The 4201 loop powered isolator generates a second isolated loop from an existing loop. Power is derived from the input signal. No external power supply is required

- Low voltage drop
- High accuracy
- 1 kV isolation
- High noise immunity
- Low cost solution

Options and ordering codes

Description

The 420 loop powered isolator is a $0(4)-20 \mathrm{~mA}$ input, direct current isolator powered from an existing current input loop.
Three output options are available: $4-20 \mathrm{~mA}, 1-5 \mathrm{~V}$ and the 420 V which gives a $0-10 \mathrm{~V}$ output from a $4-20 \mathrm{~mA}$ existing loop input, whilst dropping just 5 V from the input loop. The isolator is typically used to enable two control and instrumentation devices, e.g. PLC and local chart recorder, with non-isolated inputs, to monitor the same transmitter output simultaneously.
Alternatively the isolator can be used to isolate signals from non-isolated transmitters or as a noise reduction device.

Other considerations

The 4201 requires a load on the output to complete the current loop. See the drawing opposite to calculate the voltage drop V_{d}, across the device.

PRICE INFORMATION AND ORDERJNG

Wiring diagram

The voltage drop, V_{d}, across the device at 20 mA input is:

$$
V_{d}=3.2+\left(R_{L} \times 0.02\right)
$$

Dimensions and connections

Specifications

P arameter	Min	Typ	Max	Comments
Supply voltage		Loop power		
Input current	-50mA	0-20mA	$+50 \mathrm{~mA}$	
Full scale volt drop see note		3.2 V	3.5 V	At 20mA input
Output linearity error			$\pm 0.1 \%$	
Temp coefficient			90ppm/ ${ }^{\circ} \mathrm{C}$	
Load resistance error			-200nA/ Ω	$0<R_{L}<600 \Omega$
Time constant (10-90\%)		30 ms		
Operating ambient	$-15^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
Relative humidity	0\%		90\%	
Isolation voltage	1kV			
Surge voltage	2.5 kV for $50 \mu \mathrm{~S}$			Transient of $10 \mathrm{kV} / \mu \mathrm{S}$
Mounting	Standard DIN-rail TS32/ 35			
Notes	Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur Device is protected against reverse polarity connection Accuracy figures based on $0-20 \mathrm{~mA}$ input, 150Ω load resistance, and an ambient temperature of $20^{\circ} \mathrm{C}$ Add volt drop due to load: $0.02 \times$ R e.g. 250Ω load total volt drop $=3.5+(0.02 \times 250)=8.5 \mathrm{~V}$			

