FEATURES:

- Pin-out compatible with standard '245 logic
- $5 \Omega \mathrm{~A} / \mathrm{B}$ bidirectional switch
- Isolation Under Power-Off Conditions
- Over-voltage tolerant
- Latch-up performance exceeds 100 mA
- $\quad \mathrm{Vcc}=2.3 \mathrm{~V}$-3.6V, Normal Range
- ESD > 2000V per MIL-STD-883, Method 3015; $>200 \mathrm{~V}$ using machine model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Available in SSOP, QSOP, and TSSOP packages

DESCRIPTION:

The octal bus switch has standard 245 pinouts. The CBTLV3245 is designed for asynchronous communication between data buses. When Output Enable ($\overline{\mathrm{OE}})$ is low, the 8-bit bus switch is on and port A is connected to Port B . When $\overline{\mathrm{O}}$ is high, the switch is off and a high impedance exists between Port A and Port B.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to Vcc through a pullup resistor.

APPLICATIONS:

- 3.3V High Speed Bus Switching and Bus Isolation

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

SSOP/ TSSOP/ QSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
Vcc	Supply Voltage Range	-0.5 to 4.6	V
VI	Input Voltage Range	-0.5 to 4.6	V
	Continuous Channel Current	128	mA
IIK	Input Clamp Current, , V/IO <0	-50	mA
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names	Description
$\overline{\mathrm{OE}}$	Output Enable (Active LOW)
Ax	Port A Inputs or Outputs
Bx	Port B Inputs or Outputs

FUNCTION TABLE (1)

Input	Operation
$\mathbf{0 E}$	
L	A Port = B Port
H	Isolation

NOTE:

1. $\mathrm{H}=$ HIGH Voltage Level

L = LOW Voltage Level

OPERATING CHARACTERISTICS, TA $=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage		2.3	3.6	V
VIH	High-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V	1.7	-	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6V	2	-	
VIL	Low-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V	-	0.7	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	-	0.8	
TA	Operating Free-Air Temperature		-40	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. All unused control inputs must be held at Vcc or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Operating Condition: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIK	Control Inputs, Data Inputs	$\mathrm{Vcc}=3 \mathrm{~V}, \mathrm{ll}=-18 \mathrm{~mA}$		-	-	-1.2	V
1	Control Inputs, Data I/O	$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{~V}=\mathrm{Vcc}$ or GND		-	-	± 1	$\mu \mathrm{A}$
Ioz	Data I/O	$\mathrm{Vcc}=3.6 \mathrm{~V}$, Vo $=0$ or 3.6 V , switch disabled		-	-	5	$\mu \mathrm{A}$
IofF		$\mathrm{Vcc}=0, \mathrm{VI}$ or Vo $=0$ to 3.6V		-	-	50	$\mu \mathrm{A}$
ICC		$\mathrm{Vcc}=3.6 \mathrm{~V}$, $\mathrm{lo}=0, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	10	$\mu \mathrm{A}$
$\Delta \mathrm{lcC}{ }^{(2)}$	Control Inputs	Vcc $=3.6 \mathrm{~V}$, One input at 3V, Other inputs at Vcc or GND		-	-	300	$\mu \mathrm{A}$
Cl	Control Inputs	$\mathrm{VI}=3 \mathrm{~V}$ or 0		-	4	-	pF
Clo(ofF)		$\mathrm{Vo}=3 \mathrm{~V}$ or $0, \overline{\mathrm{OE}}=\mathrm{Vcc}$		-	6	-	pF
Ron ${ }^{(3)}$	Max at $\mathrm{Vcc}=2.3 \mathrm{~V}$ Typ at $\mathrm{Vcc}=2.5 \mathrm{~V}$	V I $=0$	$10=64 \mathrm{~mA}$	-	5	8	Ω
			$10=24 \mathrm{~mA}$	-	5	8	
		$\mathrm{V}=1.7 \mathrm{~V}$	$10=15 \mathrm{~mA}$	-	27	40	
	$\mathrm{Vcc}=3 \mathrm{~V}$	$\mathrm{VI}=0$	$10=64 \mathrm{~mA}$	-	5	7	
			$1 \mathrm{C}=24 \mathrm{~mA}$	-	5	7	
		$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$	$\mathrm{l}=15 \mathrm{~mA}$	-	10	15	

NOTES:

1. Typical values are at $3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. The increase in supply current is attributable to each input that is at the specified voltage level rather than Vcc or GND.
3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch.

SWITCHING CHARACTERISTICS

Symbol	Parameter	$\mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		$\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		Unit
		Min.	Max.	Min.	Max.	
tpD ${ }^{(1)}$	Propagation Delay A to B or B to A		0.15		0.25	ns
ten	Output Enable Time $\overline{\mathrm{OE}}$ to A or B	1	4.5	1	4.2	ns
tDIS	Output Disable Time $\overline{\mathrm{OE}}$ to A or B	1	5	1	5	ns

NOTE:

1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$\mathrm{VCC}^{(1)}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\mathrm{Vcc}^{(2)}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	Unit
V LOAD	6	$2 \times \mathrm{Vcc}$	V
V IH	3	Vcc	V
VT	1.5	$\mathrm{Vcc} / 2$	V
VLZ	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

1. $C L=$ Load capacitance: includes jig and probe capacitance.
2. Rt = Termination resistance: should be equal to Zout of the Pulse Generator.
NOTES:
3. Pulse Generator for all pulses: Rate $\leq 10 \mathrm{MHz} ; \mathrm{tF} \leq 2.5 \mathrm{~ns} ; \mathrm{tR} \leq 2.5 \mathrm{~ns}$.
4. Pulse Generator for all pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tF} \leq 2 \mathrm{~ns} ; \mathrm{tR} \leq 2 \mathrm{~ns}$.

SWITCH POSITION

Test	Switch
tPLZ/tPZL	VLOAD
tPHZAPZH	GND
tPD	Open

PROPAGATION DELAY

ENABLE AND DISABLE TIMES

NOTE:

1. Diagram shown for input control Enable-LOW and input Control Disable-HIGH.

ORDERING INFORMATION

for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674
www.idt.com
for Tech Support: logichelp@idt.com (408) 654-6459

