2.5V / 3.3V ECL Differential Receiver/Driver The MC10/100LVEP16 is a world class differential receiver/driver. The device is functionally equivalent to the EL16, EP16 and LVEL16 devices. With output transition times significantly faster than the EL16 and LVEL16, the LVEP16 is ideally suited for interfacing with high frequency and low voltage (2.5 V) sources. Single–ended CLK input operation is limited to a $V_{CC} \geq 3.0~V$ in PECL mode, or $V_{EE} \leq -3.0~V$ in NECL mode. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single–ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a $0.01~\mu F$ capacitor and limit current sourcing or sinking to 0.5~mA. When not used, V_{BB} should be left open. The 100 Series contains temperature compensation. - 240 ps Propagation Delay - Maximum Frequency > 4 GHz Typical - PECL Mode Operating Range: V_{CC} = 2.375 V to 3.8 V with V_{EE} = 0 V - NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -2.375 V to -3.8 V - V_{BB} Output - Open Input Default State - LVDS Input Compatible - Pb-Free Packages are Available # ON Semiconductor® http://onsemi.com #### **MARKING DIAGRAMS*** SOIC-8 D SUFFIX CASE 751 TSSOP-8 DT SUFFIX CASE 948R 1 $\begin{aligned} & H = MC10 & L = Wafer \ Lot \\ & K = MC100 & Y = Year \\ & A = Assembly \ Location & W = Work \ Week \end{aligned}$ *For additional marking information, refer to Application Note AND8002/D. ### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. Figure 1. 8-Lead Pinout (Top View) and Logic Diagram #### **Table 1. PIN DESCRIPTION** | Pin | Function | |---------------------|---------------------| | D*, D ** | ECL Data Inputs | | Q, Q | ECL Data Outputs | | V _{BB} | Ref. Voltage Output | | V _{CC} | Positive Supply | | V _{EE} | Negative Supply | | NC | No Connect | ^{*} Pins will default LOW when left open. #### **Table 2. ATTRIBUTES** | С | haracteristics | Value | | | | | |-----------------------------|---|-----------------------------|--|--|--|--| | Internal Input Pulldown R | esistor | 75 kΩ | | | | | | Internal Input Pullup Resi | stor | 37.5 kΩ | | | | | | ESD Protection | Human Body Model
Machine Model
Charged Device Model | > 4 kV
> 200 V
> 2 kV | | | | | | Moisture Sensitivity, Indef | finite Time Out of Drypack (Note 1) | Level 1 | | | | | | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | | | | | Transistor Count | | 167 Devices | | | | | | Meets or exceeds JEDEC | Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test | | | | | | ^{1.} For additional information, see Application Note AND8003/D. **Table 3. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |----------------------|--|--|--|-------------|----------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 6 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -6 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $V_{I} \leq V_{CC}$
$V_{I} \geq V_{EE}$ | 6
-6 | V
V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA
mA | | I _{BB} | V _{BB} Sink/Source | | | ± 0.5 | mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | θJA | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | SOIC-8
SOIC-8 | 190
130 | °C/W | | θ_{JC} | Thermal Resistance (Junction-to-Case) | Standard Board | SOIC-8 | 41 to 44 | °C/W | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | TSSOP-8
TSSOP-8 | 185
140 | °C/W | | θ JC | Thermal Resistance (Junction-to-Case) | Standard Board | TSSOP-8 | 41 to 44 | °C/W | | T _{sol} | Wave Solder | <2 to 3 sec @ 248°C | | 265 | °C | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. ^{**}Pins will default to V_{CC}/2 when left open. Table 4. 10EP DC CHARACTERISTICS, PECL $V_{CC} = 2.5 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 2) | | | | | -40°C | | | 25°C | | | 85°C | | | |-----------------|--|--------|-------------|-------|------|-------------|------|------|-------------|------|------|------| | Symbol | Characteristic | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 17 | 22 | 27 | 17 | 22 | 27 | 17 | 22 | 28 | mA | | V _{OH} | Output HIGH Voltage (Note 3) | | 1365 | 1490 | 1615 | 1430 | 1555 | 1680 | 1490 | 1615 | 1740 | mV | | V _{OL} | Output LOW Voltage (Note 3) | | 565 | 740 | 865 | 630 | 805 | 930 | 690 | 865 | 990 | mV | | VIHCMR | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Notes 4, 5) | | 1.2 | | 2.5 | 1.2 | | 2.5 | 1.2 | | 2.5 | V | | I _{IH} | Input HIGH Current | | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | D
D | 0.5
-150 | | | 0.5
-150 | | | 0.5
-150 | | | μА | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 2. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.125 V to -1.3 V. - 3. All loading with 50 Ω to V_{CC} 2.0 V. 4. Do not use V_{BB} at V_{CC} < 3.0 V. Single ended input CLK pin operation is limited to V_{CC} \geq 3.0 V in PECL mode. - 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential Table 5. 10EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EF} = 0 V (Note 6) | | | | | -40°C | | | 25°C | | | 85°C | | | |--------------------|--|----|------------|-------|------|-------------|------|------|-------------|------|------|------| | Symbol | Characteristic | N | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 17 | 22 | 27 | 17 | 22 | 27 | 17 | 22 | 28 | mA | | V _{OH} | Output HIGH Voltage (Note 7) | 2 | 165 | 2290 | 2415 | 2230 | 2355 | 2480 | 2290 | 2415 | 2540 | mV | | V _{OL} | Output LOW Voltage (Note 7) | 1: | 365 | 1540 | 1665 | 1430 | 1605 | 1730 | 1490 | 1665 | 1790 | mV | | V _{IH} | Input HIGH Voltage (Single Ended) | 20 | 090 | | 2415 | 2155 | | 2480 | 2215 | | 2540 | mV | | V _{IL} | Input LOW Voltage (Single Ended) | 1: | 365 | | 1690 | 1430 | | 1755 | 1490 | | 1815 | mV | | V_{BB} | Output Voltage Reference (Note 8) | 1 | 790 | 1890 | 1990 | 1855 | 1955 | 2055 | 1915 | 2015 | 2115 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 9) | - | 1.2 | | 3.3 | 1.2 | | 3.3 | 1.2 | | 3.3 | V | | I _{IH} | Input HIGH Current | | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | | | 0.5
150 | | | 0.5
-150 | | | 0.5
-150 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 6. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.925 V to -0.5 V. - 7. All loading with 50 Ω to V_{CC} 2.0 V. - 8. Single ended input CLK pin operation is limited to $V_{CC} \ge 3.0 \ V$ in PECL mode. - 9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential Table 6. 10EP DC CHARACTERISTICS, NECL V_{CC} = 0 V, V_{EE} = -3.8 V to -2.375 V (Note 10) | | | | -40°C | | | 25°C | | | | | | |--------------------|---|-----------------|-------|-------|-----------------|-------|-------|-----------------|-------|-------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 17 | 22 | 27 | 17 | 22 | 27 | 17 | 22 | 28 | mA | | VOH | Output HIGH Voltage (Note 11) | -1135 | -1010 | -885 | -1070 | -945 | -820 | -1010 | -885 | -760 | mV | | V _{OL} | Output LOW Voltage (Note 11) | -1935 | -1760 | -1635 | -1870 | -1695 | -1570 | -1810 | -1635 | -1510 | mV | | V _{IH} | Input HIGH Voltage (Single Ended) | -1210 | | -885 | -1145 | | -820 | -1085 | | -760 | mV | | V _{IL} | Input LOW Voltage (Single Ended) | -1935 | | -1610 | -1870 | | -1545 | -1810 | | -1485 | mV | | V _{BB} | Output Voltage Reference (Note 12) | -1510 | -1410 | -1310 | -1445 | -1345 | -1245 | -1385 | -1285 | -1185 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 13) | V _{EE} | +1.2 | 0.0 | V _{EE} | +1.2 | 0.0 | V _{EE} | +1.2 | 0.0 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current D D | 0.5
-150 | | | 0.5
-150 | | | 0.5
-150 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 10. Input and output parameters vary 1:1 with V_{CC}. - 11. All loading with 50 Ω to V_{CC} 2.0 V. - 12. Single ended input CLK pin operation is limited to $V_{EE} \le -3.0 \text{ V}$ in NECL mode. - $13. V_{IHCMR} \ \text{min varies} \ 1:1 \ \text{with} \ V_{EE}, V_{IHCMR} \ \text{max varies} \ 1:1 \ \text{with} \ V_{CC}. \ \text{The } V_{IHCMR} \ \text{range} \ \text{is referenced to the most positive side of the differential}$ input signal. Table 7. 100EP DC CHARACTERISTICS, PECL V_{CC} = 2.5 V, V_{EE} = 0 V (Note 14) | | | | -40°C | | | 25°C | | | 85°C | | | |--------------------|--|-------------|-------|------|-------------|------|------|-------------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 19 | 24 | 29 | 22 | 28 | 34 | 24 | 30 | 36 | mA | | V _{OH} | Output HIGH Voltage (Note 15) | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | mV | | V _{OL} | Output LOW Voltage (Note 15) | 555 | 730 | 900 | 555 | 730 | 900 | 555 | 730 | 900 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Notes 16, 17) | 1.2 | | 3.3 | 1.2 | | 3.3 | 1.2 | | 3.3 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current D | 0.5
-150 | | | 0.5
-150 | | | 0.5
-150 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 14. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.125 V to -1.3 V. - 15. All loading with 50 Ω to V_{CC} = 2.0 V. 16. Do not use V_{BB} at V_{CC} < 3.0 V. Single ended input CLK pin operation is limited to V_{CC} \geq 3.0 V in PECL mode. - 17. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential Table 8. 100EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 18) | | | | | -40°C | | | 25°C | | | 85°C | | | |--------------------|---|--------|-------------|-------|------|-------------|------|------|-------------|------|------|------| | Symbol | Characteristic | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 19 | 24 | 29 | 22 | 28 | 34 | 24 | 30 | 36 | mA | | V _{OH} | Output HIGH Voltage (Note 19) | | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | mV | | V _{OL} | Output LOW Voltage (Note 19) | | 1355 | 1530 | 1700 | 1355 | 1530 | 1700 | 1355 | 1530 | 1700 | mV | | V _{IH} | Input HIGH Voltage (Single Ended) | | 2135 | | 2420 | 2135 | | 2420 | 2135 | | 2420 | mV | | V _{IL} | Input LOW Voltage (Single Ended) | | 1355 | | 1700 | 1355 | | 1700 | 1355 | | 1700 | mV | | V _{BB} | Output Voltage Reference (Note 20) | | 1775 | 1875 | 1975 | 1775 | 1875 | 1975 | 1775 | 1875 | 1975 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 21) | | 1.2 | | 3.3 | 1.2 | | 3.3 | 1.2 | | 3.3 | V | | I _{IH} | Input HIGH Current | | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | • | D
D | 0.5
-150 | | | 0.5
-150 | | | 0.5
-150 | | | μА | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 18. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.925 V to -0.5 V. - 19. All loading with 50 Ω to V_{CC} 2.0 V. - 20. Single ended input CLK pin operation is limited to $V_{CC} \ge 3.0 \text{ V}$ in PECL mode. - 21. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 9. 100EP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$, $V_{EE} = -3.8 \text{ V}$ to -2.375 V (Note 22) | | | | -40°C | | | 25°C | | | 85°C | | | |--------------------|---|-----------------|-------|-------|-----------------|-------|-------|-----------------|-------|-------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 19 | 24 | 29 | 22 | 28 | 34 | 24 | 30 | 36 | mA | | V _{OH} | Output HIGH Voltage (Note 23) | -1145 | -1020 | -895 | -1145 | -1020 | -895 | -1145 | -1020 | -895 | mV | | V _{OL} | Output LOW Voltage (Note 23) | -1945 | -1770 | -1600 | -1945 | -1770 | -1600 | -1945 | -1770 | -1600 | mV | | V _{IH} | Input HIGH Voltage (Single Ended) | -1165 | | -880 | -1165 | | -880 | -1165 | | -880 | mV | | V _{IL} | Input LOW Voltage (Single Ended) | -1945 | | -1600 | -1945 | | -1600 | -1945 | | -1600 | mV | | V _{BB} | Output Voltage Reference (Note 24) | -1525 | -1425 | -1325 | -1525 | -1425 | -1325 | -1525 | -1425 | -1325 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 25) | V _{EE} | +1.2 | 0.0 | V _{EE} | +1.2 | 0.0 | V _{EE} | +1.2 | 0.0 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current DDD | 0.5
-150 | | | 0.5
-150 | | | 0.5
-150 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 22. Input and output parameters vary 1:1 with V_{CC}. - 23. All loading with 50 Ω to V_{CC} 2.0 V. - 24. Single ended input CLK pin operation is limited to $V_{EE} \le -3.0 \text{ V}$ in NECL mode. - 25. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. **Table 10. AC CHARACTERISTICS** $V_{CC} = 0 \text{ V}$; $V_{EE} = -3.8 \text{ V}$ to -2.375 V or $V_{CC} = 2.375 \text{ V}$ to 3.8 V; $V_{EE} = 0 \text{ V}$ (Note 26) | | | | | -40°C | | | 25°C | | | 85°C | | | |--|---|------|-----|-------|------|-----|------|------|-----|------|------|------| | Symbol | Characteristic | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f _{max} | Maximum Frequency
(See Figure 2. F _{max} /JITTER) | | | > 4 | | | > 4 | | | > 4 | | GHz | | t _{PLH} ,
t _{PHL} | Propagation Delay to
Output Differential | | 150 | 220 | 300 | 170 | 240 | 320 | 190 | 260 | 330 | ps | | t _{SKEW} | Duty Cycle Skew (Note 27) | | | 5.0 | 20 | | 5.0 | 20 | | 5.0 | 20 | ps | | t _{JITTER} | CLOCK Random Jitter (RMS)
(See Figure 2. F _{max} /JITTER) | | | 0.2 | < 1 | | 0.2 | < 1 | | 0.2 | < 1 | ps | | V _{PP} | Input Voltage Swing
(Differential Configuration) | | 150 | 800 | 1200 | 150 | 800 | 1200 | 150 | 800 | 1200 | mV | | t _r | Output Rise/Fall Times
(20% - 80%) | Q, Q | 70 | 120 | 170 | 80 | 130 | 180 | 100 | 150 | 200 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 26. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V. 27. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. Figure 2. F_{max}/Jitter Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.) ## **ORDERING INFORMATION** | Device | Package | Shipping [†] | |------------------|----------------------|-----------------------| | MC10LVEP16D | SOIC-8 | 98 Units / Rail | | MC10LVEP16DR2 | SOIC-8 | 2500 / Tape & Reel | | MC10LVEP16DT | TSSOP-8 | 100 Units / Rail | | MC10LVEP16DTR2 | TSSOP-8 | 2500 / Tape & Reel | | MC100LVEP16D | SOIC-8 | 98 Units / Rail | | MC100LVEP16DG | SOIC-8
(Pb-Free) | 98 Units / Rail | | MC100LVEP16DR2 | SOIC-8 | 2500 / Tape & Reel | | MC100LVEP16DT | TSSOP-8 | 100 Units / Rail | | MC100LVEP16DTG | TSSOP-8
(Pb-Free) | 100 Units / Rail | | MC100LVEP16DTR2 | TSSOP-8 | 2500 / Tape & Reel | | MC100LVEP16DTR2G | TSSOP-8
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. # **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS™ I/O SPICE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AN1642/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices #### **PACKAGE DIMENSIONS** ### SOIC-8 NB CASE 751-07 **ISSUE AE** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. | | MILLIN | IETERS | INC | HES | |-----|--------|--------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.053 | 0.069 | | D | 0.33 | 0.51 | 0.013 | 0.020 | | G | 1.27 | 7 BSC | 0.05 | 0 BSC | | Н | 0.10 | 0.25 | 0.004 | 0.010 | | J | 0.19 | 0.25 | 0.007 | 0.010 | | K | 0.40 | 1.27 | 0.016 | 0.050 | | М | 0 ° | 8 ° | 0 ° | 8 ° | | N | 0.25 | 0.50 | 0.010 | 0.020 | | S | 5.80 | 6.20 | 0.228 | 0.244 | ## **SOLDERING FOOTPRINT*** $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 6:1 ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS #### TSSOP-8 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. - (U.006) FER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W- | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 2.90 | 3.10 | 0.114 | 0.122 | | В | 2.90 | 3.10 | 0.114 | 0.122 | | С | 0.80 | 1.10 | 0.031 | 0.043 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.40 | 0.70 | 0.016 | 0.028 | | G | 0.65 BSC | | 0.026 BSC | | | K | 0.25 | 0.40 | 0.010 | 0.016 | | L | 4.90 BSC | | 0.193 BSC | | | M | 0° | 6 ° | 0° | 6° | ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC). ON Semiconductor and 🕡 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative