I} = 2.5 \text{ V}$ or 0.5 V 4 pF	∆lcc#			Outputs disabled			0.25		0.25		0.25	mA	
							1.5		1.5		1.5		
Cio A or B ports $V_0 = 2.5 \text{ V or } 0.5 \text{ V}$	Ci	Control inputs	V _I = 2.5 V or 0.5 V			4						pF	
[9 0	C _{io}	A or B ports	V _O = 2.5 V or 0.5 V		10						pF		

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡] This parameter is characterized, but not production tested.

[§] The parameters IOZH and IOZL include the input leakage current.

[¶] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[#] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS192E - JANUARY 1991 - REVISED JUNE 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			SN54ABT657A		SN74ABT657A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	A or B	B or A	1	3.2	4.2	1	5	1	4.6	ns
^t PHL	AOIB	DUIA	1	2.8	3.8	1	4.5	1	4.3	
^t PLH	А	PARITY	1.8	4.8	6.3	1.8	8.5	1.8	8.1	ns
^t PHL			2.3	4.9	6.4	2.3	8.1	2.3	7.7	
^t PLH	ODD/EVEN	PARITY, ERR	1.1	3.3	4.2	1.1	5.3	1.1	4.9	ns
t _{PHL}			1.3	3.4	4.5	1.3	5.1	1.3	4.9	
^t PLH	В		1.6	4.7	6.5	1.6	8.4	1.6	7.9	ns
t _{PHL}		ERR	2.1	4.9	6.9	2.1	8	2.1	7.8	115
^t PLH	PARITY		2	4.8	6.3	2	8.1	2	7.7	ns
^t PHL	FANITI	ERR	2.1	4.9	6.7	2.1	8	2.1	7.5	115
^t PZH	ŌĒ		1.4	4	5.4	1.4	6.8	1.4	6.5	ns
^t PZL	OE OE	A, B, PARITY	1.7	4.1	5.8	1.7	6.7	1.7	6.5	115
^t PZH	ŌĒ		1.8	4.1	5.4	1.8	6.9	1.8	6.6	ns
^t PZL		ERR	3.3	6.2	7.6	3.3	9.7	3.3	9.2	115
^t PHZ	ŌĒ	A, B, PARITY, or	2.4	4.2	5.6	2.4	6.3	2.4	6.2	ns
t _{PLZ}		ERR	1.8	4.2	6.2	1.8	8.9	1.8	7.8	115

SCBS192E - JANUARY 1991 - REVISED JUNE 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated