
Interfacing the Am29PL160 to the
Motorola ColdfireTM Processor
Application Note
���������

	
���
��
������
���������������
�������
�����
�����
�������
��������
��
�����������
�
���������
����
������������� �!����"����

��
��
���
�������������#������
��
�������
���
���
�������
���
���$
������������
�����
�������������
�%��
������
��������������
��������
�����
�����
���
�
��������
 �!����"

Continuity of Specifications
	
��������
��
������
��
����
�������������������
��
���������
��������������������
����
����"�����
�
�������
���
�������������������
���������
���
������
���������
������
�����������������
���
����
���
�������������
���������%��
��������
����"�� �������
������������
��������
������
�������
$
������%������
���������������
���������������
���������"

Continuity of Ordering Part Numbers
�������� �!������
��������
�����
����&���������������������������������
�'��(�����'�)�("�	
�
����
�
������
�����%������������
�����
��*��������+����,������������������
����
������"

For More Information
+�������
�������
��� �
��������
�� �!�����������
�������
��������
���� ���
�����
����
���������
�
���
����
����
��"
Publication Number 22277 Revision A Amendment 0 Issue Date November 1, 1998

8-8
Interfacing the Am29PL160 to the Motorola
Coldfire® Processor
Application Note
This application note describes a possible interface be-
tween the Motorola Coldfire® processor and the
Am29PL160 page mode flash device. The design uti-
lizes a wait state generator to assert a TA (Transfer Ac-
knowledge) signal to terminate a bus read cycle.

Advantages of Page Mode Read
Operations
The AM29PL160 Page Mode device allows for higher
performance system operation by reducing the flash
random access time from a typical 70 ns to lower than
25 ns for same page reads. By designing a “smart” in-
terface between the processor and Flash system,
same page reads can benefit from the reduced aggre-
gate access times.

The Am29PL160 has an initial access time of 75 ns (at
100 pF loading), and subsequent accesses within the
same page are at 25 ns (a page is defined as a memory
region governed by Flash address bits A3-A19). Thus
the initial read would require 1 or more wait states (de-
pending on the bus frequency), and sequential access
requ ire fewer wa i t s tates (again , depending
on frequency).

Knowing the bus frequency of the processor, the re-
quired number of wait states for initial and sequential
read accesses can be calculated.

This document discusses a 33 MHz bus speed inter-
face (with conservative timings), as bolded in Table 1.

Table 1. Possible Bus Timings

Page Mode Interface Overview
The Page Mode controller (labeled PMC in Figure 1)
consists of a single logic function block which has two
functions: first, to compare incoming addresses gov-
erning Flash read requests, and second, to generate
the appropriate number of wait states depending on the
type of access (whether or not the access leaves the
current page).

Figure 1. Page Mode Controller System Interface

The PMC interfaces between the processor and Flash
device, with address and control signals being watched
by the PMC as inputs. The only asserted output of the
PMC is the TA signal, which indicates the completion of
a read transfer cycle. The MCF5307 processor will hold
the state of the bus until the TA signal is asserted, sig-
naling the end of the read transfer cycle.

Page Mode Controller Operation
The function of the PMC is broken into two parts: first,
it must detect and latch the incoming address pattern in
order to determine if a read from Flash is occurring
within the current page address. Since a page as defined
as any memory address governed by A3 through A19 (A0
through A2 define a specific word within that page), it can
detect a page transition whenever any of the address bits
A3 through A19 change on subsequent read cycles. The
Address Comparator sub-circuit of the PMC (see Figure
2) accomplishes this detection mechanism.

Frequency
(MHz)

Period
(ns)

Ideal Bus
Read Cycle

Timings

Conservative Bus
Read Cycle Timings

(10% margin)

16 62.5 1-0-0-0 1-0-0-0

25 40 2-0-0-0 2-0-0-0

33 30.3 3-0-0-0 3-1-1-1

40 25 3-0-0-0 4-1-1-1

66 15.2 5-2-2-2 6-3-3-3

90 11.1 7-3-3-3 8-3-3-3

TA#

R/W#

OE#

CSx

RST0#

BCLK0

A0 A19

A3 A19

TA

R/W

OE

CS

Reset

CLK

WE#

OE#

CE#

RESET#

PMC
Am29PL160MCF5307
Publication# 22277 Rev: A Amendment/0
Issue Date: November 1998

Figure 2. Page Mode Controller Block Diagram

Depending on whether or not a page transition is de-
tected, the PMC must assert an appropriate number of
wait states. Given the 3-1-1-1 read timings outlined in
Table 1, if the PMC detects a page transition, it must
assert at least 3 wait states in order to meet the 70 ns
initial read access time of the PL160 device. If no tran-
sition was detected, it must assert only 1 wait state.
The Wait State Generator sub-circuit of the PMC (see
Figure 2) performs assertion of wait states.

The small block below the Address Comparator (la-
beled iAWSGen) is responsible for producing an inter-
na l s igna l named iAWS (wh ich s tands fo r
AreWeSure?). This signal is a logical combination of
the OE (Output Enable), RW (Read/Write), and CS
(Chip Select) signals. The iAWS signal is asserted neg-
ative whenever the OE and CS signals are low, and the
RW signal is high. This signal provides an internal en-
abling signal to the other logic functions so that they are

only active when the Flash device is selected for read-
ing.

Page Mode Controller VHDL Description
The entire PMC interface was designed and testing
using VHDL, which provides a specification that is eas-
ily tested, simulated, and synthesized using software
tools. By providing a VHDL representation of this cir-
cuit, it can be easily integrated into existing FPGA con-
trollers or ASICs.

All VHDL code is displayed in fixed font format, with
keywords boldfaced.

Address Comparator Design
The following text shows the VHDL code for the Ad-
dress Comparator block.

-- Address Comparitor for PL interface to Coldfire Processors
-- Copyright AMD 1998

library ieee;
use ieee.std_logic_1164.all;

entity AddressComparitor is
 port(CLK, RESET: in std_logic;
 ADDIN: in std_logic_vector(16 downto 0);
 DIFF: out std_logic);

end AddressComparitor;

architecture Behavioral of AddressComparitor is

Address
Comparator

A3 A19

CLK

RESET

OE

RW

CS

Wait State
Generator

iDIFF

iAWS

TA

iAWSGen
Interfacing the Am29PL160 to the Motorola Coldfire® Processor 8-9

 -- PrevAddress stores the addres incoming on the last
 -- clock event

 signal PrevAddress: std_logic_vector(16 downto 0);

 begin
 ADDCOMP: process(CLK, RESET, ADDIN)

 begin

 if (RESET = ’0’) then
 PrevAddress <= "00000000000000000"; -- clear internal regs
 elsif rising_edge(CLK) then
 if (ADDIN = PrevAddress) then
 DIFF <= ’1’; -- Don’t assert DIFF if addresses match

 else
 DIFF <= ’0’;

 end if;

 PrevAddress <= ADDIN; -- Save current address for next time
 end if;

 end process;

end Behavioral;
-- end code

The code describing the Address Comparator is very
simple. The comparator accepts 3 incoming signals: a
clock, a reset signal, and an incoming address (17
lines). The outgoing (or driven) signal is called DIFF,
which is asserted low whenever the current address
does not match the previous address. The PrevAd-
dress signal is used to force a storage element for this
entity (so the previous address is saved on the rising
edge of each clock).

On each incoming clock, the current address and the
previous address are compared. If they are the same
(meaning that the system is accessing the same page),
then the output signal DIFF is driver high, indicated a
page hit. If the addresses differ in any bit, the DIFF sig-
nal is driven low indicating a page miss.

Note: Since the MCF5307 will hold the state of the bus until
assertion of the TA signal, it is not required to latch both the
current state as well as the previous state of the bus. By only
latching one set of addresses, the synthesized circuit is
saved over 17 flip-flops.

Whenever the RESET signal is asserted low, the state
of the address latch will be cleared to all zeroes. This
will force the first Flash read cycle to be properly con-
strained by the 3 wait state timings.

Wait State Generator Design
The Wait State Generator comprises of a simple state
machine, and state decoding equations. It features a
one-hot encoded design, which provides for a high
speed interface in systems which may have high inter-
connect latencies by minimizing the complexity of the
next-state decoding circuitry.

The bubble chart for the state machine design in shown
in Figure 3. It consists of seven valid states: a waiting
state, which is the default state, 4 transition states (to
apply the wait states), and 2 assertion states where the
TA signal is driven low.
8-10 Interfacing the Am29PL160 to the Motorola Coldfire® Processor

Figure 3. Wait State Generator Bubble Chart

From the waiting state, the Wait State Generator will ei-
ther apply one or three wait states, depending on the
logic level of the DIFF input signal. State transitions
are overridden by the AWS input signal, so that the
state machine will only switch states whenever the
AWS signal is low (this is to prevent the machine from
applying wait states while the page mode device is not
being accessed by the system). The machine will reset
to the waiting state whenever the RESET input is as-

serted low, or whenever the AWS signal is held high.
This assures that the state machine is always in the
waiting state whenever the Flash is accessed on non-
sequential bus cycles (to prevent the state machine
from applying the wrong number of wait states).

The following text show the VHDL representation of the
Wait State Generator.

-- Wait State Generator for PL
interface to Coldfire Processors
-- Copyright AMD 1998

library ieee;
use ieee.std_logic_1164.all;

entity WaitStateGenerator is
 port(CLK, AWS, DIFF, RESET: in

std_logic;
 TA: out std_logic);

end WaitStateGenerator;

architecture Behavioral of Wait-
StateGenerator is

 -- State machine utilizes one-hot
encoding to
 -- minimize interconnect delays

 subtype states is
std_logic_vector(6 downto 0);
 constant AssertTA1: states :=
"0000001";

Waiting
TA

AssertTA2
!TA

WaitState3
TA

WaitState2
TA

WaitState1
TA

Assert TA1
!TA

OneWait
TA

RESET=“0”

AWS = “0”

AWS = “0”

AWS = “0”
AWS = “0”

@ELSE @ELSE

@ELSE

@ELSE

DIFF=“1” AND
AWS=“0”

DIFF=“0” AND
AWS=“0”
Interfacing the Am29PL160 to the Motorola Coldfire® Processor 8-11

 constant AssertTA2: states :=
"0000010";
 constant OneWait: states :=
"0000100";
 constant Waiting: states :=
"0001000";
 constant WaitState1: states :=
"0010000";
 constant WaitState2: states :=
"0100000";
 constant WaitState3: states :=
"1000000";

 signal CurrentState, NextState:
states;

 begin

 -- First, set up SM transition
registers
 STREG: process(CLK)

 begin

 if rising_edge(CLK) then
 CurrentState <= NextState;

 end if;

 end process;

 -- Second, outline state transi-
tions
 STTRANS: process(CurrentState,
AWS, DIFF,RESET)

 begin

 if (RESET = ’0’ or
RESET’Event) then
 NextState <= Waiting;
 TA <= ’1’;

 end if;

 if CurrentState(3) = ’1’ then
-- Waiting

 TA <= ’1’;

 if (DIFF = ’1’ and AWS =
’0’) then
 NextState <= OneWait;

 elsif (DIFF = ’0’ and AWS =
’0’) then
 NextState <= WaitState1;

 else

 NextState <= Waiting;
 end if;

 end if;

 if CurrentState(2) = ’1’ then
-- OneWait

 TA <= ’1’;

 if (AWS = ’0’) then
 NextState <= AssertTA1;

 else
 NextState <= Waiting;

 end if;

 end if;

 if CurrentState(0) = ’1’ then
-- AssertTA1

 TA <= ’0’;

 NextState <= Waiting;

 end if;

 if CurrentState(4) = ’1’ then
-- WaitState1

 TA <= ’1’;

 if (AWS = ’0’) then
 NextState <= WaitState2;

 else
 NextState <= Waiting;

 end if;

 end if;

 if CurrentState(5) = ’1’ then
-- WaitState2

 TA <= ’1’;

 if (AWS = ’0’) then
 NextState <= WaitState3;

 else
 NextState <= Waiting;

 end if;

 end if;

 if CurrentState(6) = ’1’ then
-- WaitState3
8-12 Interfacing the Am29PL160 to the Motorola Coldfire® Processor

 TA <= ’1’;

 if (AWS = ’0’) then
 NextState <= AssertTA2;

 else
 NextState <= Waiting;

 end if;

 end if;

 if CurrentState(1) = ’1’ then
-- AssertTA2

 TA <= ’0’;

 NextState <= Waiting;

 end if;

 end process;

end Behavioral;
-- end code

The Complete Page Mode Controller
All that remains is to instantiate the two main compo-
nents of the Page Mode Controller into a single design
entity. This entity contains a single Wait State Genera-
tor, a single Address Comparator, and a simple logic
function to produce the internal iAWS signal.

The following text shows the VHDL code that repre-
sents the Page Mode Controller.

The VHDL description of the PMC takes a structural
form, merely serving to connect the two components
with internal signals. It also calculates the iAWS signal
used to enable the two components.

-- Page Mode Controller VHDL Code
-- Copyright AMD 1998

library ieee;
use ieee.std_logic_1164.all;

use work.AddressComparitor;
use work.WaitStateGenerator;

entity PageModeController is
 port(pmcCLK, pmcRESET: in
std_logic;
 pmcCS, pmcRW, pmcOE: in
std_logic;
 pmcADDIN: in
std_logic_vector(16 downto 0);
 pmcTA: out std_logic);
end PageModeController;

architecture Structural of PageMo-
deController is

 component AddressComparitor
 port (CLK, RESET: in
std_logic;
 ADDIN: in
std_logic_vector(16 downto 0);
 DIFF: out std_logic);
 end component;

 component WaitStateGenerator

 port (CLK, AWS, DIFF, RESET: in
std_logic;
 TA: out std_logic);
 end component;

 -- Local interconnect signals
 signal iAWS, iDIFF: std_logic;

begin

 -- Instantiate our low level
entities

WSG: WaitStateGenerator port map
(CLK => pmcCLK,

RESET => pmcRESET,

DIFF => iDIFF, AWS => iAWS,

TA => pmcTA);
 AC: AddressComparitor port map (
CLK => pmcCLK, RESET => pmcRESET,

DIFF => iDIFF,

ADDIN => pmcADDIN);

 PMCFUNC: process(pmcOE, pmcRW,
pmcCS, pmcCLK, pmcRESET, pmcADDIN)

 begin
Interfacing the Am29PL160 to the Motorola Coldfire® Processor 8-13

 -- Calc the iAWS signal based
on input control signals

 iAWS <= (pmcOE or pmcCS or
(not pmcRW));

 end process;

end Structural;
-- end code

Simulation of the Page Mode Controller
Simulation of the PMC was performed using the VSS®

tool from Synopsys. The input clock frequency was set

to 33 MHz, and simulated bus cycles are applied to the
PMC to test the TA output signal. The results of the
simulation are shown in Figure 4.

Figure 4. Simulation Results

The simulation results in Figure 4 show four separate
events. The first valid Flash access (a valid flash ac-
cess is described by the conditions CS low, RW high,
OE low, and an address on the address lines) occurs at
T1 (120 ns). The TA signal is then asserted 3 wait
states (or 3 rising clock edges) after event T1. Event
T2 (at time 330 ns) shows another Flash access of the
same page (0x1FBBF). Since this access falls within
the same page, the TA signal is asserted low after one
wait state (or 1 rising clock edge) after event T2. Event
T3 is the same as event T2, only it occurs at time 480
ns.

Event T4 shows the next Flash access, but this time to a dif-
ferent page (0x1FB8F). Since this is a page miss, the TA
signal is asserted after 3 wait states (or 3 rising clock edges).

Of important note is the assertion of the RESET signal
prior to the initial access of the Flash device. It is im-
portant to assert this signal for at least one clock period
prior to the first Flash access, to ensure that all flip-flip
storage elements are cleared to predetermined states
(so that the Address Comparator latches are cleared to
zeroes, and the initial state of the Wait State Generator
is Waiting).

Test Bench Source Code
The following text shows the VHDL source for the test
bench used to generate the simulation in Figure 4.

-- Test Bench for Page Mode Con-
troller
-- Copyright AMD 1998

library ieee, std;
use std.textio.all;
use ieee.std_logic_1164.all;
8-14 Interfacing the Am29PL160 to the Motorola Coldfire® Processor

use work.PageModeController;

entity testbench is
end testbench;

architecture test of testbench is
 -- Create a Page Mode Controller

 component PageModeController
 port(pmcCLK, pmcRESET: in
std_logic;
 pmcCS, pmcRW, pmcOE: in
std_logic;
 pmcADDIN: in
std_logic_vector(16 downto 0);
 pmcTA: out std_logic);
 end component;

 -- Local signals
 signal tCLK, tRESET, tCS, tRW,
tOE: std_logic;
 signal tADDIN:
std_logic_vector(16 downto 0);
 signal tTA: std_logic;

begin

 -- Create instance of low level
entity
 PMC1: PageModeController port map
(pmcCLK => tCLK,

pmcRESET => tRESET,

pmcCS => tCS, pmcOE => tOE,

pmcRW => tRW, pmcTA => tTA,

pmcADDIN => tADDIN);

 -- First, set up our running 33
MHz clock
 process
 begin
 tCLK <= ’0’;
 wait for 0 ns;
 while true loop
 tCLK <= ’1’;
 wait for 15 ns;
 tCLK <= ’0’;
 wait for 15 ns;
 end loop;
 end process;

 -- Assert our test stimulus
 process

 begin
 tRESET <= ’1’; -- Assert
all false
 tADDIN <=
"00000000000000000";
 tOE <= ’1’;
 tCS <= ’1’;
 tRW <= ’1’;
 wait for 30 ns;

 tRESET <= ’0’; -- Assert
Reset for 1 clock
 wait for 30 ns; -- to clear
comparitor

 tRESET <= ’1’; -- Turn
off Reset
 wait for 60 ns;

 -- We can now apply bus stimu-
lus, using this definition:
 -- A valid read cycle occurs
when:
 -- 1) OE is low
 -- 2) RW is high
 -- 3) CE is low
 -- 4) Valid address on bus

 -- On each read, we will wait
for the TA signal to be
 -- asserted

 tCS <= ’0’;
 tOE <= ’0’;
 tRW <= ’1’;

 tADDIN <= "11111101110111111";
 wait until (tTA = ’0’); --
This should be a 3WS read
 wait for 30 ns;

 tCS <= ’1’;
 tOE <= ’1’;
 tRW <= ’1’;

 tADDIN <= "11111101110111111";
 wait for 60 ns; -- read opera-
tion not to flash

 tCS <= ’0’;
 tOE <= ’0’;
 tRW <= ’1’;

 tADDIN <= "11111101110111111";
 wait until (tTA = ’0’); --
read same address - should be 1WS
Interfacing the Am29PL160 to the Motorola Coldfire® Processor 8-15

 wait for 30 ns;

 tCS <= ’1’;
 tOE <= ’1’;
 tRW <= ’0’;
 wait for 60 ns;

 tCS <= ’0’;
 tOE <= ’0’;
 tRW <= ’1’;

 tADDIN <= "11111101110111111";
 wait until (tTA = ’0’); --
read same address - should be 1WS
 wait for 30 ns;

 tCS <= ’1’;
 tOE <= ’1’;
 tRW <= ’0’;
 wait for 60 ns;

 tCS <= ’0’;
 tOE <= ’0’;
 tRW <= ’1’;

 tADDIN <= "11111101110001111";
 wait until (tTA = ’0’); --
read diff address - should be 3WS
 wait for 30 ns;

 wait for 300 ns;

 wait for 1 ns;

 wait;

 end process;

end test;
-- end code

Other Considerations
The VHDL representation of the Page Mode Controller
can be considered an ideal system. System margin, in-
terconnect latency, and internal signal/gate delays are
not considered due to the wide variation in synthesis
techniques. For a more accurate simulation, VHDL
after statements can be added to next state and signal
assignments for a more accurate circuit simulation.
For example, the statement:

iAWS <= (pmcOE or pmcCS or (not pmcRW));

could be replaced by:

iAWS <= (pmcOE or pmcCS or (not pmcRW))
after 2 ns;

This would more accurately simulate a typical gate
delay in a FPGA or ASIC implementation. Appropriate
values can be substituted depending on the implemen-
tation method used by the system designer.
8-16 Interfacing the Am29PL160 to the Motorola Coldfire® Processor

Interfacing the Am29PL160 to the Motorola Coldfire® Processor 8-17

	Interfacing the Am29PL160 to the Motorola Coldfire® Processor
	Application Note
	Advantages of Page Mode Read Operations
	Table 1.� Possible Bus Timings

	Page Mode Interface Overview
	Figure 1.� Page Mode Controller System Interface

	Page Mode Controller Operation
	Figure 2.� Page Mode Controller Block Diagram
	Page Mode Controller VHDL Description
	Address Comparator Design
	Note: Since the MCF5307 will hold the state of the bus until assertion of the TA signal, it is no...
	Wait State Generator Design

	Figure 3.� Wait State Generator Bubble Chart
	The Complete Page Mode Controller
	Simulation of the Page Mode Controller

	Figure 4.� Simulation Results
	Test Bench Source Code
	Other Considerations

	spansion_cover_sheet_novar_appnote.pdf
	Interfacing the Am29PL160 to the Motorola ColdfireTM Processor

