SCES046E - JULY 1995 - REVISED FEBRUARY 1999

- Member of the Texas Instruments
 Widebus™ Family
- EPIC ™ (Enhanced-Performance Implanted CMOS) Submicron Process
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

description

This 12-bit to 24-bit multiplexed D-type latch is designed for 1.65-V to 3.6-V_{CC} operation.

The SN74ALVCH16260 is used in applications in which two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing and/or demultiplexing address and data information in microprocessor or bus-interface applications. This device also is useful in memory-interleaving applications.

Three 12-bit I/O ports (A1–A12, 1B1–1B12, and 2B1–2B12) are available for address and/or data transfer. The output-enable (OE1B, OE2B, and OEA) inputs control the bus transceiver functions. The OE1B and OE2B control signals also allow bank control in the A-to-B direction.

(TOP VIEW) 56 OE2B OEA l LE1B 2 55 LEA2B 2B3 🛮 3 54 **∏** 2B4 GND ∏4 53 | GND 2B2 **[**] 5 52 2B5 2B1 **6** 51 **1**2B6 50 DV_{CC} V_{CC} 47 A1 **∏** 8 49 **1** 2B7 A2 🛮 9 48 1 2B8 A3 10 47 2B9 46 GND

DGG OR DL PACKAGE

SEL ∏28

29 OE1B

Address and/or data information can be stored using the internal storage latches. The latch-enable (LE1B, LE2B, LEA1B, and LEA2B) inputs are used to control data storage. When the latch-enable input is high, the latch is transparent. When the latch-enable input goes low, the data present at the inputs is latched and remains latched until the latch-enable input is returned high.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16260 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

SN74ALVCH16260 12-BIT TO 24-BIT MULTIPLEXED D-TYPE LATCH WITH 3-STATE OUTPUTS SCES046E – JULY 1995 – REVISED FEBRUARY 1999

Function Tables

B TO A ($\overline{OEB} = H$)

	INPUTS							
1B	2B	SEL	LE1B	LE2B	OEA	Α		
Н	Χ	Н	Н	Χ	L	Н		
L	Χ	Н	Н	X	L	L		
Х	Χ	Н	L	X	L	A ₀		
Х	Н	L	X	Н	L	Н		
Х	L	L	X	Н	L	L		
Х	Χ	L	X	L	L	A ₀		
Х	Χ	Χ	X	X	Н	Z		

A TO B ($\overline{OEA} = H$)

		INPUTS			OUTI	PUTS
Α	LEA1B	LEA2B	OE1B	OE2B	1B	2B
Н	Н	Н	L	L	Н	Н
L	Н	Н	L	L	L	L
Н	Н	L	L	L	Н	2B ₀
L	Н	L	L	L	L	2B ₀
Н	L	Н	L	L	1B ₀	Н
L	L	Н	L	L	1B ₀	L
Х	L	L	L	L	1B ₀	2B ₀
Х	X	Χ	Н	Н	Z	Z
Х	Χ	X	L	Н	Active	Z
Х	Χ	X	Н	L	Z	Active
Х	X	Χ	L	L	Active	Active

logic diagram (positive logic)

SN74ALVCH16260 12-BIT TO 24-BIT MULTIPLEXED D-TYPE LATCH WITH 3-STATE OUTPUTS

SCES046E - JULY 1995 - REVISED FEBRUARY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	
Input voltage range, V _I : Except I/O ports (see Note 1)	
I/O ports (see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Notes 1 and 2)	\dots -0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3): DGG package	81°C/W
DL package	
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. This value is limited to 4.6 V maximum.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
Vcc	Supply voltage		1.65	3.6	V
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		
V_{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		
	H High-level input voltage Low-level input voltage Input voltage Output voltage High-level output current Low-level output current	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	
V_{IL}		V _{CC} = 2.3 V to 2.7 V		0.7	V
		V _{CC} = 2.7 V to 3.6 V		0.8	
٧ı	Input voltage		0	Vcc	V
٧o	Output voltage		0	Vcc	V
		V _{CC} = 1.65 V		-4	
1	$\begin{array}{c} V_{\text{CC}} = 1.65 \ \forall \text{ to } 1.95 \ \forall \\ 0.65 \times V_{\text{CC}} \\ \hline V_{\text{CC}} = 2.3 \ \forall \text{ to } 2.7 \ \forall \\ \hline V_{\text{CC}} = 2.7 \ \forall \text{ to } 3.6 \ \forall \\ \hline V_{\text{CC}} = 2.7 \ \forall \text{ to } 3.6 \ \forall \\ \hline V_{\text{CC}} = 2.7 \ \forall \text{ to } 3.6 \ \forall \\ \hline V_{\text{CC}} = 2.3 \ \forall \text{ to } 1.95 \ \forall \\ \hline V_{\text{CC}} = 1.65 \ \forall \text{ to } 1.95 \ \forall \\ \hline V_{\text{CC}} = 1.65 \ \forall \text{ to } 1.95 \ \forall \\ \hline V_{\text{CC}} = 2.3 \ \forall \text{ to } 1.95 \ \forall \\ \hline V_{\text{CC}} = 2.3 \ \forall \text{ to } 1.95 \ \forall \\ \hline V_{\text{CC}} = 2.3 \ \forall \text{ to } 1.95 \ \forall \\ \hline V_{\text{CC}} = 2.3 \ \forall \text{ to } 1.95 \ \forall \\ \hline V_{\text{CC}} = 2.3 \ \forall \text{ to } 1.95 \ \forall \\ \hline V_{\text{CC}} = 2.7 \ \forall \text{ to } 3.6 \ \forall \\ \hline V_{\text{CC}} = 2.7 \ \forall \text{ to } 3.6 \ \forall \\ \hline V_{\text{CC}} = 2.3 \ \forall \\ \hline V_{\text{CC}} = 2.7 $		-12	4	
ЮН		-12	mA		
		V _{CC} = 3 V		3.6 CC 0.35 × V _{CC} 0.7 0.8 V _{CC} V _{CC} -4 -12	
		V _{CC} = 1.65 V		4	
la.	Low lovel output ourrent	V _{CC} = 2.3 V		12	mA
IOL	Low-level output current	V _{CC} = 2.7 V		12	IIIA
		V _{CC} = 3 V		24	
Δt/Δν	Input transition rise or fall rate			10	ns/V
T _A	Operating free-air temperature		-40	85	°C

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES046E - JULY 1995 - REVISED FEBRUARY 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAI	RAMETER	TEST C	ONDITIONS	vcc	MIN	TYP†	MAX	UNIT
		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.	.2		
VOH VOL II I(hold) IOZ ICC ΔICC Ci Control inputs	I _{OH} = -4 mA		1.65 V	1.2				
	I _{OH} = -6 mA	2.3 V	2					
Vон				2.3 V	1.7			V
		I _{OH} = -12 mA		2.7 V	2.2			
				3 V	2.4			
		I _{OH} = -24 mA		3 V	2			
		I _{OL} = 100 μA		1.65 V to 3.6 V			0.2	
		I _{OL} = 4 mA		1.65 V			0.45	
Voi		$I_{OL} = 6 \text{ mA}$		2.3 V			0.4	V
VOL		I _{OL} = 12 mA		2.3 V			0.7	V
		IOL = 12 IIIA		2.7 V			0.4	
		I _{OL} = 24 mA		3 V			0.55	
Ц		$V_I = V_{CC}$ or GND		3.6 V			±5	μΑ
		V _I = 0.58 V		1.65 V	25			
		V _I = 1.07 V		1.65 V	-25			
		V _I = 0.7 V		2.3 V	45			
I _{I(hold)}		V _I = 1.7 V		2.3 V	-45			μΑ
		V _I = 0.8 V		3 V	75			
		V _I = 2 V		3 V	-75			
		$V_{I} = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$		3.6 V			±500	
loz§		$V_O = V_{CC}$ or GND		3.6 V			±10	μΑ
ICC		$V_I = V_{CC}$ or GND,	IO = 0	3.6 V			40	μΑ
∆lcc		One input at V _{CC} – 0.6 V,	Other inputs at $V_{\hbox{\footnotesize CC}}$ or GND	3 V to 3.6 V			750	μΑ
Ci	Control inputs	$V_I = V_{CC}$ or GND		3.3 V		3.5		pF
C _{io}	A or B ports	$V_O = V_{CC}$ or GND		3.3 V		9		pF

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

		V _{CC} =	1.8 V	V _{CC} =	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _W	Pulse duration, LE1B, LE2B, LEA1B, or LEA2B high	¶		3.3		3.3		3.3		ns
t _{su}	Setup time, data before LE1B, LE2B, LEA1B, or LEA2B	¶	·	1.4		1.1		1.1		ns
t _h	Hold time, data after LE1B, LE2B, LEA1B, or LEA2B	¶		1.6		1.9		1.5		ns

 $[\]P$ This information was not available at the time of publication.

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

 $[\]$ For I/O ports, the parameter IOZ includes the input leakage current.

SN74ALVCH16260 12-BIT TO 24-BIT MULTIPLEXED D-TYPE LATCH WITH 3-STATE OUTPUTS

SCES046E - JULY 1995 - REVISED FEBRUARY 1999

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V	V _{CC} =	2.5 V 2 V	VCC =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT
	(INFOT)	(001F01)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
	A or B	B or A	†	1	5.4		5.1	1.2	4.3	
^t pd	LE	A or B	†	1	5.6		5.2	1	4.4	ns
	SEL	А	†	1	6.9		6.6	1.1	5.6	
t _{en}	ŌĒ	A or B	†	1	6.7		6.4	1	5.4	ns
^t dis	ŌĒ	A or B	†	1	5.7		5	1.3	4.6	ns

[†] This information was not available at the time of publication.

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER			TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT	
FARAWETER		TEST CONDITIONS	TYP	TYP	TYP	UNIT		
Power dissipation		All outputs enabled	C ₁ = 50 pF. f = 10 MHz	Ť	37	41	pF	
Cpd	capacitance	All outputs disabled	$C_L = 50 \text{ pF}, f = 10 \text{ MHz}$	†	4	7	PΓ	

[†] This information was not available at the time of publication.

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V}$

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

SCES046E - JULY 1995 - REVISED FEBRUARY 1999

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzl and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.7 \text{ V}$ AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzi and tpzH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated