24LCS22A # 2K VESA® E-EDIDTM Serial EEPROM #### **Features** - · Single supply with operation down to 2.5V - Supports Enhanced EDID™ (E-EDID™) 1.3 - Completely implements DDC1/DDC2[™] interface for monitor identification, including recovery to DDC1 - 2Kbit Serial EEPROM Low power CMOS technology: - 1 mA typical active current - 10 µA standby current typical at 5.5V - 2-wire serial interface bus, I²C[™] compatible - 100 kHz (2.5V) and 400 kHz (5V) compatibility - Self timed write cycle (including auto-erase) - · Hardware write-protect pin - · Page-write buffer for up to eight bytes - 1,000,000 erase write cycles guaranteed - · Data retention > 200 years - ESD protection > 4000V - · 8-pin DIP and SOIC packages - · Available temperature ranges: - Industrial (I) -40°C to +85°C ## **Description** The Microchip Technology Inc. 24LCS22A is a 256 x 8bit dual-mode Electrically Erasable PROM (EEPROM). This device is designed for use in applications requiring storage and serial transmission of configuration and control information. Two modes of operation have been implemented: Transmit-Only Mode (1Kbit) and Bidirectional Mode (2Kbit). Upon power-up, the device will be in the Transmit-Only Mode, sending a serial bit stream of the memory array from 00h to 7Fh, clocked by the VCLK pin. A valid high to low transition on the SCL pin will cause the device to enter the transition mode, and look for a valid control byte on the I²C bus. If it detects a valid control byte from the master, it will switch into Bi-Directional Mode, with byte selectable read/write capability of the entire 2K memory array using SCL. If no control byte is received, the device will revert to the Transmit-Only Mode after it receives 128 consecutive VCLK pulses while the SCL pin is idle. The 24LCS22A is available in standard 8-pin DIP and SOIC packages. The 24LCS22A features a flexible Write-Protect pin which is enabled by writing to address 7Fh (usually the checksum in VESA® applications. # **Package Types** ### **Block Diagram** # 1.0 ELECTRICAL CHARACTERISTICS # **Absolute Maximum Ratings†** | Vcc | 7.0V | |---|-------------------| | All inputs and outputs w.r.t. Vss | 0.6V to Vcc +1.0V | | Storage temperature | 65°C to +150°C | | Ambient temp. with power applied | 65°C to +125°C | | Soldering temperature of leads (10 seconds) | +240°C | | ESD protection on all pins | ≥4 kV | **†Notice:** Stresses above those listed under "Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. ## 1.1 DC Characteristics | DS Cha | racteristics | | Vcc = +2.5V to 5.5V
Industrial (I): TAMB = -40°C to +85°C | | | | |---------------|--------------|--------------------------------------|--|-----------|----------|--| | Param.
No. | Sym | Characteristic | Min. | Max. | Units | Test Conditions | | SCL and | d SDA pins: | | | | | | | D1 | VIH | High level input voltage | 0.7 Vcc | _ | V | | | D2 | VIL | Low level input voltage | _ | 0.3 Vcc | V | | | Input le | vels on VCL | K pin: | | | | | | D3 | VIH | High level input voltage | 2.0 | _ | V | Vcc ≥ 2.7V (Note) | | D4 | VIL | Low level input voltage | _ | 0.2 Vcc | V | Vcc ≤ 2.7V (Note) | | D5 | VHYS | Hysteresis of Schmitt trigger Inputs | .05 Vcc | | V | (Note) | | D6 | Vol1 | Low level output voltage | _ | 0.4 | V | IOL = 3 mA, VCC = 2.5V (Note) | | D7 | Vol2 | Low level output voltage | _ | 0.6 | V | IOL = 6 mA, VCC = 2.5V | | D8 | lli | Input leakage current | -10 | 10 | μΑ | VIN = 0.1V to VCC | | D9 | ILO | Output leakage current | -10 | 10 | μΑ | Vout = 0.1V to Vcc | | D10 | CIN, COUT | Pin capacitance (all inputs/outputs) | _ | 10 | pF | VCC = 5.0V (Note)
TAMB = 25°C, FCLK = 1 MHz | | Operation | ng current: | | | | | | | D10 | ICC WRITE | Operating current | _ | 3 | mA | Vcc = 5.5V, | | D11 | ICC READ | Operating current | _ | 1 | mA | Vcc = 5.5V, SCL = 400 kHz | | D12 | Iccs | Standby current | _ | 30
100 | μA
μA | Vcc = 3.0V, SDA = SCL = Vcc
Vcc = 5.5V, SDA = SCL = Vcc
Vclk = Vss | **Note:** This parameter is periodically sampled and not 100% tested. # 1.2 AC Characteristics | AC Chara | acteristics | | Vcc = +2.5V to
Industrial (I): | | s = -40°C to | +85°C | |---------------|-------------|--|-----------------------------------|--------------|--------------|--| | Param.
No. | Sym | Parameter | Min | Max | Units | Conditions | | 1 | FCLK | Clock frequency | _
_ | 100
400 | kHz | 2.5V ≤ Vcc ≤ 5.5V
4.5V ≤ Vcc ≤ 5.5V | | 2 | THIGH | Clock high time | 4000
600 | _ | ns | 2.5V ≤ Vcc ≤ 5.5V
4.5V ≤ Vcc ≤ 5.5V | | 3 | TLOW | Clock low time | 4700
1300 | | ns | 2.5V ≤ VCC ≤ 5.5V
4.5V ≤ VCC ≤ 5.5V | | 4 | TR | SDA and SCL rise time | | 1000
300 | ns | 2.5V ≤ VCC ≤ 5.5V (Note 1)
4.5V ≤ VCC ≤ 5.5V (Note 1) | | 5 | TF | SDA and SCL fall time | | 300
300 | ns | (Note 1) | | 6 | THD:STA | START condition hold time | 4000
600 | 1 1 | ns | 2.5V ≤ Vcc ≤ 5.5V
4.5V ≤ Vcc ≤ 5.5V | | 7 | Tsu:sta | START condition setup time | 4700
600 | 1 1 | ns | 2.5V ≤ VCC ≤ 5.5V
4.5V ≤ VCC ≤ 5.5V | | 8 | THD:DAT | Data input hold time | 0 | | ns | (Note 2) | | 9 | TSU:DAT | Data input setup time | 250
100 | 1 1 | ns | 2.5V ≤ VCC ≤ 5.5V
4.5V ≤ VCC ≤ 5.5V | | 10 | Tsu:sto | STOP condition setup time | 4000
600 | 1 1 | ns | 2.5V ≤ VCC ≤ 5.5V
4.5V ≤ VCC ≤ 5.5V | | 11 | TAA | Output valid from clock (Note 2) | _ | 3500
900 | ns | 2.5V ≤ Vcc ≤ 5.5V
4.5V ≤ Vcc ≤ 5.5V | | 12 | TBUF | Bus free time: Time the bus must be free before a new transmission can start | 4700
1300 | _
_ | ns | 2.5V ≤ Vcc ≤ 5.5V
4.5V ≤ Vcc ≤ 5.5V | | 13 | TOF | Output fall time from VIH minimum to VIL maximum | —
20+0.1Св | 250
250 | ns | 2.5V ≤ Vcc ≤ 5.5V (Note 1)
4.5V ≤ Vcc ≤ 5.5V (Note 1) | | 14 | TSP | Input filter spike suppression (SDA and SCL pins) | _ | 50
50 | ns | (Notes 1 and 3) | | 15 | Twr | Write cycle time (byte or page) | | 10
10 | ms | | | 16 | TVAA | Output valid from VCLK | _ | 2000
1000 | ns | | | 17 | Tvhigh | VCLK high time | 4000
600 | | ns | | | 18 | TvLow | VCLK low time | 4700
1300 | | ns | | | 19 | Tvhst | VCLK setup time | 0 | | ns | | | 20 | TSPVL | VCLK hold time | 4000
600 | | ns | | | 21 | TVHZ | Mode transition time | | 1000
500 | ns | | | 22 | TVPU | Transmit-Only power up time | 0 | | ns | | | 23 | TSPV | Input filter spike suppression (VCLK pin) | _
_ | 100
100 | ns | | | 24 | _ | Endurance | 1M | | cycles | 25°C, Vcc = 5.0V, Block Mode (Note 4) | **Note** 1: Not 100% tested. CB = total capacitance of one bus line in pF. ^{2:} As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions. **^{3:}** The combined TSP and VHYS specifications are due to Schmitt trigger inputs which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation. **^{4:}** This parameter is not tested but established by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on Microchip's website. ## 2.0 FUNCTIONAL DESCRIPTION The 24LCS22A is designed to comply to the DDC Standard proposed by VESA (Figure 3-3) with the exception that it is not Access.bus capable. It operates in two modes, the Transmit-Only Mode (1Kbit) and the Bidirectional Mode (2Kbit). There is a separate 2-wire protocol to support each mode, each having a separate clock input but sharing a common data line (SDA). The device enters the Transmit-Only Mode upon power-up. In this mode, the device transmits data bits on the SDA pin in response to a clock signal on the VCLK pin. The device will remain in this mode until a valid high to low transition is placed on the SCL input. When a valid transition on SCL is recognized, the device will switch into the Bi-directional Mode and look for its control byte to be sent by the master. If it detects its control byte, it will stay in the Bi-directional Mode. Otherwise, it will revert to the Transmit-Only Mode after it sees 128 VCLK pulses. # 2.1 Transmit-Only Mode The device will power up in the Transmit-Only Mode at address 00H. This mode supports a unidirectional 2-wire protocol for continuous transmission of the first 1Kbit of the memory array. This device requires that it be initialized prior to valid data being sent in the Transmit-Only Mode (Section 2.2). In this mode, data is transmitted on the SDA pin in 8-bit bytes, with each byte followed by a ninth, null bit (Figure 2-1). The clock source for the Transmit-Only Mode is provided on the VCLK pin, and a data bit is output on the rising edge on this pin. The eight bits in each byte are transmitted most significant bit first. Each byte within the memory array will be output in sequence. After address 7Fh in the memory array is transmitted, the internal address pointers will wrap around to the first memory location (00h) and continue. The Bi-directional Mode Clock (SCL) pin must be held high for the device to remain in the Transmit-Only Mode. ### 2.2 Initialization Procedure After Vcc has stabilized, the device will be in the Transmit-Only Mode. Nine clock cycles on the VCLK pin must be given to the device for it to perform internal sychronization. During this period, the SDA pin will be in a high impedance state. On the rising edge of the tenth clock cycle, the device will output the first valid data bit which will be the most significant bit in address 00h. (Figure 2-2). FIGURE 2-1: TRANSMIT-ONLY MODE FIGURE 2-2: DEVICE INITIALIZATION ### 3.0 BI-DIRECTIONAL MODE Before the 24LCS22A can be switched into the Bidirectional Mode (Figure 3-1), it must enter the transition mode, which is done by applying a valid high to low transition on the Bi-directional Mode Clock (SCL). As soon it enters the transition mode, it looks for a control byte 1010 000X on the I²CTM bus, and starts to count pulses on VCLK. Any high to low transition on the SCL line will reset the count. If it sees a pulse count of 128 on VCLK while the SCL line is idle, it will revert back to the Transmit-Only Mode, and transmit its contents starting with the most significant bit in address 00h. However, if it detects the control byte on the I²C bus, (Figure 3-2) it will switch to the Bi-directional Mode. Once the device has made the transition to the Bidirectional mode, the only way to switch the device back to the Transmit-Only Mode is to remove power from the device. The mode transition process is shown in detail in Figure 3-3. Once the device has switched into the Bi-directional Mode, the VCLK input is disregarded, with the exception that a logic high level is required to enable write capability. In Bi-Directional mode the user has access to the entire 2K array, whereas in the Transmit-Only mode, the user can only access the first 1K. This mode supports a two-wire Bi-directional data transmission protocol (I²CTM). In this protocol, a device that sends data on the bus is defined to be the transmitter, and a device that receives data from the bus is defined to be the receiver. The bus must be controlled by a master device that generates the Bi-directional Mode Clock (SCL), controls access to the bus and generates the START and STOP conditions, while the 24LCS22A acts as the slave. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated. In the Bi-directional mode, the 24LCS22A only responds to commands for device 1010 000X. FIGURE 3-1: MODE TRANSITION WITH RECOVERY TO TRANSMIT-ONLY MODE FIGURE 3-2: SUCCESSFUL MODE TRANSITION TO BI-DIRECTIONAL MODE 2: The dash box and text "The 24LCS21A and... inside dash box." are added by Microchip Technology, Inc. FIGURE 3-3: **DISPLAY OPERATION PER DDC STANDARD PROPOSED BY VESA** VESA. # 3.1 Bi-directional Mode Bus Characteristics The following bus protocol has been defined: - Data transfer may be initiated only when the bus is not busy - During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as a START or STOP condition Accordingly, the following bus conditions have been defined (Figure 3-4). ### 3.1.1 BUS NOT BUSY (A) Both data and clock lines remain HIGH. # 3.1.2 START DATA TRANSFER (B) A HIGH to LOW transition of the SDA line while the clock (SCL) is HIGH determines a START condition. All commands must be preceded by a START condition. ### 3.1.3 STOP DATA TRANSFER (C) A LOW to HIGH transition of the SDA line while the clock (SCL) is HIGH determines a STOP condition. All operations must be ended with a STOP condition. ### 3.1.4 DATA VALID (D) The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal. The data on the line must be changed during the LOW period of the clock signal. There is one clock pulse per bit of data. Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of the data bytes transferred between the START and STOP conditions is determined by the master device and is theoretically unlimited, although only the last eight will be stored when doing a write operation. When an overwrite does occur it will replace data in a first in first out fashion. Note: Once switched into Bi-directional Mode, the 24LCS22A will remain in that mode until power is removed. Removing power is the only way to reset the 24LCS22A into the Transmit-only mode. #### 3.1.5 ACKNOWLEDGE Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this acknowledge bit. **Note:** The 24LCS22A does not generate any acknowledge bits if an internal programming cycle is in progress. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line HIGH to enable the master to generate the STOP condition. FIGURE 3-4: DATA TRANSFER SEQUENCE ON THE SERIAL BUS FIGURE 3-5: BUS TIMING START/STOP FIGURE 3-6: BUS TIMING DATA # 3.1.6 SLAVE ADDRESS After generating a START condition, the bus master transmits the slave address consisting of a 7-bit device code (1010000) for the 24LCS22A. The eighth bit of slave address determines whether the master device wants to read or write to the 24LCS22A (Figure 3-7). The 24LCS22A monitors the bus for its corresponding slave address continuously. It generates an acknowledge bit if the slave address was true and it is not in a programming mode. | Operation | Slave Address | R/W | |-----------|---------------|-----| | Read | 1010000 | 1 | | Write | 1010000 | 0 | FIGURE 3-7: CONTROL BYTE ALLOCATION # 4.0 WRITE OPERATION ### 4.1 Byte Write Following the start signal from the master, the slave address (four bits), three zero bits (000) and the R/\overline{W} bit which is a logic low are placed onto the bus by the master transmitter. This indicates to the addressed slave receiver that a byte with a word address will follow after it has generated an acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the master is the word address and will be written into the address pointer of the 24LCS22A. After receiving another acknowledge signal from the 24LCS22A the master device will transmit the data word to be written into the addressed memory location. The 24LCS22A acknowledges again and the master generates a stop condition. This initiates the internal write cycle, and during this time the 24LCS22A will not generate acknowledge signals (Figure 4-1). It is required that VCLK be held at a logic high level during command and data transfer in order to program the device. This applies to both byte write and page write operation. Note, however, that the VCLK is ignored during the self-timed program operation. Changing VCLK from high to low during the self-timed program operation will not halt programming of the device. ### 4.2 Page Write The write control byte, word address and the first data byte are transmitted to the 24LCS22A in the same way as in a byte write. But instead of generating a stop condition the master transmits up to eight data bytes to the 24LCS22A which are temporarily stored in the onchip page buffer and will be written into the memory after the master has transmitted a stop condition. After the receipt of each word, the three lower order address pointer bits are internally incremented by one. The higher order five bits of the word address remains constant. If the master should transmit more than eight words prior to generating the stop condition, the address counter will roll over and the previously received data will be overwritten. As with the byte write operation, once the stop condition is received an internal write cycle will begin (Figure 5-2). It is required that VCLK be held at a logic high level during command and data transfer in order to program the device. This applies to both byte write and page write operation. Note, however, that the VCLK is ignored during the self-timed program operation. Changing VCLK from high to low during the self-timed program operation will <u>not</u> halt programming of the device. Note: Page write operations are limited to writing bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or 'page size') and end at addresses that are integer multiples of [page size - 1]. If a page write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page as might be expected. It is therefore necessary for the application software to prevent page write operations that would attempt to cross a page bound- # FIGURE 4-1: BYTE WRITE # FIGURE 4-2: VCLK WRITE ENABLE TIMING # 5.0 ACKNOWLEDGE POLLING Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the stop condition for a write command has been issued from the master, the device initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the master sending a start condition followed by the control byte for a write command (R/W = 0). If the device is still busy with the write cycle, then no ACK will be returned. If the cycle is complete, then the device will return the ACK and the master can then proceed with the next read or write command. See Figure 5-1 for the flow diagram. FIGURE 5-1: ACKNOWLEDGE POLLING FLOW # 6.0 WRITE PROTECTION When using the 24LCS22A in the Bi-directional Mode, the VCLK pin can be used as a write protect control pin. Setting VCLK high allows normal write operations, while setting VCLK low prevents writing to any location in the array. Connecting the VCLK pin to Vss would allow the 24LCS22A to operate as a serial ROM, although this configuration would prevent using the device in the Transmit-Only Mode. Additionally, Pin three performs a flexible write protect function. The 24LCS22A contains a write-protection control fuse whose factory default state is cleared. Writing any data to address 7Fh (normally the checksum in \overline{DDC} applications) sets the fuse which enables the \overline{WP} pin. Until this fuse is set, the 24LCS22A is always write enabled (if VCLK = 1). After the fuse is set, the write capability of the 24LCS22A is determined by both VCLK and \overline{WP} pins (Table 6-1). TABLE 6-1: WRITE PROTECT TRUTH TABLE | VCLK | WP | Address
7Fh Written | Mode
for
00h - 7Fh | |------|--------|------------------------|--------------------------| | 0 | Х | Х | Read Only | | 1 | Х | No | R/W | | 1 | 1/open | Х | R/W | | 1 | 0 | Yes | Read Only | ## 7.0 READ OPERATION Read operations are initiated in the same \underline{w} ay as write operations with the exception that the R/W bit of the slave address is set to one. There are three basic types of read operations: current address read, random read and sequential read. #### 7.1 Current Address Read The 24LCS22A contains an address counter that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous access (either a read or write operation) was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the slave address with R/W bit set to one, the 24LCS22A issues an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer but does generate a stop condition and the 24LCS22A discontinues transmission (Figure 7-1). FIGURE 7-1: CURRENT ADDRESS READ #### 7.2 Random Read Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, first the word address must be set. This is done by sending the word address to the 24LCS22A as part of a write operation. After the word address is sent, the master generates a start condition following the acknowledge. This terminates the write operation, but not before the internal address pointer is set. Then the master issues the control byte again but with the R/W bit set to a one. The 24LCS22A will then issue an acknowledge and transmits the 8-bit data word. The master will not acknowledge the transfer but does generate a stop condition and the 24LCS22A discontinues transmission (Figure 7-2). FIGURE 7-2: RANDOM READ FIGURE 7-3: SEQUENTIAL READ # 7.3 Sequential Read Sequential reads are initiated in the same way as a random read except that after the 24LCS22A transmits the first data byte, the master issues an acknowledge as opposed to a stop condition in a random read. This directs the 24LCS22A to transmit the next sequentially addressed 8-bit word (Figure 7-3). To provide sequential reads the 24LCS22A contains an internal address pointer which is incremented by one at the completion of each operation. This address pointer allows the entire memory contents to be serially read during one operation. ## 7.4 Noise Protection The 24LCS22A employs a VCC threshold detector circuit which disables the internal erase/write logic if the VCC is below 1.5 volts at nominal conditions. The SDA, SCL and VCLK inputs have Schmitt trigger and filter circuits which suppress noise spikes to assure proper device operation even on a noisy bus. # 8.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 8-1. **TABLE 8-1: PIN FUNCTION TABLE** | Name | Function | |------|------------------------------------| | WP | Write Protect (active low) | | Vss | Ground | | SDA | Serial Address/Data I/O | | SCL | Serial Clock (Bi-directional Mode) | | VCLK | Serial Clock (Transmit-Only Mode) | | Vcc | +2.5V to 5.5V Power Supply | | NC | No Internal Connection | # 8.1 Write Protect (WP) This pin is used for flexible write protection of the 24LCS22A. When memory location 7Fh is written with any data, this pin is enabled and determines the write capability of the 24LCS22A (Table 6-1). The $\overline{\text{WP}}$ pin has an internal pull up resistor which will allow write capability (assuming VCLK = 1) at all times if this pin is floated. # 8.2 Serial Address/Data Input/Output (SDA) This pin is used to transfer addresses and data into and out of the device, when the device is in the Bi-directional Mode. In the Transmit-Only Mode, which only allows data to be read from the device, data is also transferred on the SDA pin. This pin is an open drain terminal, therefore the SDA bus requires a pullup resistor to VCC (typical 10 k Ω for 100 kHz, 1 k Ω for 400 kHz). For normal data transfer in the Bi-directional Mode, SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the START and STOP conditions. # 8.3 Serial Clock (SCL) This pin is the clock input for the Bi-directional Mode, and is used to synchronize data transfer to and from the device. It is also used as the signaling input to switch the device from the Transmit-Only Mode to the Bi-directional Mode. It must remain high for the chip to continue operation in the Transmit-Only Mode. # 8.4 Serial Clock (VCLK) This pin is the clock input for the Transmit-Only Mode (DDC1). In the Transmit-Only Mode, each bit is clocked out on the rising edge of this signal. In the Bi-directional Mode, a high logic level is required on this pin to enable write capability. # 9.0 PACKAGING INFORMATION # 9.1 Package Marking Information 8-Lead PDIP (300 mil) Example: 24LCS22A I/PNNN \$\infty\$0145 8-Lead SOIC (150 mil) Example: Legend: XX...X Customer specific information* YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') NNN Alphanumeric traceability code **Note**: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information. * Standard marking consists of Microchip part number, year code, week code, traceability code (facility code, mask rev#, and assembly code). # 8-Lead Plastic Dual In-line (P) – 300 mil (PDIP) | | Units | | INCHES* | | N | IILLIMETERS | 3 | |----------------------------|--------|------|---------|------|------|-------------|-------| | Dimension | Limits | MIN | NOM | MAX | MIN | NOM | MAX | | Number of Pins | n | | 8 | | | 8 | | | Pitch | р | | .100 | | | 2.54 | | | Top to Seating Plane | Α | .140 | .155 | .170 | 3.56 | 3.94 | 4.32 | | Molded Package Thickness | A2 | .115 | .130 | .145 | 2.92 | 3.30 | 3.68 | | Base to Seating Plane | A1 | .015 | | | 0.38 | | | | Shoulder to Shoulder Width | Е | .300 | .313 | .325 | 7.62 | 7.94 | 8.26 | | Molded Package Width | E1 | .240 | .250 | .260 | 6.10 | 6.35 | 6.60 | | Overall Length | D | .360 | .373 | .385 | 9.14 | 9.46 | 9.78 | | Tip to Seating Plane | L | .125 | .130 | .135 | 3.18 | 3.30 | 3.43 | | Lead Thickness | С | .008 | .012 | .015 | 0.20 | 0.29 | 0.38 | | Upper Lead Width | B1 | .045 | .058 | .070 | 1.14 | 1.46 | 1.78 | | Lower Lead Width | В | .014 | .018 | .022 | 0.36 | 0.46 | 0.56 | | Overall Row Spacing § | eВ | .310 | .370 | .430 | 7.87 | 9.40 | 10.92 | | Mold Draft Angle Top | α | 5 | 10 | 15 | 5 | 10 | 15 | | Mold Draft Angle Bottom | β | 5 | 10 | 15 | 5 | 10 | 15 | Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-018 ^{*} Controlling Parameter § Significant Characteristic # 8-Lead Plastic Small Outline (SN) - Narrow, 150 mil (SOIC) | | | INCHES* | | N | IILLIMETERS | } | | |--------------------------|--------|---------|------|------|-------------|------|------| | Dimension | Limits | MIN | NOM | MAX | MIN | NOM | MAX | | Number of Pins | n | | 8 | | | 8 | | | Pitch | р | | .050 | | | 1.27 | | | Overall Height | Α | .053 | .061 | .069 | 1.35 | 1.55 | 1.75 | | Molded Package Thickness | A2 | .052 | .056 | .061 | 1.32 | 1.42 | 1.55 | | Standoff § | A1 | .004 | .007 | .010 | 0.10 | 0.18 | 0.25 | | Overall Width | Е | .228 | .237 | .244 | 5.79 | 6.02 | 6.20 | | Molded Package Width | E1 | .146 | .154 | .157 | 3.71 | 3.91 | 3.99 | | Overall Length | D | .189 | .193 | .197 | 4.80 | 4.90 | 5.00 | | Chamfer Distance | h | .010 | .015 | .020 | 0.25 | 0.38 | 0.51 | | Foot Length | L | .019 | .025 | .030 | 0.48 | 0.62 | 0.76 | | Foot Angle | f | 0 | 4 | 8 | 0 | 4 | 8 | | Lead Thickness | С | .008 | .009 | .010 | 0.20 | 0.23 | 0.25 | | Lead Width | В | .013 | .017 | .020 | 0.33 | 0.42 | 0.51 | | Mold Draft Angle Top | α | 0 | 12 | 15 | 0 | 12 | 15 | | Mold Draft Angle Bottom | β | 0 | 12 | 15 | 0 | 12 | 15 | Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-012 Drawing No. C04-057 ^{*} Controlling Parameter § Significant Characteristic # **ON-LINE SUPPORT** Microchip provides on-line support on the Microchip World Wide Web (WWW) site. The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site. #### Connecting to the Microchip Internet Web Site The Microchip web site is available by using your favorite Internet browser to attach to: #### www.microchip.com The file transfer site is available by using an FTP service to connect to: #### ftp://ftp.microchip.com The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is: - · Latest Microchip Press Releases - Technical Support Section with Frequently Asked Questions - · Design Tips - · Device Errata - Job Postings - · Microchip Consultant Program Member Listing - Links to other useful web sites related to Microchip Products - Conferences for products, Development Systems, technical information and more - · Listing of seminars and events #### **Systems Information and Upgrade Hot Line** The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits. The Hot Line Numbers are: 1-800-755-2345 for U.S. and most of Canada, and 1-480-792-7302 for the rest of the world. 013001 # **READER RESPONSE** It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this Data Sheet. | IO:
RE: | reonmour abhousens manager | Total Pages Sent | |------------|---|---| | Fror | | | | | oplication (optional): | | | Wou | ould you like a reply?YN | | | Dev | evice: 24LCS22A Literature Numb | er: DS21682A | | Que | uestions: | | | 1. | What are the best features of this document? | | | | | | | 2. | How does this document meet your hardware and | I software development needs? | | | | | | 3. | Do you find the organization of this data sheet ear | sy to follow? If not, why? | | 4. | What additions to the data sheet do you think wou | uld enhance the structure and subject? | | | | | | 5. | What deletions from the data sheet could be mad | e without affecting the overall usefulness? | | | | | | 6. | Is there any incorrect or misleading information (v | /hat and where)? | | | | | | 7. | How would you improve this document? | | | | | | | 8. | How would you improve our software, systems, a | nd silicon products? | | | | | # PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. **Examples: Device Package** Temperature 24LCS22A-I/P: Industrial temperature, PDIP Range package. 24LCS22A-I/SN: Industrial temperature, SOIC b) package. 24LCS22AT-I/SN:Tape and Reel, Industrial Device: 24LCS22A: 2K VESA E-EDID Serial EEPROM temperature, SOIC package. 24LCS22AT: 2K VESA E-EDID Serial EEPROM (Tape and Reel) Temperature Range: = -40°C to +85°C Package: = Plastic DIP (300 mil Body), 8-Lead SN = Plastic SOIC (150 mil Body), 8-Lead # **Sales and Support** #### **Data Sheets** Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following: - 1. Your local Microchip sales office - 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277 - 3. The Microchip Worldwide Site (www.microchip.com) Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. #### **New Customer Notification System** Register on our web site (www.microchip.com/cn) to receive the most current information on our products. # **24LCS22A** NOTES: Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. #### **Trademarks** The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microID, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2001, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELO® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified. # WORLDWIDE SALES AND SERVICE #### **AMERICAS** **Corporate Office** 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com **Rocky Mountain** 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456 Atlanta 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307 **Boston** 2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821 Chicago 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075 **Dallas** 4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924 Dayton Two Prestige Place, Suite 130 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175 Detroit Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo 2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 San Jose Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955 Toronto 6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC Australia Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Chengdu Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599 China - Fuzhou Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Rm. 531, North Building Fujian Foreign Trade Center Hotel 73 Wusi Road Fuzhou 350001, China Tel: 86-591-7557563 Fax: 86-591-7557572 China - Shanghai Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 China - Shenzhen Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062 Japan Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471-6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 **EUROPE** Denmark Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany** Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 **United Kingdom** Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820 10/01/01