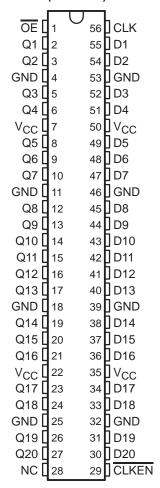
SCES052D - JULY 1995 - REVISED FEBRUARY 1999

- Member of the Texas Instruments Widebus™ Family
- EPIC ™ (Enhanced-Performance Implanted CMOS) Submicron Process
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages


description

This 20-bit flip-flop is designed specifically for 1.65-V to 3.6-V V_{CC} operation.

The 20 flip-flops of the SN74ALVCH16721 are edge-triggered D-type flip-flops with qualified clock storage. On the positive transition of the clock (CLK) input, the device provides true data at the Q outputs if the clock-enable (CLKEN) input is low. If CLKEN is high, no data is stored.

A buffered output-enable (\overline{OE}) input places the 20 outputs in either a normal logic state (high or low) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components. \overline{OE} does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

DGG, DGV, OR DL PACKAGE (TOP VIEW)

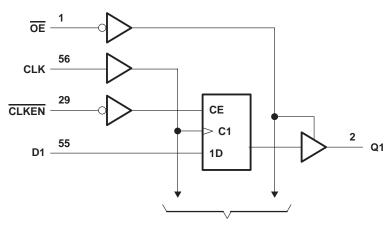
NC - No internal connection

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16721 is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


EPIC and Widebus are trademarks of Texas Instruments Incorporated.

FUNCTION TABLE (each flip-flop)

	INPU	OUTPUT		
OE	CLKEN	CLK	D	Q
L	Н	Х	Χ	Q ₀
L	L	\uparrow	Н	Н
L	L	\uparrow	L	L
L	L	L or H	Χ	Q ₀
Н	X	X	Χ	Z

logic diagram (positive logic)

To 19 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	
Output voltage range, VO (see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, IO	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3): DGG package	81°C/W
DGV package	86°C/W
DL package .	
Storage temperature range, T _{sto}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 4.6 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
Vcc	Supply voltage		1.65	3.6	V	
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}			
ViH	High-level input voltage Low-level input voltage Input voltage Output voltage High-level output current Low-level output current	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2			
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}		
VIL	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		
٧ı	Input voltage		0	Vcc	V	
٧o	Output voltage		0	VCC	V	
		V _{CC} = 1.65 V		-4		
	Library Lavid Control Company	V _{CC} = 2.3 V		-12	mA	
ІОН	High-level output current	V _{CC} = 2.7 V		-12		
	H High-level input voltage L Low-level input voltage Input voltage O Output voltage H High-level output current L Low-level output current	V _{CC} = 3 V		-24		
		V _{CC} = 1.65 V		4		
1	Lour lovel output ourrent	V _{CC} = 2.3 V		12		
lOL	Low-level output current	V _{CC} = 2.7 V		12	mA	
	VCC = 3 V			24		
Δt/Δν	Input transition rise or fall rate			10	ns/V	
T _A	Operating free-air temperature		-40	85	°C	

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST CO	ONDITIONS	Vcc	MIN	TYP [†]	MAX	UNIT
		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.	2		
	I _{OH} = -100 μA 1.65 V to 3.6 V V _{CC} -0.2 I _{OH} = -4 mA 1.65 V to 3.6 V V _{CC} -0.2 I _{OH} = -6 mA 2.3 V 2 I _{OH} = -12 mA 2.7 V 2.2 3 V 2.4 I _{OH} = -24 mA 3 V 2 I _{OL} = 100 μA 1.65 V to 3.6 V 0.2 I _{OL} = 100 μA 1.65 V to 3.6 V 0.2 I _{OL} = 4 mA 1.65 V to 3.6 V 0.4 I _{OL} = 6 mA 2.3 V 0.4 I _{OL} = 12 mA 2.3 V 0.4 I _{OL} = 12 mA 3 V 0.55 V _I = V _{CC} or GND 3.6 V ±5 V _I = 0.58 V 1.65 V 2.5 V _I = 1.07 V 2.3 V 45 V _I = 1.07 V 2.3 V 45 V _I = 0.8 V 3 V 75 V _I = 0.8 V 3 V 75 V _I = 0 to 3.6 V [‡] 3.6 V ±60 V _O = V _{CC} or GND 3.6 V 40 V _I = V _{CC} or GND 3.6 V 40 V _I = V _{CC} or GND 3.6 V 40 V _I = V _{CC} or GND 3.6 V 40 V _I = V _{CC} or GND 3.6 V 40 V _I = V _{CC} or GND 3.6 V 40 V _I = V _{CC} or GND 0.9 0 3.6 V 40 V _I = V _{CC} or GND 0.9 0 3.6 V 40 V _I = V _{CC} or GND 0.9 0 3.6 V 40 V _I = V _{CC} or GND 0.9 0 3.6 V 40 V _I = V _{CC} or GND 0.9 0 3.6 V 40 V _I = V _{CC} or GND 0.9 0 3.6 V 40 V _I = V _{CC} or GND 0.9 0 3.6 V 40 V _I = V _{CC} or GND 0.9 0 3.6 V 40 V _I = V _{CC} or GND 0.9 0 3.6 V 40 V _I = V _{CC} or GND 0.9 0 3.6 V 40 V _I = V _{CC} or GND 0.9 0 3.6 V 40 V _I = V _{CC} or GND 0.9 0 3.6 V 40 V _I = V _{CC} or GND 0.9 0 3.8 V 3.5 V _I = V _{CC} or GND 0.9 0 3.8 V 3.5 V _I = V _{CC} or GND 0.9 0 3.8 V 3.5 V _I = V _{CC} or GND 0.9 0 3.8 V 3.5 V _I = V _{CC} or GND 0.9 0 3.8 V 3.5 V _I = V _{CC} or GND 0.9 0 3.8 V 3.5 V _I = V _{CC} or GND 0.9 0 3.8 V 3.5 V _I = V _{CC} or GND 0.9 0 3.8 V 3.5 V _I = V _{CC} or GND 0.9 0 3.8 V 3.5 V _I = V _{CC} or GND 0.9 0 3.8 V 3.5 V _I = V _{CC} or GND 0.9 0 3.8 V 3.5 V _I = V _{CC} or GND 0.9 0 3.8 V 3.5 V _I = V _{CC} or GND 0.9 0 3.8 V 3.5 V _I = V _{CC} or GND 0.9 0 3.8 V							
Vон				2.3 V	1.7			V
		I _{OH} = -12 mA		2.7 V	2.2			
				3 V	2.4			
		I _{OH} = -24 mA		3 V	2			
		I _{OL} = 100 μA		1.65 V to 3.6 V			0.2	
		I _{OL} = 4 mA		1.65 V			0.45	
\ \/		I _{OL} = 6 mA		2.3 V			0.4	V
VOL		J		2.3 V			0.7	V
		IOT = 15 WY		2.7 V			0.4	
		I _{OL} = 24 mA		3 V			0.55	
II		V _I = V _{CC} or GND		3.6 V			±5	μΑ
		V _I = 0.58 V		1.65 V	25			
		V _I = 1.07 V		1.65 V	-25			
		V _I = 0.7 V		2.3 V	45			
I _I (hold)		V _I = 1.7 V		2.3 V	-45			μΑ
` ´		V _I = 0.8 V		3 V	75			
		V _I = 2 V		3 V	-75			
		$V_{\parallel} = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$		3.6 V			±500	
loz		VO = VCC or GND		3.6 V			±10	μΑ
Icc		$V_I = V_{CC}$ or GND,	IO = 0	3.6 V			40	μΑ
Δlcc		One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μΑ
Ci	Control inputs Data inputs	V _I = V _{CC} or GND		3.3 V		3.5 6		pF
Со	Outputs	V _O = V _{CC} or GND		3.3 V		7		pF

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

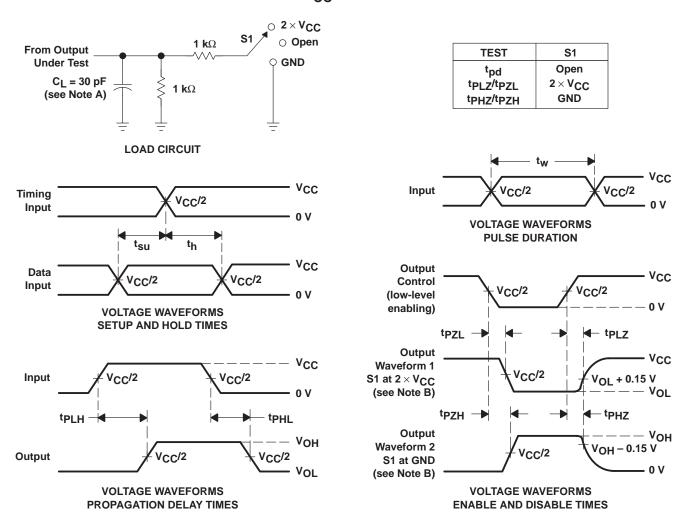
			V _{CC} =	1.8 V	V _{CC} =	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency			§		150		150		150	MHz
t _W	Pulse duration, CLK high or low		§		3.3		3.3		3.3		ns
	t _{SU} Setup time	Data before CLK↑	§		4		3.6		3.1		ns
^t su		CLKEN before CLK↑	§		3.4		3.1		2.7		
t _h Hold time	I lold time	Data after CLK↑	§		0		0		0		ns
	noid time	CLKEN after CLK↑	§		0		0		0		

[§] This information was not available at the time of publication.

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	VCC =	1.8 V	V _{CC} =	2.5 V 2 V	VCC =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT
	(INFOT)	(001F01)	MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			†		150		150		150		MHz
^t pd	CLK	Q		†	1	5.6	1	5.1	1	4.3	ns
t _{en}	ŌĒ	Q		†	1	6.1	1	5.8	1	4.8	ns
t _{dis}	ŌĒ	Q		†	1	5.5	1	4.7	1	4.4	ns

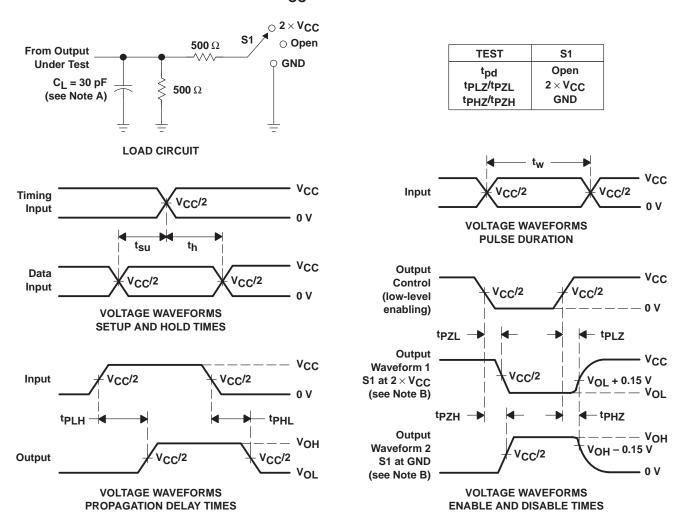

[†] This information was not available at the time of publication.

operating characteristics, $T_A = 25^{\circ}C$

DADAMETED			PARAMETER TEST CONDITIONS			V _{CC} = 3.3 V	UNIT
	FARAIVIETER		TYP		TYP	TYP	UNIT
<u> </u>	Power dissipation	Outputs enabled	C ₁ = 50 pF. f = 10 MHz	†	55	59	pF
C _{pd}	capacitance	Outputs disabled	$C_L = 50 \text{ pF}, f = 10 \text{ MHz}$	†	46	49	pΓ

[†] This information was not available at the time of publication.

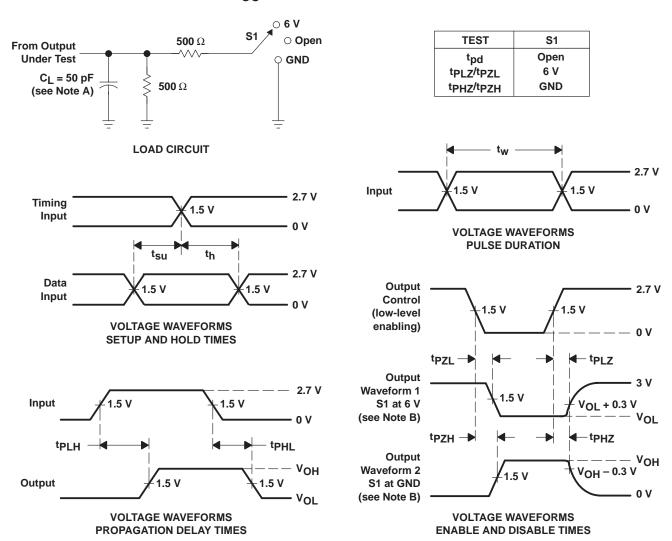
PARAMETER MEASUREMENT INFORMATION V_{CC} = 1.8 V



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns. $t_f \leq 2$ ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$



NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \Omega$, $t_{f} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzi and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated