 Member of the Texas Instruments Widebus+™ Family 	DGG PACKAGE (TOP VIEW)				
 EPIC ™ (Enhanced-Performance Implanted CMOS) Submicron Process 		64] 1CLKENBA 63] LEBA			
● UBT [™] (Universal Bus Transceiver)		63 LEBA 62 CLKBA			
Combines D-Type Latches and D-Type	7	61 0 1ERRB			
Flip-Flops for Operation in Transparent,	1APAR 🛛 5	60 3 1BPAR			
Latched, or Clocked Mode		59 🛛 GND			
 Typical V_{OLP} (Output Ground Bounce) 		58] 1B1			
< 0.8 V at V _{CC} = 3.3 V, T _A = 25°C		57 1 1B2			
 Typical V_{OHV} (Output V_{OH} Undershoot) 		56 1 B3			
> 2 V at V _{CC} = 3.3 V, T _A = 25°C		55 V _{CC}			
 Simultaneously Generates and Checks 					
Parity		53 3 1B5 52 3 1B6			
 Option to Select Generate Parity and Check 		51 GND			
or Feed-Through Data/Parity in A-to-B or		50 1B7			
B-to-A Directions		49] 1B8			
 Supports Mixed-Mode Signal Operation on 		48 2B1			
All Ports (5-V Input/Output Voltage With		47 🛛 2B2			
3.3-V V _{CC})	GND 🚺 19	46 🛛 GND			
 I_{off} Supports Partial-Power-Down-Mode 	2A3 🛛 20	45] 2B3			
Operation		44 [2B4			
ESD Protection Exceeds 2000 V Per		43 2 B5			
MIL-STD-883, Method 3015; Exceeds 200 V	<u> </u>	42 V _{CC}			
Using Machine Model (C = 200 pF, R = 0)		41 2B6			
Latch-Up Performance Exceeds 100 mA Per		40 2B7			
JESD 78, Class I		39 2B8 38 GND			
Bus Hold on Data Inputs Eliminates the		37 2BPAR			
Need for External Pullup/Pulldown	7	36 2ERRB			
Resistors	7				
 Packaged in Thin Shrink Small-Outline 		34 ODD/EVEN			
Package	9	33 2 2 CLKENBA			
	L				

description

This 18-bit (dual-octal) noninverting registered transceiver is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVCH16901 is a dual 9-bit to dual 9-bit parity transceiver with registers. The device can operate as a feed-through transceiver, or it can generate/check parity from the two 8-bit data buses in either direction.

The SN74LVCH16901 features independent clock (CLKAB or CLKBA), latch-enable (LEAB or LEBA), and dual 9-bit clock-enable (CLKENAB or CLKENBA) inputs. It also provides parity-enable (SEL) and parity-select (ODD/EVEN) inputs and separate error-signal (ERRA or ERRB) outputs for checking parity. The direction of data flow is controlled by output-enable (OEAB and OEBA) inputs. When SEL is low, the parity functions are enabled. When SEL is high, the parity functions are disabled, and the device acts as an 18-bit registered transceiver.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus+, EPIC, and UBT are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1999, Texas Instruments Incorporated

SCES145A - OCTOBER 1998 - REVISED MAY 1999

description (continued)

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The SN74LVCH16901 is characterized for operation from -40°C to 85°C.

Function Tables

	FUNCTION											
	INPUTS											
CLKENAB	OEAB	LEAB	CLKAB	Α	В							
Х	Н	Х	Х	Х	Z							
Х	L	Н	Х	L	L							
Х	L	Н	Х	Н	н							
н	L	L	Х	Х	в ₀ ‡							
L	L	L	\uparrow	L	L							
L	L	L	\uparrow	Н	н							
L	L	L	L	Х	в ₀ ‡							
L	L	L	Н	Х	в ₀ ‡ в ₀ §							

[†]A-to-B data flow is shown: B-to-A flow is similar, but uses OEBA, LEBA, and CLKENBA.

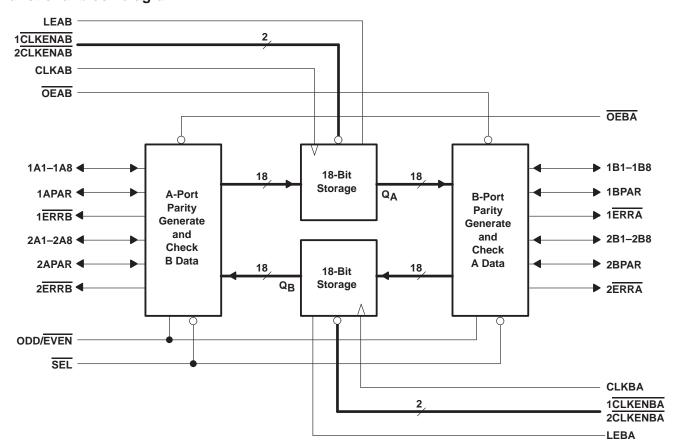
[‡] Output level before the indicated steady-state input conditions were established

§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low

PARITY ENABLE

	INPUTS									
SEL	OEBA	OEAB	OPERATION OR FUNCTION							
L	Н	L	Parity is checked on port A and is generated on port B.							
L	L	Н	Parity is checked on port B and	Parity is checked on port B and is generated on port A.						
L	Н	Н	Parity is checked on port B and port A.							
L	L	L	Parity is generated on port A a	nd B if device is in FF mode.						
н	L	L		Q _A data to B, Q _B data to A						
н	L	Н	Parity functions are disabled; device acts as a standard	Q _B data to A						
н	Н	L	18-bit registered transceiver.	Q _A data to B						
н	Н	Н	-	Isolation						

Function Tables (Continued)


					PARITY						
	INPUTS								OUTI	PUTS	
SEL	OEBA	OEAB	ODD/EVEN	Σ OF INPUTS A1–A8 = H	Σ OF INPUTS B1–B8 = H	APAR	BPAR	APAR	ERRA	BPAR	ERRB
L	Н	L	L	0, 2, 4, 6, 8	N/A	L	N/A	N/A	Н	L	Z
L	Н	L	L	1, 3, 5, 7	N/A	L	N/A	N/A	L	н	Z
L	Н	L	L	0, 2, 4, 6, 8	N/A	Н	N/A	N/A	L	L	Z
L	Н	L	L	1, 3, 5, 7	N/A	Н	N/A	N/A	Н	Н	Z
L	L	Н	L	N/A	0, 2, 4, 6, 8	N/A	L	L	Z	N/A	Н
L	L	Н	L	N/A	1, 3, 5, 7	N/A	L	н	Z	N/A	L
L	L	Н	L	N/A	0, 2, 4, 6, 8	N/A	н	L	Z	N/A	L
L	L	Н	L	N/A	1, 3, 5, 7	N/A	н	н	Z	N/A	н
L	Н	L	Н	0, 2, 4, 6, 8	N/A	L	N/A	N/A	L	Н	Z
L	Н	L	Н	1, 3, 5, 7	N/A	L	N/A	N/A	Н	L	Z
L	Н	L	Н	0, 2, 4, 6, 8	N/A	Н	N/A	N/A	Н	Н	Z
L	Н	L	Н	1, 3, 5, 7	N/A	Н	N/A	N/A	L	L	Z
L	L	Н	Н	N/A	0, 2, 4, 6, 8	N/A	L	н	Z	N/A	L
L	L	Н	Н	N/A	1, 3, 5, 7	N/A	L	L	Z	N/A	н
L	L	Н	Н	N/A	0, 2, 4, 6, 8	N/A	Н	н	Z	N/A	н
L	L	Н	Н	N/A	1, 3, 5, 7	N/A	н	L	Z	N/A	L
L	Н	Н	L	0, 2, 4, 6, 8	0, 2, 4, 6, 8	L	L	Z	Н	Z	Н
L	Н	Н	L	1, 3, 5, 7	1, 3, 5, 7	L	L	z	L	Z	L
L	Н	Н	L	0, 2, 4, 6, 8	0, 2, 4, 6, 8	Н	Н	z	L	Z	L
L	Н	Н	L	1, 3, 5, 7	1, 3, 5, 7	Н	Н	z	Н	Z	н
L	Н	Н	Н	0, 2, 4, 6, 8	0, 2, 4, 6, 8	L	L	Z	L	Z	L
L	Н	Н	Н	1, 3, 5, 7	1, 3, 5, 7	L	L	z	Н	Z	н
L	Н	Н	Н	0, 2, 4, 6, 8	0, 2, 4, 6, 8	Н	н	z	Н	Z	н
L	Н	Н	Н	1, 3, 5, 7	1, 3, 5, 7	Н	Н	Z	L	Z	L
L	L	L	L	N/A	N/A	N/A	N/A	PE†	Z	PE†	Z
L	L	L	Н	N/A	N/A	N/A	N/A	PO‡	Z	PO‡	Z

[†] Parity output is set to the level so that the specific bus side is set to even parity.

[‡] Parity output is set to the level so that the specific bus side is set to odd parity.

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} 0.5 V to 6.5 V Input voltage range, V _I (see Note 1)0.5 V to 6.5 V
Voltage range applied to any output in the high-impedance or power-off state, V _O (see Note 1)0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, V _O
(see Notes 1 and 2)0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} (V _I < 0)
Output clamp current, I_{OK} (V _O < 0)
Continuous output current, I _O ±50 mA
Continuous current through each V _{CC} or GND ±100 mA
Package thermal impedance, θ_{JA} (see Note 3)
Storage temperature range, T _{stg}

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The value of V_{CC} is provided in the recommended operating conditions table.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
Vee	Supply voltage	Operating	1.65	3.6	V	
VCC	Supply voltage	Data retention only	1.5		v	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$			
VIH	High-level input voltage Low-level input voltage Input voltage Output voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	2			
		V _{CC} = 1.65 V to 1.95 V		$\begin{array}{c} 3.6 \\ \hline \\ CC \\ \hline \\ 0.35 \times V_{CC} \\ \hline \\ 0.7 \\ \hline \\ 0.8 \\ \hline \\ 5.5 \\ \hline \\ V_{CC} \\ \hline \\ 5.5 \\ \hline \\ -4 \\ \hline \\ -8 \\ \hline \\ -12 \\ \hline \\ -24 \\ \hline \\ 4 \\ \hline \\ 8 \\ 12 \\ \hline \\ 24 \end{array}$		
VIL	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
		V _{CC} = 2.7 V to 3.6 V		0.8		
VI	Input voltage		0	5.5	V	
\/_	Output voltage	High or low state	0	VCC	V	
VO	Output voltage	3 state	0	5.5	v	
		V _{CC} = 1.65 V		-4		
lau	High lovel output ourrest	$V_{CC} = 2.3 V$		-8		
ЮН	High-level output current	$V_{CC} = 2.7 V$		-12	mA	
	High-level input voltage Low-level input voltage Input voltage Output voltage High-level output current Low-level output current Input transition rise or fall rate	$V_{CC} = 3 V$		-24		
		V _{CC} = 1.65 V		4		
1		V _{CC} = 2.3 V		8		
IOL	Low-level output current	V _{CC} = 2.7 V		12	mA	
		$V_{CC} = 3 V$		24		
$\Delta t/\Delta v$	Input transition rise or fall rate			5	ns/V	
TA	Operating free-air temperature		-40	85	°C	

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR	AMETER	TEST CO	ONDITIONS	Vcc	MIN	TYP†	MAX	UNIT	
		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.2				
		I _{OH} = -4 mA		1.65 V	1.2				
VOL II Control inputs II(hold) A or B ports	I _{OH} = -8 mA		2.3 V	1.7			V		
	I _{OH} = -12 mA	2.7 V	2.2			v			
		OH = -12 IIIA		3 V	2.4				
		I _{OH} = -24 mA		3 V	2.2				
		I _{OL} = 100 μA		1.65 V to 3.6 V			0.2		
V _{OL}		I _{OL} = 4 mA	1.65 V			0.45			
V _{OL}	I _{OL} = 8 mA		2.3 V			0.7	V		
	VOH VOL II Control inputs II(hold) A or B ports II(hold) A or B ports ICC ICC Ci Control inputs	I _{OL} = 12 mA		2.7 V			0.4		
		I _{OL} = 24 mA		3 V			0.55		
I		V _I = 0 to 5.5 V		3.6 V			±5	μΑ	
		VI = 0.58 V		1.65 V	25				
		VI = 1.07 V	1.03 V -25						
		V _I = 0.7 V		2.3 V	45				
ll(hold)	A or B ports	VI = 1.7 V		2.5 V	-45		h		
		V _I = 0.8 V		3 V	75				
		V _I = 2 V		5.0	-75				
		V _I = 0 to 3.6 V‡		3.6 V			±600		
loff		$V_I \text{ or } V_O = 5.5 \text{ V}$		0			±10	μΑ	
I _{OZ} §		$V_{O} = 0$ to 5.5 V		3.6 V			±10	μΑ	
laa		$V_I = V_{CC}$ or GND	IO = 0	3.6 V			20	μA	
CC		$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{\text{I}}$	10 = 0	5.0 V			20	μА	
∆ICC		One input at V _{CC} – 0.6 V,	Other inputs at $V_{\mbox{CC}}$ or GND	2.7 V to 3.6 V			500	μΑ	
Ci		$V_{I} = V_{CC} \text{ or } GND$		3.3 V		7		pF	
Cio	A or B ports	$V_{O} = V_{CC}$ or GND		3.3 V		9.5		pF	
-									

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡]This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

§ For I/O ports, the parameter IOZ includes the input leakage current, but not II(hold).

This applies in the disabled state only.

SCES145A - OCTOBER 1998 - REVISED MAY 1999

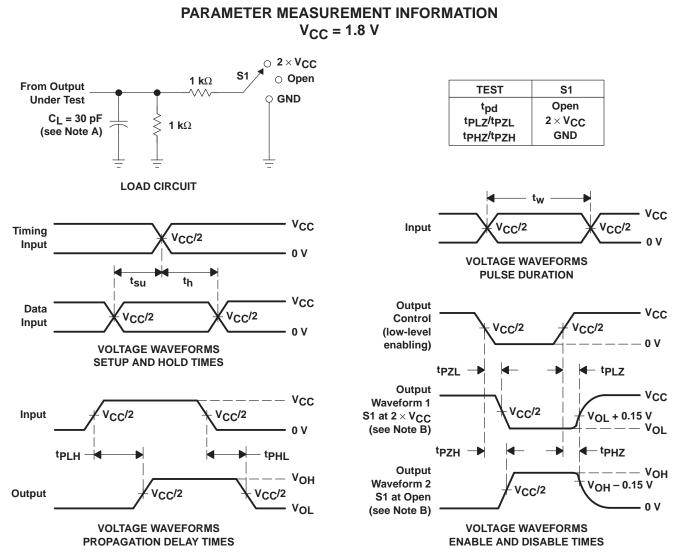
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

			V _{CC} =	1.8 V†	V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequenc	у		125		125		125		125	MHz
+	Pulse duration	CLK↑	4		3		3		3		-
t _W		LE high	3		3		3		3		ns
		A, APAR or B, BPAR before $CLK\uparrow$	4.7		2.7		2.8		2.5		
t _{su}	Setup time	CLKEN before CLK [↑]	4.5		2.9		2.9		2.5		ns
		A, APAR or B, BPAR before LE \downarrow	0		2.2		2.1		2		
		A, APAR or B, BPAR after $CLK\uparrow$	0		1.2		1.2		1.3		
t _h	Hold time	CLKEN after CLK [↑]	0		1.3		1.3		1.5		ns
		A, APAR or B, BPAR after LE \downarrow	1		1.7		1.9		1.7		

[†] Texas Instruments SPICE simulation data

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

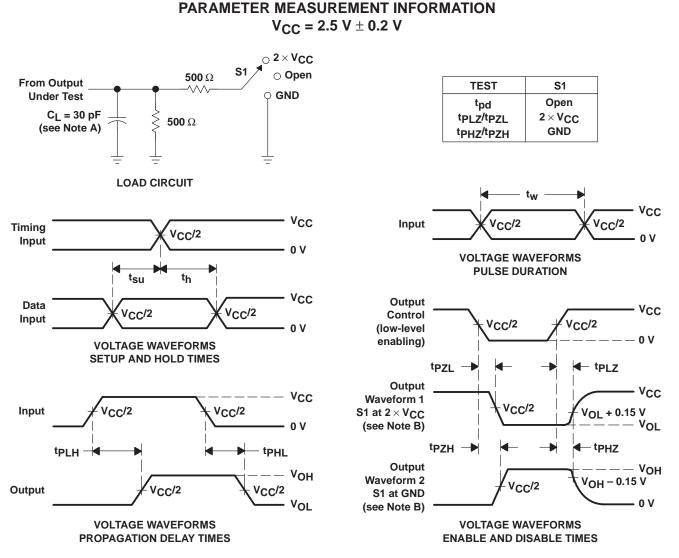
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V†	V _{CC} = ± 0.		V _{CC} =	2.7 V	= ۷ _{CC} ± 0.:	3.3 V 3 V	UNIT	
	(INPUT)	(001P01)	ТҮР	MIN	MAX	MIN	N MAX MIN MAX				
f _{max}			125	125		125		125		MHz	
	A or B	B or A	5.9	1	6.2		5.8	1	5.4		
			BPAR or APAR	12.7	2	9.9		8.6	2	7.7	
	APAR or BPAR	BPAR or APAR	7	1	6.7		6.2	1	5.7		
	AFAN UI DFAN	ERRA or ERRB	13	2	10.7		9.7	2	8.5		
	ODD/EVEN	ERRA or ERRB	9.9	1.5	9.7		8.9	1.5	7.8		
	ODD/EVEN	BPAR or APAR	10.4	1.5	9.3		8.6	1.5	7.5		
	SEL	BPAR or APAR	6.9	1	7.1		6.9	1	6.1		
		A or B	6.9	1	7.4		6.8	1	6.1		
^t pd	CLKAB or CLKBA	BPAR or APAR parity feedthrough	8.5	1.5	8.1		7.3	1.5	6.6	ns	
		BPAR or APAR parity generated	14.1	2.5	11.2		9.7	2	8.7		
		ERRA or ERRB	14.3	2.5	11.5		9.9	2	8.9		
		A or B	6.8	1	7		6.5	1	5.8		
		BPAR or APAR parity feedthrough	7.9	1.5	7.7		7	1.5	6.3		
	LEAB or LEBA	BPAR or APAR parity generated	13.6	2.5	10.8		9.3	2	8.4		
		ERRA or ERRB	13.5	2.5	10.9		9.5	2	8.5		
ten	OEAB or OEBA	B, BPAR or A, APAR	6.8	1.4	7.3		7.1	1	6.3	ns	
^t dis	OEAB or OEBA	B, BPAR or A, APAR	6.9	1.3	7.1		6.2	1.5	5.9	ns	
t _{en}	OEAB or OEBA	ERRA or ERRB	7.4	1.4	7.2		6.5	1	5.9	ns	
^t dis	OEAB or OEBA	ERRA or ERRB	9.3	1.3	8.3		7.5	1	6.7	ns	
t _{en}	SEL	ERRA or ERRB	7.6	1.4	7.7		7.5	1	6.5	ns	
t _{dis}	SEL	ERRA or ERRB	7.8	1.3	7.4		6.4	1.5	5.9	ns	


T Texas Instruments SPICE simulation data

SCES145A – OCTOBER 1998 – REVISED MAY 1999

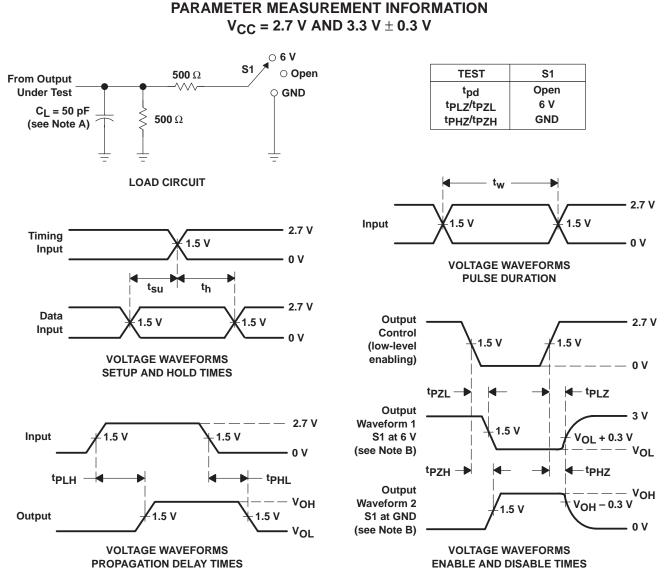
operating characteristics, T_A = 25°C

	PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT
Cpd	Power dissipation capacitance	Outputs enabled	£ 10 MU	37	52	68	~ Г
Фра	per transceiver	Outputs disabled	f = 10 MHz	16	22	28	pF



NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- D. The outputs are measured one at a time with o
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tPLH and tPHL are the same as tpd.



- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tPLZ and tPHZ are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

SCES145A - OCTOBER 1998 - REVISED MAY 1999

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PI7} and t_{PH7} are the same as t_{dis} .
- F. t_{P7I} and t_{P7H} are the same as t_{en} .
- G. tPLH and tPHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated