SN54AHCT16244, SN74AHCT16244 **16-BIT BUFFERS/DRIVERS** WITH 3-STATE OUTPUTS SCLS334I - MARCH 1996 - REVISED JANUARY 2000

25 3 3 OE

4OE

24

SN54AHCT16244 . . . WD PACKAGE **Members of the Texas Instruments** SN74AHCT16244 . . . DGG. DGV. OR DL PACKAGE Widebus[™] Family (TOP VIEW) EPIC[™] (Enhanced-Performance Implanted **CMOS) Process** 48 20E 1 OF Inputs Are TTL-Voltage Compatible 47 🛛 1A1 1Y1 🛛 2 46 **1**A2 1Y2 3 Distributed V_{CC} and GND Pins Minimize GND 4 45 GND **High-Speed Switching Noise** 44 **1**A3 1Y3 5 Flow-Through Architecture Optimizes PCB 1Y4 🛛 6 43 **1**A4 Layout VccL 7 42 V_{CC} Latch-Up Performance Exceeds 250 mA Per 2Y1 🛛 8 41 2A1 **JESD 17** 40 2A2 2Y2 9 ESD Protection Exceeds 2000 V Per GND 10 39 GND MIL-STD-883, Method 3015 2Y3 🛛 11 38 2A3 • Package Options Include Plastic Shrink 2Y4 12 37 2A4 Small-Outline (DL), Thin Shrink 3Y1 11 13 36 J 3A1 Small-Outline (DGG), and Thin Very 3Y2 14 35 3A2 Small-Outline (DGV) Packages and 380-mil GND [15 34 GND Fine-Pitch Ceramic Flat (WD) Package 3Y3 16 33 3A3 Using 25-mil Center-to-Center Spacings 3Y4 17 32 3A4 V_{CC} [] 18 31 V_{CC} description 4Y1 19 30 4A1 29 4A2 4Y2 20 The 'AHCT16244 devices are 16-bit buffers and 28 GND GND 21 line drivers designed specifically to improve the 4Y3 22 27 4A3 performance and density of 3-state memory 4Y4 🛛 23 26 4A4 address drivers, clock drivers, and bus-oriented

These devices can be used as four 4-bit buffers. two 8-bit buffers, or one 16-bit buffer. They provide true outputs and symmetrical active-low output-enable (\overline{OE}) inputs.

receivers and transmitters.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54AHCT16244 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74AHCT16244 is characterized for operation from -40°C to 85°C.

(each 4-bit buffer/driver)										
INP	JTS	OUTPUT								
OE	Α	Y								
L	Н	н								
L	L	L								
н	Х	Z								

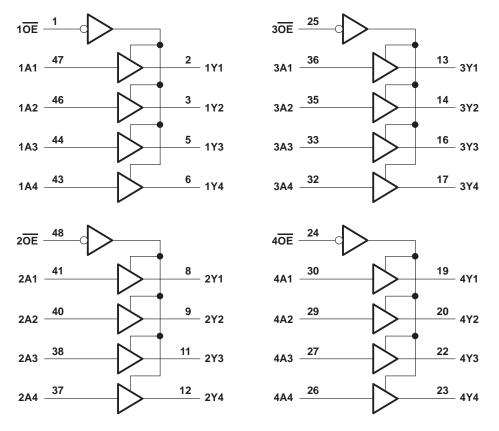
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters

Copyright © 2000, Texas Instruments Incorporated

SN54AHCT16244, SN74AHCT16244 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCLS334I – MARCH 1996 – REVISED JANUARY 2000


logic symbol[†]

10E 20E 30E 40E	1 48 25 24	EN1 EN2 EN3 EN4				
1A1	47	<u>ک</u>	1		2	1Y1
	46	┣—	-	IV	3	
1A2	44	}			5	1Y2
1A3	43]			6	1Y3
1A4	41			• \(\neq \)	8	1Y4
2A1	40	1	1	2 ▽	9	2Y1
2A2	38	1			11	2Y2
2A3	37	1			12	2Y3
2A4	36	1			13	2Y4
3A1	35	1	1	3 ♡	14	3Y1
3A2	33	1			16	3Y2
3A3	32	1			17	3Y3
3A4	30	1			19	3Y4
4A1	29	1	1	4 🗸	20	4Y1
4A2	27	1			22	4Y2
4A3	26	1			23	4Y3
4A4						4Y4

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	–0.5 V to 7 V
Output voltage range, V _O (see Note 1)	\dots –0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±20 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±25 mA
Continuous current through each V _{CC} or GND	±75 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package	
DGV package	
DL package	
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

SN54AHCT16244, SN74AHCT16244 **16-BIT BUFFERS/DRIVERS** WITH 3-STATE OUTPUTS

SCLS334I - MARCH 1996 - REVISED JANUARY 2000

recommended operating conditions (see Note 3)

		SN54AHC	T16244	SN74AHC	UNIT	
		MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2	N	2		V
VIL	Low-level input voltage		0.8		0.8	V
VI	Input voltage	0	5.5	0	5.5	V
Vo	Output voltage	0	VCC	0	VCC	V
ЮН	High-level output current	200	-8		-8	mA
IOL	Low-level output current	201	8		8	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	9	20		20	ns/V
ТА	Operating free-air temperature	-55	125	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vaa	Т	₄ = 25°C	;	SN54AHC	T16244	SN74AHC	UNIT	
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
Vau	I _{OH} = -50 μA	4.5 V	4.4	4.5		4.4		4.4		V
VOH	I _{OH} = -8 mA	4.5 V	3.94			3.8		3.8		v
VOL	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1	V
VOL	I _{OL} = 8 mA	4.5 V			0.36		0.44		0.44	v
Ц	$V_I = V_{CC}$ or GND	0 V to 5.5 V			±0.1	4	±1*		±1	μΑ
I _{OZ}	$V_{O} = V_{CC}$ or GND	5.5 V			±0.25	5	±2.5		±2.5	μΑ
ICC	$V_I = V_{CC} \text{ or } GND, \qquad I_O = 0$	5.5 V			4	200	40		40	μΑ
∆lcc†	One input at 3.4 V, Other inputs at V_{CC} or GND	5.5 V			1.35	PhO	1.5		1.5	mA
Ci	$V_I = V_{CC}$ or GND	5 V		2.5	10				10	pF
Co	$V_{O} = V_{CC}$ or GND	5 V		3						pF

* On products compliant to MIL-PRF-38535, this parameter is not production tested at V_{CC} = 0 V.

[†] This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SN54AHCT16244, SN74AHCT16244 **16-BIT BUFFERS/DRIVERS** WITH 3-STATE OUTPUTS

SCLS334I - MARCH 1996 - REVISED JANUARY 2000

switching characteristics over recommended operating free-air temperature range,
$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	LOAD	Τį	ן = 25°C	;	SN54AHCT16244 SN74AHCT16244		16244 SN74AHCT16		UNIT												
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX													
^t PLH	A	Y	C _I = 15 pF		5.4*	8.5*	1*	10*	1	9.5	ns												
^t PHL	A	I	0L = 13 bl		5.4*	8.5*	1*	10*	1	9.5	115												
^t PZH	OE	Y	C _I = 15 pF		7.7*	10.4*	1*	12*	1	12	20												
^t PZL	ÛE	I	0L = 13 pr		7.7*	10.4*	1*	<u></u> 12*	1	12	ns 12												
^t PHZ	OE	Y	C _I = 15 pF		5*	10.4*	1*	<i>k</i> 12*	1	12	ns												
^t PLZ	UL		0L = 13 pr		5*	10.4*	1* 9	12*	1	12	115												
^t PLH	А	Y	Y	$C_{\rm L} = 50 \rm pE$		7	9.5	Ð	11	1	10.5												
^t PHL	A						T	T T			T	T	T	ř	T	T	C _L = 50 pF		5.9	9.5	Q1	11	1
^t PZH	OE	Y	CL = 50 pF		8.2	11.4	A 1	13	1	13	ns												
^t PZL	ÛE	T	CL = 50 pr		8.2	11.4	1	13	1	13	115												
^t PHZ		Y	C ₁ = 50 pF		8.8	11.4	1	13	1	13	ns												
^t PLZ	OE	T	0L = 30 pr		8.8	11.4	1	13	1	13	115												
^t sk(o)			C _L = 50 pF			1**				1	ns												

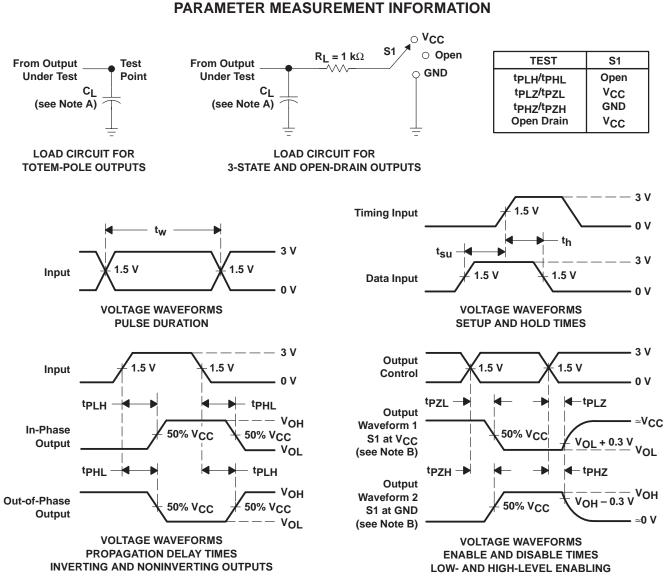
* On products compliant to MIL-PRF-38535, this parameter is not production tested.

** On products compliant to MIL-PRF-38535, this parameter does not apply.

noise characteristics, V_{CC} = 5 V, C_L = 50 pF, T_A = 25°C (see Note 4)

	PARAMETER		SN74AHCT16244				
	FARAMETER	MIN	MIN TYP MAX		UNIT		
VOL(P)	Quiet output, maximum dynamic V _{OL}		0.7		V		
VOL(V)	Quiet output, minimum dynamic V _{OL}		-0.7		V		
VOH(V)	Quiet output, minimum dynamic V _{OH}		4.8		V		
VIH(D)	High-level dynamic input voltage	2			V		
V _{IL(D)}	Low-level dynamic input voltage			0.8	V		

NOTE 4: Characteristics are for surface-mount packages only.


operating characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TEST CO	ONDITIONS	TYP	UNIT
Cpd	Power dissipation capacitance	No load,	f = 1 MHz	8.2	pF

SN54AHCT16244, SN74AHCT16244 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCLS334I - MARCH 1996 - REVISED JANUARY 2000

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f \leq 3 ns, t_f \leq 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated