4554 Group
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DESCRIPTION

The 4554 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with main clock selection function, four 8-bit timers (each timer has one or two reload register), interrupts, and LCD control circuit.
The various microcomputers in the 4554 Group include variations of the built-in memory size as shown in the table below.

FEATURES

- Minimum instruction execution time \qquad $0.5 \mu \mathrm{~s}$
(at 6 MHz oscillation frequency, in high-speed through-mode)
- Supply voltage

Mask ROM version 2.0 to 5.5 V

One Time PROM version 2.5 to 5.5 V
(It depends on oscillation frequency and operation mode)

- Timers

Timer 1 8-bit timer with a reload register
Timer $2 . ~ 8-b i t ~ t i m e r ~ w i t h ~ a ~ r e l o a d ~ r e g i s t e r ~$
Timer 3..................................... 8-bit timer with a reload register
Timer 4 8-bit timer with two reload registers
Timer 5............................. 16-bit timer (fixed dividing frequency)

- Interrupt .. 7 sources
- Key-on wakeup function pins ... 10
- LCD control circuit

Segment output
Common output .4

- Voltage drop detection circuit (Reset) Typ. 1.5 V
- Watchdog timer
- Clock generating circuit Main clock (ceramic resonator/RC oscillation/internal ring oscillator) Sub-clock
(quartz-crystal oscillation)
- LED drive directly enabled (port D)

APPLICATION

Remot control transmitter

Part number	ROM (PROM) size $(\times 10$ bits $)$	RAM size $(\times 4$ bits $)$	Package	ROM type
M34554M8-XXXFP	8192 words	512 words	$64 P 6 N-A$	Mask ROM
M34554MC-XXXFP	12288 words	512 words	64 P6N-A	Mask ROM
M34554EDFP (Note)	16384 words	512 words	$64 P 6 N-A$	One Time PROM

Note: Shipped in blank.

PIN CONFIGURATION

Pin configuration (top view) (4554 Group)

PERFORMANCE OVERVIEW

Parameter			Function
Number of basic instructions			136
Minimum instruction execution time			$0.5 \mu \mathrm{~s}$ (at 6 MHz oscillation frequency, in high-speed through mode)
Memory sizes	ROM	M34554M8	8192 words $\times 10$ bits
		M34554MC	12288 words $\times 10$ bits
		M34554ED	16384 words $\times 10$ bits
	RAM		512 words $\times 4$ bits (including LCD display RAM 32 words $\times 4$ bits)
Input/Output ports	D0-D7	I/O	Eight independent I/O ports. Input is examined by skip decision. The output structure can be switched by software. Port D7 is also used as CNTR0 pin.
	D8, D9	Output	Two independent output ports. Ports D8 and D9 are also used as INT0 and INT1, respectively.
	P00-P03	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software.
	P10-P13	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software.
	P20-P23	Input	4-bit input port; Port P20-P23 are also used as SEG31-SEG28 pins.
	P30-P33	Input	4-bit input port; Port P30-P33 are also used as SEG27-SEG24 pins.
	C	Output	1-bit output; Port C is also used as CNTR1 pin.
Timers	Timer 1		8-bit programmable timer with a reload register and has an event counter.
	Timer 2		8-bit programmable timer with a reload register.
	Timer 3		8-bit programmable timer with a reload register and has an event counter.
	Timer 4		8-bit programmable timer with two reload registers.
	Timer 5		16-bit timer, fixed dividing frequency
LCD control circuit	Selective bias value		1/2, 1/3 bias
	Selective duty value		2, 3, 4 duty
	Common output		4
	Segment output		32
	Internal resistor for power supply		$2 r \times 3,2 r \times 2, r \times 3, r \times 2$ (they can be switched by software.)
Interrupt	Sources		7 (two for external, five for timer)
	Nesting		1 level
Subroutine nesting			8 levels
Device structure			CMOS silicon gate
Package			64-pin plastic molded QFP (64P6N)
Operating temperature range			$-20^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$
Supply voltage	Mask ROM version		2 to 5.5 V (It depends on the operation source clock, operation mode and oscillation frequency.)
	One Time PROM version		2.5 to 5.5 V (It depends on the operation source clock, operation mode and oscillation frequency.)
Power dissipation	Active mode		2.8 mA (at room temperature, $\mathrm{VdD}=5 \mathrm{~V}, \mathrm{f}(\mathrm{XIN})=6 \mathrm{MHz}, \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz}, \mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{XIN})$)
	Clock operating mode		$20 \mu \mathrm{~A}$ (at room temperature, $\mathrm{VdD}=5 \mathrm{~V}, \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz})$
	At RAM back-up		$0.1 \mu \mathrm{~A}$ (at room temperature, VDD $=5 \mathrm{~V}$)

PIN DESCRIPTION

Pin	Name	Input/Output	
VDD	Power supply	-	Connected to a plus power supply.
Vss	Ground	-	Connected to a 0 V power supply.
CNVss	CNVss	-	Connect CNVSs to Vss and apply "L" (OV) to CNVSs certainly.
VDCE	Voltage drop detection circuit enable	Input	This pin is used to operate/stop the voltage drop detection circuit. When "H" level is input to this pin, the circuit starts operating. When "L" level is input to this pin, the circuit stops operating.
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the watchdog timer or the voltage drop detection circuit cause the system to be reset, the RESET pin outputs "L" level.
XIN	Main clock input	Input	I/O pins of the main clock generating circuit. When using a ceramic resonator, con- nect it between pins XIN and XouT. A feedback resistor is built-in between them. When using the RC oscillation, connect a resistor and a capacitor to XIN, and leave Xout pin open.
XouT	Main clock output	Output	

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
C	CNTR1	CNTR1	C	P20	SEG31	SEG31	P20
D7	CNTR0	CNTR0	D7	P21	SEG30	SEG30	P21
D8	INT0	INT0	D8	P22	SEG29	SEG29	P22
D9	INT1	INT1	D9	P23	SEG28	SEG28	P23
VLC3	SEG0	SEG0	VLC3	P30	SEG27	SEG27	P30
VLC2	SEG1	SEG1	VLC2	P31	SEG26	SEG26	P31
VLC1	SEG2	SEG2	VLC1	P32	SEG25	SEG25	P32
				P33	SEG24	SEG24	P33

Notes 1: Pins except above have just single function.
2: The output of D8 and D9 can be used even when INT0 and INT1 are selected.
3: The input/output of D7 can be used even when CNTR0 (input) is selected.
4: The input of D7 can be used even when CNTR0 (output) is selected.
5: The port C "H" output function can be used even when CNTR1 (output) is selected.

DEFINITION OF CLOCK AND CYCLE

- Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(XIN)) by the external ceramic resonator
- Clock (f(XIN)) by the external RC oscillation
- Clock (f(XIN)) by the external input
- Clock (f(RING)) of the ring oscillator which is the internal oscillator
- Clock (f(XCIN)) by the external quartz-crystal oscillation

System clock (STCK)
The system clock is the basic clock for controlling this product. The system clock is selected by the clock control register MR shown as the table below.

- Instruction clock (INSTCK)

The instruction clock is the basic clock for controlling CPU. The instruction clock (INSTCK) is a signal derived by dividing the system clock (STCK) by 3 . The one instruction clock cycle generates the one machine cycle.

- Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

Table Selection of system clock

Register MR				System clock	Operation mode
MR3	MR2	MR1	MRo		
0	0	0	0	$f($ STCK $)=f($ XIN $)$ or f(RING)	High-speed through mode
		0 or 1	1	$f($ STCK $)=f($ XCIN $)$	Low-speed through mode
0	1	0	0	$f($ STCK $)=f($ XIN $) / 2$ or $f($ RING $) / 2$	High-speed frequency divided by 2 mode
		0 or 1	1	$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{XCIN}) / 2$	Low-speed frequency divided by 2 mode
1	0	0	0	$f($ STCK $)=f($ XIN $) / 4$ or $f($ RING $) / 4$	High-speed frequency divided by 4 mode
		0 or 1	1	$f($ STCK $)=f($ XCIN $) / 4$	Low-speed frequency divided by 4 mode
1	1	0	0	$f($ STCK $)=f($ XIN $) / 8$ or $f($ RING $) / 8$	High-speed frequency divided by 8 mode
		0 or 1	1	$f($ STCK $)=f($ XCIN $) / 8$	Low-speed frequency divided by 8 mode

Note: The $f($ RING $) / 8$ is selected after system is released from reset.

PORT FUNCTION

Port	Pin	Input Output	Output structure	$\begin{aligned} & \hline 1 / O \\ & \text { unit } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Control } \\ \text { instructions } \end{array}$	Control registers	Remark
Port D	D0-D6, D7/CNTR0	I/O (8)	N-channel open-drain/ CMOS	1	$\begin{aligned} & \text { SD, RD } \\ & \text { SZD } \\ & \text { CLD } \end{aligned}$	FR1, FR2 W6	Output structure selection function (programmable)
	D8/INT0, D9/INT1	Output (2)	N-channel open-drain			$\begin{aligned} & 11, \mathrm{I} 2 \\ & \mathrm{~K} 2 \\ & \hline \end{aligned}$	Key-on wakeup function (programmable)
Port P0	P00-P03	$1 / 0$ (4)	N-channel open-drain/ CMOS	4	$\begin{aligned} & \hline \text { OPOA } \\ & \text { IAPO } \end{aligned}$	$\begin{aligned} & \hline \text { FRO } \\ & \text { PU0 } \\ & \text { K0 } \\ & \hline \end{aligned}$	Built-in programmable pull-up functions and key-on wakeup functions (programmable)
Port P1	P10-P13	$\begin{aligned} & 1 / 0 \\ & (4) \end{aligned}$	N-channel open-drain/ CMOS	4	$\begin{aligned} & \text { OP1A } \\ & \text { IAP1 } \end{aligned}$	$\begin{aligned} & \text { FR0 } \\ & \text { PU1 } \\ & \text { K1 } \end{aligned}$	Built-in programmable pull-up functions and key-on wakeup functions (programmable)
Port P2	SEG31/P20-SEG28/P23	Input (4)		4	IAP2	L3	
Port P3	SEG27/P30-SEG24/P33	Input (4)		4	IAP3	L3	
Port C	C/CNTR1	Output (1)	CMOS	1	$\begin{aligned} & \hline \text { RCP } \\ & \text { SCP } \end{aligned}$	W4	

CONNECTIONS OF UNUSED PINS

Pin	Connection	Usage condition
XIN	Connect to Vss.	Internal oscillator is selected (CMCK and CRCK instructions are not executed.) (Note 1) Sub-clock input is selected for system clock (MR0=1). (Note 2)
Xout	Open.	Internal oscillator is selected (CMCK and CRCK instructions are not executed.) (Note 1) RC oscillator is selected (CRCK instruction is executed) External clock input is selected for main clock (CMCK instruction is executed). (Note 3) Sub-clock input is selected for system clock (MR0=1). (Note 2)
XCIN	Connect to Vss.	Sub-clock is not used.
XCOUT	Open.	Sub-clock is not used. External clock input is selected for sub-clock.
D0-D6	Open.	(Note 4)
	Connect to Vss.	N-channel open-drain is selected for the output structure.
D7/CNTR0	Open.	CNTR0 input is not selected for timer 1 count source.
	Connect to Vss.	N -channel open-drain is selected for the output structure.
D8/INT0	Open.	" 0 " is set to output latch.
	Connect to Vss.	- -
D9/INT1	Open.	" 0 " is set to output latch.
	Connect to Vss.	- -
C/CNTR1	Open.	CNTR1 input is not selected for timer 3 count source.
P00-P03	Open.	The key-on wakeup function is not selected. (Note 4)
	Connect to Vss.	N -channel open-drain is selected for the output structure. (Note 5) The pull-up function is not selected. (Note 4) The key-on wakeup function is not selected. (Note 4)
P10-P13	Open.	The key-on wakeup function is not selected. (Note 4)
	Connect to Vss.	N -channel open-drain is selected for the output structure. (Note 5) The pull-up function is not selected. (Note 4) The key-on wakeup function is not selected. (Note 4)
SEG31/P20-	Open.	-
SEG28/P23	Connect to Vss.	Ports P20-P23 selected.
SEG27/P30-	Open.	-
SEG24/P33	Connect to Vss.	Ports P30-P33 selected.
COM0-COM3	Open.	-
SEGo/VLC3	Open.	SEG0 pin is selected.
SEG1/VLC2	Open.	SEG1 pin is selected.
SEG2/VLC1	Open.	SEG2 pin is selected.
SEG3-SEG23	Open.	——

Notes 1: When the CMCK and CRCK instructions are not executed, the internal oscillation (ring oscillator) is selected for main clock.
2: When sub-clock (XCIN) input is selected ($M R 0=1$) for the system clock by setting " 1 " to bit 1 ($M R 1$) of clock control register MR, main clock is stopped.
3: Select the ceramic resonance by executing the CMCK instruction to use the external clock input for the main clock.
4: Be sure to select the output structure of ports D0-D6 and the pull-up function and key-on wakeup function of $\mathrm{P} 00-\mathrm{P} 03$ and $\mathrm{P} 10-\mathrm{P} 13$ with every one port. Set the corresponding bits of registers for each port.
5: Be sure to select the output structure of ports $\mathrm{P} 00-\mathrm{P} 03$ and $\mathrm{P} 10-\mathrm{P} 13$ with every two ports. If only one of the two pins is used, leave another one open
(Note when connecting to VSs and VDD)

- Connect the unused pins to Vss and VDD using the thickest wire at the shortest distance against noise.

PORT BLOCK DIAGRAMS

Notes 1: ----14--- This symbol represents a parasitic diode on the port.
2: Applied potential to these ports must be VdD or less.
3: When CNTR1 input is selected, output transistor is turned OFF.

Port block diagram (1)

Notes 1: ----1---This symbol represents a parasitic diode on the port. 2: Applied potential to these ports must be VDD or less.

Port block diagram (2)

Notes 1:---->--- This symbol represents a parasitic diode on the port.
2: Applied potential to these ports must be VDD or less.
3: As for details, refer to the description of external interrupt circuit.

Port block diagram (3)

Notes 1: ---->---- This symbol represents a parasitic diode on the port.
2: Applied potential to these ports must be Vdd or less.

Port block diagram (4)

Notes 1: ---14--- This symbol represents a parasitic diode on the port.
2: Applied potential to these ports must be VDD or less.

Port block diagram (5)

Notes 1: ----14---This symbol represents a parasitic diode on the port.
2: Applied potential to these ports must be VDD or less.
3: i represents $0,1$.
4: j represents 0 to 3.

Port block diagram (6)

Port block diagram (7)

Port block diagram (8)

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.
Carry flag CY is a 1-bit flag that is set to " 1 " when there is a carry with the AMC instruction (Figure 1).
It is unchanged with both $A n$ instruction and $A M$ instruction. The value of $A 0$ is stored in carry flag $C Y$ with the RAR instruction (Figure 2).
Carry flag CY can be set to "1" with the SC instruction and cleared to " 0 " with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8 -bit data transfer together with register A.
Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).
Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.
It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).
Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

Fig. 1 AMC instruction execution example

Fig. 2 RAR instruction execution example

Fig. 3 Registers A, B and register E

Fig. 4 TABP p instruction execution example

(5) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.
The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.
Figure 5 shows the stack registers (SKs) structure.
Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1 -stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine. Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Stack pointer (SP) points "7" at reset or returning from RAM back-up mode. It points "0" by executing the first BM instruction, and the contents of program counter is stored in SKo. When the BM instruction is executed after eight stack registers are used $((S P)=7),(S P)=0$ and the contents of SKo is destroyed.

Fig. 5 Stack registers (SKs) structure

Note : Returning to the BM instruction execution address with the RT instruction, and the BM instruction becomes the NOP instruction.

Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.
Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).
Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.
When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

- Note

Register Z of data pointer is undefined after system is released from reset.
Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Fig. 7 Program counter (PC) structure

Fig. 8 Data pointer (DP) structure

Fig. 9 SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34554ED.

Table 1 ROM size and pages

Part number	ROM (PROM) size $(\times 10$ bits $)$	Pages
M34554M8	8192 words	$64(0$ to 63$)$
M34554MC	12288 words	$96(0$ to 95$)$
M34554ED	16384 words	$128(0$ to 127$)$

Note: Data in pages 64 to 127 can be referred with the TABP p instruction after the SBK instruction is executed.
Data in pages 0 to 63 can be referred with the TABP p instruction after the RBK instruction is executed.

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.
Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1 -word instruction (BM). Subroutines extending from page 2 to another page can also be called with the $B M$ instruction when it starts on page 2.
ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP p instruction.

Fig. 10 ROM map of M34554ED

Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the $S B \mathrm{j}, \mathrm{RB} \mathrm{j}$, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from RAM back-up).
RAM includes the area for LCD.
When writing " 1 " to a bit corresponding to displayed segment, the segment is turned on.
Table 2 shows the RAM size. Figure 12 shows the RAM map.

- Note

Register Z of data pointer is undefined after system is released from reset.
Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 2 RAM size

Part number	RAM size
M34554M8	512 words $\times 4$ bits $(2048$ bits)
M34554MC	512 words $\times 4$ bits $(2048$ bits)
M34554ED	512 words $\times 4$ bits $(2048$ bits)

RAM 512 words $\times 4$ bits (2048 bits)

-	Register Z	0									1								
-	Register X	0	1	2	3	\cdots	12	13	14	15	0	1	2	...	11	12	13	14	
	0																		
	1																		
	2																		
	3																		
	4																		
	5																		
	6																		
	7																		
	8															0	8	16	24
	9															1	9	17	25
	10															2	10	18	26
	11															3	11	19	27
	12															4	12	20	28
	13															5	13	21	29
	14															6	14	22	30
	15															7	15	23	31

Note: The numbers in the shaded area indicate the corresponding segment output pin numbers.

Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag $=$ " 1 ")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to " 0 " with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to " 0 ," so that other interrupts are disabled until the El instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.
Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.
Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to " 0 " when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.
Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.
If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT0 pin	Address 0 in page 1
2	External 1 interrupt	Level change of INT1 pin	Address 2 in page 1
3	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
4	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
5	Timer 3 interrupt	Timer 3 underflow	Address 8 in page 1
6	Timer 5 interrupt	Timer 5 underflow	Address A in page 1
7	Timer 4 interrupt	Timer 4 underflow	Address E in page 1

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Interrupt request flag	Skip instruction	Interrupt enable bit
External 0 interrupt	EXF0	SNZ0	V10
External 1 interrupt	EXF1	SNZ1	V11
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
Timer 3 interrupt	T3F	SNZT3	V20
Timer 5 interrupt	T5F	SNZT5	V21
Timer 4 interrupt	T4F	SNZT4	V23

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)

An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).

- Interrupt enable flag (INTE)

INTE flag is cleared to "0" so that interrupts are disabled.

- Interrupt request flag

Only the request flag for the current interrupt source is cleared to "0."

- Data pointer, carry flag, skip flag, registers A and B

The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.
Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the El instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the El instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

Fig. 13 Program example of interrupt processing

- Program counter (PC)	
	Each interrupt address
- Stack register (SK)	
- Interrupt enable flag (INTE)	
................... 0 (Interrupt disabled)
- Interrupt request flag (only the flag for the current interrupt source) \qquad 0	
- Data pointer, carry flag, registers A and B, skip flag	
........ Stored in the interrupt stack register (SDP) automatically	

Fig. 14 Internal state when interrupt occurs

Fig. 15 Interrupt system diagram

(6) Interrupt control registers

- Interrupt control register V1

Interrupt enable bits of external 0, external 1, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V 1 to register A .

- Interrupt control register V2

The timer 3, timer 5, timer 4 interrupt enable bit is assigned to register V 2 . Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V 2 to register A .

Table 6 Interrupt control registers

Interrupt control register V1		at reset : 00002		at power down : 0000	R/W TAV1/TV1A
V13	Timer 2 interrupt enable bit	0	Interrupt disabled (SNZT2 instruction is valid)		
		1	Interrupt enabled (SNZT2 instruction is invalid)		
V12	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)		
		1	Interrupt enabled (SNZT1 instruction is invalid)		
V11	External 1 interrupt enable bit	0	Interrupt disabled (SNZ1 instruction is valid)		
		1	Interrupt enabled (SNZ1 instruction is invalid)		
V10	External 0 interrupt enable bit	0	Interrupt disabled (SNZ0 instruction is valid)		
		1	Interrupt enabled (SNZO instruction is invalid)		

Interrupt control register V2		at reset : 00002		at power down : 00002	R/W TAV2/TV2A
V23	Timer 4 interrupt enable bit	0	Interrupt disabled (SNZT4 instruction is valid)		
		1	Interrupt enabled (SNZT4 instruction is invalid)		
V22	Not used	0	This bit has no function, but read/write is enabled.		
		1			
V21	Timer 5 interrupt enable bit	0	Interrupt disabled (SNZT5 instruction is valid)		
		1	Interrupt enabled (SNZT5 instruction is invalid)		
V20	Timer 3 interrupt enable bit	0	Interrupt disabled (SNZT3 instruction is valid)		
		1	Interrupt enabled (SNZT3 instruction is invalid)		

Note: "R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10-V13, V20, V21, V23), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

- When an interrupt request flag is set after its interrupt is enabled (Note 1)

Notes 1: The address is stacked to the last cycle.
2: This interval of cycles depends on the executed instruction at the time when each interrupt activated condition is satisfied.

Fig. 16 Interrupt sequence

EXTERNAL INTERRUPTS

The 4554 Group has the external 0 interrupt and external 1 interrupt.
An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).
The external interrupt can be controlled with the interrupt control registers I1 and I2.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	D8/INT0	When the next waveform is input to D8/INT0 pin - Falling waveform ("H" \rightarrow "L") - Rising waveform ("L" \rightarrow " H ") - Both rising and falling waveforms	$\begin{aligned} & 111 \\ & 112 \end{aligned}$
External 1 interrupt	D9/INT1	When the next waveform is input to D9/INT1 pin - Falling waveform ("H" \rightarrow "L") - Rising waveform ("L" \rightarrow "H") - Both rising and falling waveforms	$\begin{aligned} & 121 \\ & 122 \end{aligned}$

Notes 1: ----14--- This symbol represents a parasitic diode on the port.
2: I12 (I22) = 0: "L" level detected
I12 (I22) = 1: "H" level detected
3: $112(122)=0$: Falling edge detected
I12 (I22) = 1: Rising edge detected
Fig. 17 External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXFO) is set to " 1 " when a valid waveform is input to D8/INT0 pin.
The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXFO flag can be examined with the skip instruction (SNZO). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXFO flag is cleared to " 0 " when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 0 interrupt activated condition

External 0 interrupt activated condition is satisfied when a valid waveform is input to D8/INT0 pin.
The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.
(1) Set the bit 3 of register 11 to " 1 " for the INT0 pin to be in the input enabled state.
(2) Select the valid waveform with the bits 1 and 2 of register 11 .
(3) Clear the EXFO flag to " 0 " with the SNZO instruction.
(4) Set the NOP instruction for the case when a skip is performed with the SNZO instruction.
(5) Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the D8/INT0 pin, the EXF0 flag is set to " 1 " and the external 0 interrupt occurs.

(2) External 1 interrupt request flag (EXF1)

External 1 interrupt request flag (EXF1) is set to " 1 " when a valid waveform is input to D9/INT1 pin.
The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF1 flag can be examined with the skip instruction (SNZ1). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF1 flag is cleared to " 0 " when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 1 interrupt activated condition

External 1 interrupt activated condition is satisfied when a valid waveform is input to D9/INT1 pin.
The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 1 interrupt is as follows.
(1) Set the bit 3 of register I2 to "1" for the INT1 pin to be in the input enabled state.
(2) Select the valid waveform with the bits 1 and 2 of register I 2 .
(3) Clear the EXF1 flag to "0" with the SNZ1 instruction.
(4) Set the NOP instruction for the case when a skip is performed with the SNZ1 instruction.
(5) Set both the external 1 interrupt enable bit (V11) and the INTE flag to "1."

The external 1 interrupt is now enabled. Now when a valid waveform is input to the D9/INT1 pin, the EXF1 flag is set to "1" and the external 1 interrupt occurs.

(3) External interrupt control registers

- Interrupt control register I1

Register 11 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAl1 instruction can be used to transfer the contents of register 11 to register A.

- Interrupt control register I2

Register 12 controls the valid waveform for the external 1 interrupt. Set the contents of this register through register A with the TI2A instruction. The TAI2 instruction can be used to transfer the contents of register 12 to register A.

Table 8 External interrupt control register

Interrupt control register I1		at reset : 00002		at power down : state retained	R/W TAI1/TI1A
113	INT0 pin input control bit (Note 2)	0	INT0 pin input disabled		
		1	INT0 pin input enabled		
112	Interrupt valid waveform for INTO pin/ return level selection bit (Note 2)	0	Falling waveform/"L" level ("L" level is recognized with the SNZIO instruction)		
		1	Rising waveform/"H" level ("H" level is recognized with the SNZIO instruction)		
111	INT0 pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
110	INT0 pin Timer 1 count start synchronous circuit selection bit	0	Timer 1 count start synchronous circuit not selected		
		1	Timer 1 count start synchronous circuit selected		

Interrupt control register I2		at reset : 00002		at power down : state retained	R/W TAI2/TI2A
123	INT1 pin input control bit (Note 2)	0	INT1 pin input disabled		
		1	INT1 pin input enabled		
122	Interrupt valid waveform for INT1 pin/ return level selection bit (Note 2)	0	Falling waveform/"L" level ("L" level is recognized with the SNZI1 instruction)		
		1	Rising waveform/"H" level ("H" level is recognized with the SNZI1 instruction)		
121	INT1 pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
120	INT1 pin Timer 3 count start synchronous circuit selection bit	0	Timer 3 count start synchronous circuit not selected		
		1	Timer 3 count start synchronous circuit selected		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When the contents of these bits ($\mathrm{I} 12, \mathrm{I} 13, \mathrm{I} 22$ and I 23) are changed, the external interrupt request flag (EXFO, EXF1) may be set.

(4) Notes on External 0 interrupts

(1) Note [1] on bit 3 of register 11

When the input of the INTO pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

- Depending on the input state of the D8/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18(1) and then, change the bit 3 of register 11 .
In addition, execute the SNZO instruction to clear the EXFO flag to " 0 " after executing at least one instruction (refer to Figure 18(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZO instruction (refer to Figure 183).

:	
LA 4	; (XXX02)
TV1A	; The SNZ0 instruction is valid11
LA 8	; (1×××2)
T11A	; Control of INT0 pin input is changed
NOP	.. (2)
SNZO	; The SNZO instruction is executed (EXF0 flag cleared)
NOP	.. (3)
:	
X : these bits are not used here.	

Fig. 18 External 0 interrupt program example-1
(2) Note [2] on bit 3 of register 11

When the bit 3 of register 11 is cleared to " 0 ", the RAM back-up mode is selected and the input of INTO pin is disabled, be careful about the following notes.

- When the key-on wakeup function of INTO pin is not used (register K20 = " 0 "), clear bits 2 and 3 of register 11 before system enters to the RAM back-up mode. (refer to Figure 19(1).

Fig. 19 External 0 interrupt program example-2
(3) Note on bit 2 of register 11

When the interrupt valid waveform of the D8/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

- Depending on the input state of the D8/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register 11 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20(1) and then, change the bit 2 of register 11.
In addition, execute the SNZO instruction to clear the EXFO flag to "0" after executing at least one instruction (refer to Figure 20(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZO instruction (refer to Figure 203).

LA	4	; (XXX02)
TV1A		; The SNZ0 instruction is valid1)
LA	12	
TI1A		; Interrupt valid waveform is changed
NOP	 (2)
SNZ0		; The SNZO instruction is executed (EXF0 flag cleared)
NOP		.. (3)

Fig. 20 External 0 interrupt program example-3

(5) Notes on External 1 interrupts

(1) Note [1] on bit 3 of register 12

When the input of the INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.

- Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to " 0 " (refer to Figure 21(1) and then, change the bit 3 of register I 2.
In addition, execute the SNZ1 instruction to clear the EXF1 flag to " 0 " after executing at least one instruction (refer to Figure 21(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 213).

:	
LA 4	; (X×0×2)
TV1A	; The SNZ1 instruction is valid1)
LA 8	; (1×××2)
TI2A	; Control of INT1 pin input is changed
NOP	.. (2)
SNZ1	; The SNZ1 instruction is executed (EXF1 flag cleared)
NOP	... (3)
:	
\times : these bits are not used here.	

Fig. 21 External 1 interrupt program example-1
(2) Note [2] on bit 3 of register 12

When the bit 3 of register 12 is cleared to " 0 ", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.

- When the key-on wakeup function of INT1 pin is not used (register K22 = "0"), clear bits 2 and 3 of register 12 before system enters to the RAM back-up mode. (refer to Figure 22(1).

Fig. 22 External 1 interrupt program example-2
(3) Note on bit 2 of register I2

When the interrupt valid waveform of the D9/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.

- Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register 12 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 23(1) and then, change the bit 2 of register 12.
In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 23(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 23(3).

:	
LA 4	; (X×0×2)
TV1A	; The SNZ1 instruction is valid (1)
LA 12	
TI2A	; Interrupt valid waveform is changed
NOP	.. (2)
SNZ1	; The SNZ1 instruction is executed (EXF1 flag cleared)
NOP	... (3)
:	
\times : these bits are not used here.	

Fig. 23 External 1 interrupt program example-3

TIMERS

The 4554 Group has the following timers.

- Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to $n+1$), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

- Fixed dividing frequency timer

The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to " 1 " after every n count of a count pulse.

Fig. 24 Auto-reload function
The 4554 Group timer consists of the following circuits.

- Prescaler : 8-bit programmable timer
- Timer 1:8-bit programmable timer
- Timer 2 : 8-bit programmable timer
- Timer 3 : 8-bit programmable timer
- Timer 4 : 8-bit programmable timer
- Timer 5 : 16-bit fixed dividing frequency timer
- Timer LC : 4-bit programmable timer
- Watchdog timer : 16-bit fixed dividing frequency timer
(Timers 1, 2, 3, 4 and 5 have the interrupt function, respectively)

Prescaler and timers 1, 2, 3, 4, 5 and LC can be controlled with the timer control registers PA, W1 to W6. The watchdog timer is a free counter which is not controlled with the control register.
Each function is described below.

Table 9 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	8-bit programmable binary down counter	- Instruction clock (INSTCK)	1 to 256	- Timer 1, 2, 3, 4 and LC count sources	PA
Timer 1	8-bit programmable binary down counter (link to INTO input)	- Instruction clock (INSTCK) - Prescaler output (ORCLK) - Timer 5 underflow (T5UDF) - CNTRO input	1 to 256	- Timer 2 count source - CNTR0 output - Timer 1 interrupt	$\begin{aligned} & \text { W1 } \\ & \text { W2 } \end{aligned}$
Timer 2	8-bit programmable binary down counter	- System clock (STCK) - Prescaler output (ORCLK) - Timer 1 underflow (T1UDF) - PWM output (PWMOUT)	1 to 256	- Timer 3 count source - CNTR0 output - Timer 2 interrupt	W2
Timer 3	8-bit programmable binary down counter (link to INT1 input)	- PWM output (PWMOUT) - Prescaler output (ORCLK) - Timer 2 underflow (T2UDF) - CNTR1 input	1 to 256	- CNTR1 output control - Timer 3 interrupt	W3
Timer 4	8-bit programmable binary down counter (PWM output function)	- XIN input - Prescaler output (ORCLK)	1 to 256	- Timer 2, 3 count source - CNTR1 output - Timer 4 interrupt	W4
Timer 5	16 -bit fixed dividing frequency	- XCIN input	$\begin{aligned} & 8192 \\ & 16384 \\ & 32768 \\ & 65536 \end{aligned}$	- Timer 1, LC count source - Timer 5 interrupt	W5
Timer LC	4-bit programmable binary down counter	- Bit 4 of timer 5 - Prescaler output (ORCLK)	1 to 16	- LCD clock	W6
Watchdog timer	16-bit fixed dividing frequency	- Instruction clock (INSTCK)	65534	- System reset (count twice) - WDF flag decision	

T5UDF: Timer 5 underflow signal (from timer 5) PWMOUT: PWM output signal (from timer 4 output unit)

Data is set automatically from each reload register when timer underflows (auto-reload function)

Notes 1: When CMCK instruction is executed, ceramic resonance is selected When CRCK instruction is executed, RC oscillation is selected. When any instructions are not executed, ring oscillator clock (internal oscillation) is selected.
2. Timer 1 count start synchronous circuit is set by the valid edge of D8/INT0 pin selected by bits 1 (I11) and 2 (I12) of register 11 .
3: Timer 3 count start synchronous circuit is set
by the valid edge of D9/INT1 pin selected by bits 1 (I21) and 2 (I22) of register I2.
4: Count source is stopped by clearing to " 0 ."

Fig. 25 Timer structure (1)

INSTCK : Instruction clock (system clock divided by 3)
ORCLK : Prescaler output (instruction clock divided by 1 to 256)

Data is set automatically from each reload
register when timer underflows
(auto-reload function).

Notes 4: Count source is stopped by clearing to " 0 ."
5: XIN cannot be used as count source when bit 1 (MR1) of register MR is set to " 1 " and $f(X I N)$ oscillation is stopped.
6 : This timer is initialized (initial value = FFFF16) by stop of count This timer is initializ
source (W52 = "0").
7. Flag WDF1 is cleared to " 0 " and the next instruction is skipped when the WRST instruction is executed while flag WDF1 = " 1 ".
The next instruction is not skipped even when the WRST instruction is executed while flag WDF1 = " 0 ".
8: Flag WEF is cleared to " 0 " and watchdog timer reset does not occur when the DWDT instruction and WRST instruction are executed continuously

Fig. 26 Timer structure (2)

Table 10 Timer related registers

Timer control register PA		at reset : 02		at power down : 02	W
PA0	Prescaler control bit	0	Stop (state initialized)		

Timer control register W1		at reset : 00002			at power down : state retained	R/W
W13	Timer 1 count auto-stop circuit selection bit (Note 2)	0		Timer 1 count auto-stop circuit not selected		
			1	Timer 1 count auto-stop circuit selected		
W12	Timer 1 control bit	0		Stop (state retained)		
			1	Operating		
W11	Timer 1 count source selection bits	W11 ${ }^{\text {W }} 10$		Count source		
		0	0	Instruction clock (INSTCK)		
		0	1	Prescaler output (ORCLK)		
W10		1	0	Timer 5 underflow signal (T5UDF)		
		1	1	CNTR0 input		

Timer control register W2		at reset : 00002			at power down : state retained	R/W TAW2/TW2A
W23	CNTR0 output control bit	0		Timer 1 underflow signal divided by 2 output		
		1	1	Timer 2 underflow signal divided by 2 output		
W22	Timer 2 control bit	0		Stop (state retained)		
		1	1	Operating		
W21	Timer 2 count source selection bits	W21	W20		Count source	
		0	0	System clock		
		0	1	Prescaler ou	RCLK)	
W20		1	0	Timer 1 underflow signal (T1UDF)		
		1	1	PWM signal (PWMOUT)		

Timer control register W3		at reset : 00002			at power down : state retained	R/W TAW3/TW3A
W33	Timer 3 count auto-stop circuit selection bit (Note 3)	0		Timer 3 count auto-stop circuit not selected		
				Timer 3 count auto-stop circuit selected		
W32	Timer 3 control bit	0		Stop (state retained)		
			1	Operating		
W31	Timer 3 count source selection bits (Note 4)	W31			Count source	
		0	0	PWM signal	UT)	
		0	1	Prescaler ou	RCLK)	
W30		1	0	Timer 2 underflow signal (T2UDF)		
		1	1	CNTR1 input		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: This function is valid only when the timer 1 count start synchronous circuit is selected ($110=$ " 1 ").
3 : This function is valid only when the timer 3 count start synchronous circuit is selected (I20="1").
4: Port C output is invalid when CNTR1 input is selected for the timer 3 count source.

Timer control register W4		at reset : 00002		R/W
W43	CNTR1 output control bit	0	CNTR1 output invalid	
		PWM signal "H" interval expansion function control bit	1	CNTR1 output valid
W41	Timer 4 control bit	0	PWM signal "H" interval expansion function invalid	
		0	PWM signal "H" interval expansion function valid	
W40	Timer 4 count source selection bit	1	Operating	
		0	XIN input	

Timer control register W5		at reset : 00002			at power down : state retained	R/W TAW5/TW5A
W53	Not used	0		This bit has no function, but read/write is enabled.		
		1				
W52	Timer 5 control bit	0		Stop (state initialized)		
		1		Operating		
W51	Timer 5 count value selection bits	W51 W50		Count value		
		0	0	Underflow o	ery 8192 counts	
		0	1	Underflow o	ery 16384 counts	
W50		1	0	Underflow o	ery 32768 counts	
		1	1	Underflow o	ery 65536 counts	

| Timer control register W6 | | at reset :00002 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | R/W $\left.\begin{array}{c}\text { TAW6/TW6A }\end{array}\right]$

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: CNTR0 input is valid only when CNTRO input is selected for the timer 1 count source.

(1) Timer control registers

- Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

- Timer control register W1

Register W1 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 1 . Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

- Timer control register W2

Register W2 controls the selection of CNTR0 output, and the count operation and count source of timer 2 . Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

- Timer control register W3

Register W3 controls the selection of timer 3 count auto-stop circuit, and the count operation and count source of timer 3 . Set the contents of this register through register A with the TW3A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

- Timer control register W4

Register W4 controls the CNTR1 output, the expansion of "H" interval of PWM output, and the count operation and count source of timer 4. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W4 to register A.

- Timer control register W5

Register W5 controls the count operation and count source of timer 5. Set the contents of this register through register A with the TW5A instruction. The TAW5 instruction can be used to transfer the contents of register W5 to register A.

- Timer control register W6

Register W6 controls the operation and count source of timer LC, the selection of CNTR1 output auto-control circuit and the D7/ CNTR0 pin function. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A..

(2) Prescaler (interrupt function)

Prescaler is an 8-bit binary down counter with the prescaler reload register PRS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.
Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.
Prescaler starts counting after the following process;
(1) set data in prescaler, and
(2) set the bit 0 of register PA to "1."

When a value set in reload register RPS is n, prescaler divides the count source signal by $n+1$ ($n=0$ to 255).
Count source for prescaler is the instruction clock (INSTCK).
Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes " 0 "), new data is loaded from reload register RPS, and count continues (auto-reload function).
The output signal (ORCLK) of prescaler can be used for timer 1, 2 , 3,4 and LC count sources.

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Data can be written to reload register (R1) with the TR1AB instruction. Data can be read from timer 1 with the TAB1 instruction.
Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.
When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.
Timer 1 starts counting after the following process;
(1) set data in timer 1
(2) set count source by bits 0 and 1 of register W1, and
(3) set the bit 2 of register W1 to "1."

When a value set in reload register R1 is n, timer 1 divides the count source signal by $n+1$ ($n=0$ to 255).
Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes " 0 "), the timer 1 interrupt request flag (T1F) is set to " 1 ," new data is loaded from reload register R1, and count continues (auto-reload function).
INT0 pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register 11 to " 1 ."
Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W1 to "1."
Timer 1 underflow signal divided by 2 can be output from CNTR0 pin by clearing bit 3 of register W2 to " 0 " and setting bit 0 of register W6 to "1".

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with the timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register (R2) with the T2AB instruction. Data can be read from timer 2 with the TAB2 instruction. Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.
Timer 2 starts counting after the following process;
(1) set data in timer 2,
(2) select the count source with the bits 0 and 1 of register W2, and
(3) set the bit 2 of register W2 to "1."

When a value set in reload register R2 is n, timer 2 divides the count source signal by $n+1$ ($n=0$ to 255).
Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes " 0 "), the timer 2 interrupt request flag (T2F) is set to " 1 ," new data is loaded from reload register R2, and count continues (auto-reload function).
Timer 2 underflow signal divided by 2 can be output from CNTR0 pin by setting bit 3 of register W2 to " 1 " and setting bit 0 of register W6 to " 1 ".

(5) Timer 3 (interrupt function)

Timer 3 is an 8-bit binary down counter with the timer 3 reload register (R3). Data can be set simultaneously in timer 3 and the reload register (R3) with the T3AB instruction. Data can be written to reload register (R3) with the TR3AB instruction. Data can be read from timer 3 with the TAB3 instruction.
Stop counting and then execute the T3AB or TAB3 instruction to read or set timer 3 data.
When executing the TR3AB instruction to set data to reload register R3 while timer 3 is operating, avoid a timing when timer 3 underflows.
Timer 3 starts counting after the following process;
(1) set data in timer 3
(2) set count source by bits 0 and 1 of register $W 3$, and
(3) set the bit 2 of register W3 to "1."

When a value set in reload register R3 is n, timer 3 divides the count source signal by $n+1$ ($n=0$ to 255).
Once count is started, when timer 3 underflows (the next count pulse is input after the contents of timer 3 becomes " 0 "), the timer 3 interrupt request flag (T3F) is set to "1," new data is loaded from reload register R3, and count continues (auto-reload function). INT1 pin input can be used as the start trigger for timer 3 count operation by setting the bit 0 of register 12 to " 1 ."
Also, in this time, the auto-stop function by timer 3 underflow can be performed by setting the bit 3 of register W3 to "1."

(6) Timer 4 (interrupt function)

Timer 4 is an 8-bit binary down counter with two timer 4 reload registers (R4L, R4H). Data can be set simultaneously in timer 4 and the reload register R4L with the T4AB instruction. Data can be set in the reload register R 4 H with the T4HAB instruction. The contents of reload register R4L set with the T4AB instruction can be set to timer 4 again with the T4R4L instruction. Data can be read from timer 4 with the TAB4 instruction.
Stop counting and then execute the T4AB or TAB4 instruction to read or set timer 4 data.
When executing the T 4 HAB instruction to set data to reload register R4H while timer 4 is operating, avoid a timing when timer 4 underflows.
Timer 4 starts counting after the following process;
(1) set data in timer 4
(2) set count source by bit 0 of register W4, and
(3) set the bit 1 of register W4 to "1."

When a value set in reload register $R 4 L$ is n, timer 4 divides the count source signal by $n+1(n=0$ to 255$)$.
Once count is started, when timer 4 underflows (the next count pulse is input after the contents of timer 4 becomes " 0 "), the timer 4 interrupt request flag (T4F) is set to " 1 ," new data is loaded from reload register R4L, and count continues (auto-reload function).
When bit 3 of register W4 is set to " 1 ", timer 4 reloads data from reload register R4L and R4H alternately each underflow.
Timer 4 generates the PWM signal (PWMOUT) of the "L" interval set as reload register R4L, and the "H" interval set as reload register R 4 H . The PWM signal (PWMOUT) is output from CNTR1 pin.
When bit 2 of register W4 is set to " 1 " at this time, the interval (PWM signal "H" interval) set to reload register R4H for the counter of timer 4 is extended for a half period of count source.
In this case, when a value set in reload register R4H is n, timer 4 divides the count source signal by $n+1.5$ ($n=1$ to 255).
When this function is used, set " 1 " or more to reload register R4H. When bit 1 of register W6 is set to " 1 ", the PWM signal output to CNTR1 pin is switched to valid/invalid each timer 3 underflow. However, when timer 3 is stopped (bit 2 of register W3 is cleared to " 0 "), this function is canceled.
Even when bit 1 of a register W4 is cleared to " 0 " in the " H " interval of PWM signal, timer 4 does not stop until it next timer 4 underflow. When clearing bit 1 of register W4 to " 0 " to stop timer 4 , avoid a timing when timer 4 underflows.

(7) Timer 5 (interrupt function)

Timer 5 is a 16-bit binary down counter.
Timer 5 starts counting after the following process;
(1) set count value by bits 0 and 1 of register W5, and
(2) set the bit 2 of register W5 to "1."

Count source for timer 5 is the sub-clock input (XCIN).
Once count is started, when timer 5 underflows (the set count value is counted), the timer 5 interrupt request flag (T5F) is set to "1," and count continues.
Bit 4 of timer 5 can be used as the timer LC count source for the LCD clock generating.
When bit 2 of register W5 is cleared to "0", timer 5 is initialized to "FFFF16" and count is stopped.
Timer 5 can be used as the counter for clock because it can be operated at clock operating mode (POF instruction execution). When timer 5 underflow occurs at clock operating mode, system returns from the power down state.

(8) Timer LC

Timer LC is a 4-bit binary down counter with the timer LC reload register (RLC). Data can be set simultaneously in timer LC and the reload register (RLC) with the TLCA instruction. Data cannot be read from timer LC. Stop counting and then execute the TLCA instruction to set timer LC data.
Timer LC starts counting after the following process;
(1) set data in timer LC,
(2) select the count source with the bit 2 of register W6, and
(3) set the bit 3 of register W6 to "1."

When a value set in reload register RLC is n , timer LC divides the count source signal by $n+1$ ($n=0$ to 15).
Once count is started, when timer LC underflows (the next count pulse is input after the contents of timer LC becomes " 0 "), new data is loaded from reload register RLC, and count continues (auto-reload function).
Timer LC underflow signal divided by 2 can be used for the LCD clock.

(9) Timer input/output pin (D7/CNTRO pin, C/CNTR1 pin)

CNTR0 pin is used to input the timer 1 count source and output the timer 1 and timer 2 underflow signal divided by 2.
CNTR1 pin is used to input the timer 3 count source and output the PWM signal generated by timer 4. When the PWM signal is output from C/CNTR1 pin, set " 0 " to the output latch of port C.
The D7/CNTR0 pin function can be selected by bit 0 of register W6. The selection of CNTR1 output signal can be controlled by bit 3 of register W4.
When the CNTR0 input is selected for timer 1 count source, timer 1 counts the rising waveform of CNTRO input.
When the CNTR1 input is selected for timer 3 count source, timer 3 counts the rising waveform of CNTR1 input. Also, when the CNTR1 input is selected, the output of port C is invalid (high-impedance state).

(10) Timer interrupt request flags (T1F, T2F, T3F, T4F, T5F)

Each timer interrupt request flag is set to " 1 " when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3, SNZT4, SNZT5).
Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.
An interrupt request flag is cleared to " 0 " when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(11) Count start synchronization circuit (timer 1, timer 3)

Timer 1 and timer 3 have the count start synchronous circuit which synchronizes the input of INT0 pin and INT1 pin, and can start the timer count operation.
Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register I1 to " 1 " and the control by INTO pin input can be performed.
Timer 3 count start synchronous circuit function is selected by setting the bit 0 of register I2 to " 1 " and the control by INT1 pin input can be performed.
When timer 1 or timer 3 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INTO pin or INT1 pin.
The valid waveform of INT0 pin or INT1 pin to set the count start synchronous circuit is the same as the external interrupt activated condition.
Once set, the count start synchronous circuit is cleared by clearing the bit I10 or 120 to " 0 " or reset.
However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 or timer 3 underflow.

(12) Count auto-stop circuit (timer 1, timer 3)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.
The count auto-stop cicuit is valid by setting the bit 3 of register W1 to " 1 ". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.
This function is valid only when the timer 1 count start synchronous circuit is selected.
Timer 3 has the count auto-stop circuit which is used to stop timer 3 automatically by the timer 3 underflow when the count start synchronous circuit is used.
The count auto-stop cicuit is valid by setting the bit 3 of register W3 to " 1 ". It is cleared by the timer 3 underflow and the count source to timer 3 is stopped.
This function is valid only when the timer 3 count start synchronous circuit is selected.

(13) Precautions

Note the following for the use of timers.

- Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.
Stop counting and then execute the TPSAB instruction to set prescaler data.

- Timer count source

Stop timer 1, 2, 3, 4 and LC counting to change its count source.

- Reading the count value

Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.

- Writing to the timer

Stop timer 1, 2, 3, 4 or LC counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB, TLCA) to write its data.

- Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload regiser R4H while timer 1 , timer 3 or timer 4 is operating, avoid a timing when timer 1 , timer 3 or timer 4 underflows.

- Timer 4

Avoid a timing when timer 4 underflows to stop timer 4.
When " H " interval extension function of the PWM signal is set to be "valid", set " 1 " or more to reload register R4H.

- Timer 5

Stop timer 5 counting to change its count source.

- Timer input/output pin

Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.

- CNTR1 output: invalid (W43 = "0")

- CNTR1 output: valid (W43 = "1")

PWM signal " H " interval extension function: invalid ($\mathrm{W} 42=$ " 0 ")

- CNTR1 output: valid (W43 = "1")

PWM signal "H" interval extension function: valid (W42 = "1") (Note)

Note: At PWM signal "H" interval extension function: valid, set " 0116 " or more to reload register R4H.

Fig. 27 Timer 4 operation (reload register R4L: "0316", R4H: "0216")

CNTR1 output auto-control circuit by timer 3 is selected.

- CNTR1 output: valid (W43 = "1")

CNTR1 output auto-control circuit selected (W61 = "1")

- CNTR1 output auto-control function

(1) When the CNTR1 output auto-control function is set to be invalid while the CNTR1 output is invalid, the CNTR1 output invalid state is retained.
(2) When the CNTR1 output auto-control function is set to be invalid while the CNTR1 output is valid, the CNTR1 output valid state is retained.
(3) When timer 3 is stopped, the CNTR1 output auto-control function becomes invalid.

Note: When the PWM signal is output from C/CNTR1 pin, set the output latch of port C to " 0 ".

Fig. 28 CNTR1 output auto-control function by timer 3
-Waveform extension function of CNTR1 output "H" interval: Invalid (W42 = "0"),
CNTR1 output: valid (W43 = "1"),
Count source: XIN input selected (W40 = "0"),
Reload register R4L: "0316"
Reload register R4H: "0216"

Notes 1: In order to stop timer 4 at CNTR1 output valid (W43 = "1"), avoid a timing when timer 4 underflows.
If these timings overlap, a hazard may occur in a CNTR1 output waveform.
2: At CNTR1 output valid, timer 4 stops after "H" interval of PWM signal set by reload register R4H is output.

Fig. 29 Timer 4 count start/stop timing

WATCHDOG TIMER

Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).
The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.
After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "000016," the next count pulse is input), the WDF1 flag is set to "1."
If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the $\overline{R E S E T}$ pin outputs " L " level to reset the microcomputer.
Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.

When the WEF flag is set to " 1 " after system is released from reset, the watchdog timer function is valid.
When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to " 0 " and the watchdog timer function is invalid.
However, in order to set the WEF flag to "1" again once it has cleared to " 0 ", execute system reset.
The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is " 1 ", the WDF1 flag is cleared to " 0 " and the next instruction is skipped.
When the WRST instruction is executed while the WDF1 flag is " 0 ", the next instruction is not skipped.
The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

(1) After system is released from reset (= after program is started), timer WDT starts count down.
(2) When timer WDT underflow occurs, WDF1 flag is set to "1."
(3) When the WRST instruction is executed, WDF1 flag is cleared to " 0 ," the next instruction is skipped.
(4) When timer WDT underflow occurs while WDF1 flag is " 1 ," WDF2 flag is set to " 1 " and the watchdog reset signal is output.
(5) The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of cycle because the count source of watchdog timer is the instruction clock.

Fig. 30 Watchdog timer function

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 31).
The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the power down mode.
When using the watchdog timer and the power down mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the power down state (refer to Figure 32).
The watchdog timer function is valid after system is returned from the power down. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down, and stop the watchdog timer function.

```
:
WRST ; WDF1 flag cleared
:
DWDT ; Watchdog timer function enabled/disabled
WRST ; WEF and WDF1 flags cleared
:
```

Fig. 31 Program example to start/stop watchdog timer

WRST	; WDF1 flag cleared
NOP	
DI	; Interrupt disabled
EPOF	; POF instruction enabled
POF	
\downarrow	
Oscillation stop	
$\quad \vdots$	

Fig. 32 Program example to enter the mode when using the watchdog timer

LCD FUNCTION

The 4554 Group has an LCD (Liquid Crystal Display) controller/ driver. When the proper voltage is applied to LCD power supply input pins (VLC1-VLC3) and data are set in timer control register (W6), timer LC, LCD control registers (L1, L2), and LCD RAM, the LCD controller/driver automatically reads the display data and controls the LCD display by setting duty and bias.
4 common signal output pins and 32 segment signal output pins can be used to drive the LCD. By using these pins, up to 128 segments (when $1 / 4$ duty and $1 / 3$ bias are selected) can be controlled to display. The LCD power input pins (VLC1-VLC3) are also used as pins SEG0-SEG2. When SEG0-SEG2 are selected, the internal power (VDD) is used for the LCD power.

(1) Duty and bias

There are 3 combinations of duty and bias for displaying data on the LCD. Use bits 0 and 1 of LCD control register (L1) to select the proper display method for the LCD panel being used.

- $1 / 2$ duty, $1 / 2$ bias
- $1 / 3$ duty, $1 / 3$ bias
- $1 / 4$ duty, $1 / 3$ bias

Table 11 Duty and maximum number of displayed pixels

Duty	Maximum number of displayed pixels	Used COM pins
$1 / 2$	64 segments	COM0, COM1 (Note)
$1 / 3$	96 segments	COM0-COM2 (Note)
$1 / 4$	128 segments	COM0-COM3

Note: Leave unused COM pins open.

(2) LCD clock control

The LCD clock is determined by the timer LC count source selection bit (W62), timer LC control bit (W63), and timer LC. Accordingly, the frequency (F) of the LCD clock is obtained by the following formula. Numbers (1) to (3) shown below the formula correspond to numbers in Figure 33, respectively.

- When using the prescaler output (ORCLK) as timer LC count source (W62="1")

- When using the bit 4 of timer 5 as timer LC count source (W62="0")

[LC: 0 to 15]
The frame frequency and frame period for each display method can be obtained by the following formula:

Frame frequency $=\frac{F}{n} \quad(H z)$

Frame period $=\frac{\mathrm{n}}{\mathrm{F}}(\mathrm{s})$
$\left[\begin{array}{l}\text { F: LCD clock frequency } \\ 1 / \mathrm{n} \text { : Duty }\end{array}\right]$

Note: Count source is stopped by setting " 0 " to this bit.

Fig. 33 LCD clock control circuit structure

Fig. 34 LCD controller/driver

(3) LCD RAM

RAM contains areas corresponding to the liquid crystal display. When " 1 " is written to this LCD RAM, the display pixel corresponding to the bit is automatically displayed.

(4) LCD drive waveform

When " 1 " is written to a bit in the LCD RAM data, the voltage difference between common pin and segment pin which correspond to the bit automatically becomes IVLC3l and the display pixel at the cross section turns on.
When returning from reset, and in the RAM back-up mode, a display pixel turns off because every segment output pin and common output pin becomes VLC3 level.

Z	1															
X	12				13				14				14			
$Y \quad$ Bits	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0
8	SEG0	SEG0	SEG0	SEG0	SEG8	SEG8	SEG8	SEG8	SEG16	SEG16	SEG16	SEG16	SEG24	SEG24	SEG24	SEG24
9	SEG1	SEG1	SEG1	SEG1	SEG9	SEG9	SEG9	SEG9	SEG17	SEG17	SEG17	SEG17	SEG25	SEG25	SEG25	SEG25
10	SEG2	SEG2	SEG2	SEG2	SEG10	SEG10	SEG10	SEG10	SEG18	SEG18	SEG18	SEG18	SEG26	SEG26	SEG26	SEG26
11	SEG3	SEG3	SEG3	SEG3	SEG11	SEG11	SEG11	SEG11	SEG19	SEG19	SEG19	SEG19	SEG27	SEG27	SEG27	SEG27
12	SEG4	SEG4	SEG4	SEG4	SEG12	SEG12	SEG12	SEG12	SEG20	SEG20	SEG20	SEG20	SEG28	SEG28	SEG28	SEG28
13	SEG5	SEG5	SEG5	SEG5	SEG13	SEG13	SEG13	SEG13	SEG21	SEG21	SEG21	SEG21	SEG29	SEG29	SEG29	SEG29
14	SEG6	SEG6	SEG6	SEG6	SEG14	SEG14	SEG14	SEG14	SEG22	SEG22	SEG22	SEG22	SEG30	SEG30	SEG30	SEG30
15	SEG7	SEG7	SEG7	SEG7	SEG15	SEG15	SEG15	SEG15	SEG23	SEG23	SEG23	SEG23	SEG31	SEG31	SEG31	SEG31
COM	COM3	COM2	COM1	COM0												

Note: The area marked " __ " is not the LCD display RAM.
Fig. 35 LCD RAM map

Table 12 LCD control registers

LCD control register L1		at reset: 00002			at power down : state retained	R/W
L13	Internal dividing resistor for LCD power supply selection bit (Note 2)	0		$2 r \times 3,2 r \times 2$		
		1		$r \times 3, r \times 2$		
L12	LCD control bit	0		Off		
		1		On		
L11	LCD duty and bias selection bits	L11	L10	Duty	Bi	
		0	0		Not available	
		0	1	1/2	1/2	
L10		1	0	1/3	1/3	
		1	1	1/4	1/	

LCD control register L2		at reset : 00002		at power down : state retained	$\begin{gathered} \text { W } \\ \text { TL2A } \end{gathered}$
L23	VLC3/SEG0 pin function switch bit (Note 3)	0	SEG0		
		1	VLC3		
L22	VLC2/SEG1 pin function switch bit (Note 4)	0	SEG1		
		1	VLC2		
L21	VLC1/SEG2 pin function switch bit (Note 4)	0	SEG2		
		1	VLC1		
L20	Internal dividing resistor for LCD power supply control bit	0	Internal dividing resistor valid		
		1	Internal dividing resistor invalid		

| LCD control register L3 | | at reset:00002 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- |\quad| W |
| :---: |
| L33 |

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: "r (resistor) multiplied by 3 " is used at $1 / 3$ bias, and " r multiplied by 2 " is used at $1 / 2$ bias.
3: VLC3 is connected to VDD internally when SEGo pin is selected.
4: Use internal dividing resistor when SEG1 and SEG2 pins are selected.

1/2 Duty, $1 / 2$ Bias: When writing (XX10)2 to address $\mathrm{M}(1,14,8)$ in RAM.

1/3 Duty, $1 / 3$ Bias: When writing (X101)2 to address $M(1,14,8)$ in RAM.

1/4 Duty, $1 / 3$ Bias: When writing (1010)2 to address $M(1,14,8)$ in RAM.

Fig. 36 LCD controller/driver structure

(5) LCD power supply circuit

- Internal dividing resistor

The 4554 Group has the internal dividing resistor for LCD power supply.
When bit 0 of register $L 2$ is set to " 1 ", the internal dividing resistor is valid. However, when the LCD is turned off by setting bit 2 of register L1 to "0", the internal dividing resistor is turned off. The same six resistor (r) is prepared for the internal dividing resistor. According to the setting value of bit 3 of register L1 and using bias condition, the resistor is prepared as follows;

- $\mathrm{L} 13=$ " 0 ", $1 / 3$ bias used: $2 r \times 3=6 r$
- $L 13=$ " 0 ", $1 / 2$ bias used: $2 r \times 2=4 r$
- L13 = "1", $1 / 3$ bias used: $r \times 3=3 r$
- L13 = "1", $1 / 2$ bias used: $r \times 2=2 r$
- VLC3/SEG0 pin

The selection of VLC3/SEG0 pin function is controlled with the bit 3 of register L2.
When the VLC3 pin function is selected, apply voltage of VLC3 < VDD to the pin externally.
When the SEGo pin function is selected, VLC3 is connected to VDD internally.

- VLC2/SEG1, VLC1/SEG2 pin

The selection of VLC2/SEG1 pin function is controlled with the bit 2 of register L2.
The selection of VLC1/SEG2 pin function is controlled with the bit 1 of register L2.
When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is not used, apply voltage of $0<$ VLC1<VLC2<VLC3 to these pins. Short the VLC2 pin and VLC1 pin at $1 / 2$ bias.
When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is used, the dividing voltage value generated internally is output from the VLC1 pin and VLC2 pin. The VLC2 pin and VLC1 pin has the same electric potential at $1 / 2$ bias.
When SEG1 and SEG2 pin function is selected, use the internal dividing resistor. In this time, VLC2 and VLC1 are connected to the generated dividingg voltage.

RESET FUNCTION

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.
Then when "H" level is applied to RESET pin, software starts from address 0 in page 0 .

Note: The number of clock cycles depends on the internal state of the microcomputer when reset is performed.

Fig. 37 Reset release timing

Fig. 38 RESET pin input waveform and reset operation

(1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V must be set to $100 \mu \mathrm{~s}$ or less. If the rising time ex-
ceeds $100 \mu \mathrm{~s}$, connect a capacitor between the RESET pin and VSS at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

Notes 1: --- $\dagger--$ - This symbol represents a parasitic diode.
2: Applied potential to $\overline{\mathrm{RESET}}$ pin must be VDD or less.
3: Keep the value of supply voltage to the minimum value or more of the recommended operating conditions.

Fig. 39 Power-on reset circuit example
Table 13 Port state at reset

Name	Function	
D0-D6	D0-D6	High-impedance (Notes 1, 2)
D7/CNTR0	D7	High-impedance (Notes 1, 2)
D8/INT0, D9/INT1	D8, D9	High-impedance (Note 1)
P00-P03	P00-P03	High-impedance (Notes 1, 2, 3)
P10-P13	P10-P13	High-impedance (Notes 1, 2, 3)
SEG31/P20-SEG28/P23	SEG31-SEG28	VLC3 (VDD) level
SEG27/P30-SEG24/P33	SEG27-SEG24	VLC3 (VDD) level
SEG0/VLC3-SEG2/VLC1	SEG0-SEG2	VLC3 (VDD) level
SEG3-SEG23	SEG3-SEG23	VLC3 (VDD) level
COM0-COM3	COM0-COM3	VLC3 (VDD) level
C/CNTR1	C	"L" (VSS) level

Notes 1: Output latch is set to "1."
2: Output structure is N -channel open-drain.
3: Pull-up transistor is turned OFF.

(2) Internal state at reset

Figure 40 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 40 are undefined, so set the initial value to them.

Fig. 40 Internal state at reset

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

Fig. 41 Voltage drop detection reset circuit

Note: Detection voltage of voltage drop detection circuit does not have hysteresis.
Fig. 42 Voltage drop detection circuit operation waveform
Table 14 Voltage drop detection circuit operation state

VDCE pin	At CPU operating	At power down (SVDE instruction is not executed)	At power down (SVDE instruction is executed)
"L" Invalid	Invalid		
"H" Invalid	Invalid	Valid	

(2) Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.
When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 43);
supply voltage does not fall below to VRST, and its voltage re-goes up with no reset.
In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

Fig. 43 Vdd and VRST

POWER DOWN FUNCTION

The 4554 Group has 2-type power down functions. System enters into each power down state by executing the following instructions.

- Clock operating mode \qquad . EPOF and POF instructions
- RAM back-up mode \qquad EPOF and POF2 instructions

When the EPOF instruction is not executed before the POF or POF2 instruction is executed, these instructions are equivalent to the NOP instruction.

(1) Clock operating mode

The following functions and states are retained.

- RAM
- Reset circuit
- XCIN-Xcout oscillation
- LCD display
- Timer 5

(2) RAM back-up mode

The following functions and states are retained.

- RAM
- Reset circuit

(3) Warm start condition

The system returns from the power down state when;

- External wakeup signal is input
- Timer 5 underflow occurs
in the power down mode. In either case, the CPU starts executing the software from address 0 in page 0 . In this case, the P flag is " 1. .

(4) Cold start condition

The CPU starts executing the software from address 0 in page 0 when;

- reset pulse is input to $\overline{\text { RESET }}$ pin,
- reset by watchdog timer is performed, or
- reset by the voltage drop detection circuit is performed.

In this case, the P flag is " 0 ."

(5) Identification of the start condition

Warm start or cold start can be identified by examining the state of the power down flag (P) with the SNZP instruction. The warm start condition from the clock operating mode can be identified by examining the state of T5F flag.

Table 15 Functions and states retained at power down

Function	Power down mode	
	Clock operating	RAM back-up
Program counter (PC), registers A, B, carry flag (CY), stack pointer (SP) (Note 2)	\times	\times
Contents of RAM	0	0
Interrupt control registers V1, V2	\times	\times
Interrupt control registers 11, I2	\bigcirc	0
Selected oscillation circuit	O	\bigcirc
Clock control register MR	\bigcirc	\bigcirc
Timer 1 to timer 4 functions	(Note 3)	(Note 3)
Timer 5 function	\bigcirc	\bigcirc
Timer LC function	O	(Note 3)
Watchdog timer function	\times (Note 4)	\times (Note 4)
Timer control registers PA, W4	\times	\times
Timer control registers W1 to W3, W5, W6	\bigcirc	\bigcirc
LCD display function	O	(Note 5)
LCD control registers L1 to L3	\bigcirc	\bigcirc
Voltage drop detection circuit	(Note 6)	(Note 6)
Port level	(Note 7)	(Note 7)
Pull-up control registers PU0, PU1	\bigcirc	\bigcirc
Key-on wakeup control registers K0 to K2	\bigcirc	0
Port output format control registers FR0 to FR3	O	O
External interrupt request flags (EXF0, EXF1)	\times	\times
Timer interrupt request flags (T1F to T4F)	(Note 3)	(Note 3)
Timer interrupt request flag (T5F)	\bigcirc	0
Interrupt enable flag (INTE)	\times	\times
Watchdog timer flags (WDF1, WDF2)	\times (Note 4)	\times (Note 4)
Watchdog timer enable flag (WEF)	\times (Note 4)	\times (Note 4)

Notes 1:"O" represents that the function can be retained, and " X " represents that the function is initialized.
Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.
2: The stack pointer (SP) points the level of the stack register and is initialized to " 7 " at RAM back-up.
3: The state of the timer is undefined.
4: Initialize the watchdog timer with the WRST instruction, and then go into the power down state.
5: LCD is turned off.
6: When the SVDE instruction is executed while the VDCE pin is in the " H " state, this function is valid at power down.
7: In the power down mode, C/CNTR1 pin outputs "L" level. However, when the CNTR input is selected (W11, W10="11"), C/ CNTR1 pin is in an input enabled state (output=high-impedance). Other ports retain their respective output levels.

(6) Return signal

An external wakeup signal or timer 5 interrupt request flag (T5F) is used to return from the clock operating mode.
An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped.
Table 16 shows the return condition for each return source.

(7) Control registers

- Key-on wakeup control register K0

Register K0 controls the port P0 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAKO instruction can be used to transfer the contents of register KO to register A .

- Key-on wakeup control register K1

Register K1 controls the port P1 key-on wakeup function. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K0 to register A.

- Key-on wakeup control register K2

Register K2 controls the INT0 and INT1 pin key-on wakeup function. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A .

- Pull-up control register PU0

Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPUOA instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.

- Pull-up control register PU1

Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU1 to register A.

- External interrupt control register I1

Register 11 controls the valid waveform of the external 0 interrupt, the input control of INTO pin and the return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TAl1 instruction can be used to transfer the contents of register 11 to register A.

- External interrupt control register 12

Register 12 controls the valid waveform of the external 1 interrupt, the input control of INT1 pin and the return input level. Set the contents of this register through register A with the TI2A instruction. In addition, the TAI2 instruction can be used to transfer the contents of register 12 to register A.

Table 16 Return source and return condition

Return source		Return condition	Remarks
$\left\lvert\, \begin{aligned} & \bar{\pi} \\ & \frac{\bar{O}}{0} \end{aligned}\right.$	Ports PO0-P03 Ports P10-P13	Return by an external "L" level input.	The key-on wakeup function can be selected by one port unit. Set the port using the key-on wakeup function to " H " level before going into the power down state.
	INT0 pin INT1 pin	Return by an external "H" level or "L" level input, or rising edge ("L" \rightarrow "H") or falling edge ("H" \rightarrow "L"). When the return level is input, the interrupt request flag (EXFO, EXF1) is not set.	Select the return level ("L" level or "H" level) with register I1 (I2) and return condition (return by level or edge) with register K2 according to the external state before going into the power down state.
Timer 5 interrupt request flag (T5F)		Return by timer 5 underflow or by setting T5F to " 1 ". It can be used in the clock operating mode.	Clear T5F with the SNZT5 instruction before system enters into the power down state. When system enters into the power down state while T5F is "1", system returns from the state immediately because it is recognized as return condition.

Stabilizing time (a): Microcomputer starts its operation after counting the ring oscillator clock 5400 to 5424 times.
Stabilizing time (b): In high-speed through-mode, microcomputer starts its operation after counting the f(RING) 675 times. In high-speed/2 mode, microcomputer starts its operation after counting the f(RING) 1350 times. high-speed/4 mode, microcomputer starts its operation after counting the $f($ RING $) 2700$ times. In high-speed/8 mode, microcomputer starts its operation after counting the f(RING) 5400 times.

Stabilizing time (C): In high-speed through-mode, microcomputer starts its operation after counting the $f($ XIN $) 675$ times. In high-speed/2 mode, microcomputer starts its operation after counting the $f(X I N) 1350$ times in high-speed/4 mode, microcomputer starts its operation after counting the $f(X i \mathbb{N}) 2700$ times In high-speed/8 mode, microcomputer starts its operation after counting the $\mathrm{f}(\mathrm{XIN}) 5400$ times.

Stabilizing time (d): In high-speed through-mode, microcomputer starts its operation after counting the $f($ XIN $) 21$ times In high-speed/2 mode, microcomputer starts its operation after counting the $f(X \mid X) 42$ times high-speed/4 mode, microcomputer starts its operation after counting the $f($ XIN $) 84$ times. In high-speed/8 mode, microcomputer starts its operation after counting the $f(X I N) 168$ times.
Stabilizing time (e): In low-speed through-mode, microcomputer starts its operation after counting the $f\left(\mathrm{X}_{\mathrm{CIN}}\right) 675$ times. In low-speed/2 mode, microcomputer starts its operation after counting the $f($ XCIN $) 1350$ times In low-speed/4 mode, microcomputer starts its operation after counting the $f(\mathrm{XCIN}) 2700$ times In low-speed/8 mode, microcomputer starts its operation after counting the $f($ XCIN $) 5400$ times

Notes 1: Continuous execution of the EPOF instruction and the POF instruction is required to go into the clock operating state. Continuous execution of the EPOF instruction and the POF2 instruction is required to go into the RAM back-up state
2: Through the ceramic resonator is operating, the ring oscillator clock is selected as the operation source clock.
3: The oscillator clock corresponding to each instruction is selected as the operation source clock, and the ring oscillator is stopped.
4: The main clock ($f($ XIN) or $f($ RING $)$) or sub-clock ($f($ XCIN $)$) is selected for operation source clock by the bit 0 of clock control register MR.
Fig. 44 State transition

Fig. 45 Set source and clear source of the P flag

Fig. 46 Start condition identified example using the SNZP instruction

Table 17 Key-on wakeup control register, pull-up control register and interrupt control register

Key-on wakeup control register K0		at reset : 00002		at power down : state retained	R/W TAKO TKOA
K03	Port P03 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K02	Port P02 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K01	Port P01 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K00	Port P0o key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		

Key-on wakeup control register K1		at reset : 00002		at power down : state retained	R/W TAK1/ TK1A
K13	Port P13 key-on wakeup control bit	0	Key-on wakeup used		
		1	Key-on wakeup not used		
K12	Port P12 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K11	Port P11 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K10	Port P10 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		

Key-on wakeup control register K2		at reset : 00002		at power down : state retained	R/W TAK2/ TK2A
K23	INT1 pin return condition selection bit	0	Return by level		
K22	INT1 pin key-on wakeup control bit	1	Return by edge		
K21	INT0 pin return condition selection bit	1	Key-on wakeup not used		
K20	INT0 pin key-on wakeup control bit	0	Return by level		
		1	Return by edge		

Note: "R" represents read enabled, and "W" represents write enabled.

Pull-up control register PU0		at reset : 00002		at power down : state retained	R/W TAPU0/ TPUOA
PU03	Port P03 pull-up transistor control bit	0	Pull-up transistor OFF		
PU02	Port P02 pull-up transistor control bit	1	Pull-up transistor ON		
	Port P01 pull-up transistor control bit	1	Pull-up transistor OFF		
PU00	Port P00 pull-up transistor control bit	0	Pull-up transistor ON		
		1	Pull-up transistor ON		

Pull-up control register PU1		at reset : 00002		at power down : state retained	R/W TAPU1/ TPU1A
PU13	Port P13 pull-up transistor control bit	0	Pull-up transistor OFF		
PU12	Port P12 pull-up transistor control bit	1	Pull-up transistor ON		
PU11	Port P11 pull-up transistor control bit	1	Pull-up transistor OFF		
	Port P10 pull-up transistor control bit	0	Pull-up transistor ON		
		1	Pull-up transistor OFF		

Interrupt control register I1		at reset : 00002		at power down : state retained	R/W TAI1/TI1A
113	INT0 pin input control bit (Note 2)	0	INT0 pin input disabled		
		1	INT0 pin input enabled		
112	Interrupt valid waveform for INTO pin/ return level selection bit (Note 2)	0	Falling waveform/"L" level ("L" level is recognized with the SNZIO instruction)		
		1	Rising waveform/"H" level ("H" level is recognized with the SNZIO instruction)		
111	INTO pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
110	INTO pin Timer 1 count start synchronous circuit selection bit	0	Timer 1 count start synchronous circuit not selected		
		1	Timer 1 count start synchronous circuit selected		

Interrupt control register 12		at reset : 00002		at power down : state retained	R/W TAI2/TI2A
123	INT1 pin input control bit (Note 2)	0	INT1 pin input disabled		
		1	INT1 pin input enabled		
122	Interrupt valid waveform for INT1 pin/ return level selection bit (Note 2)	0	Falling waveform/"L" level ("L" level is recognized with the SNZI1 instruction)		
		1	Rising waveform/"H" level ("H" level is recognized with the SNZI1 instruction)		
121	INT1 pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
120	INT1 pin Timer 3 count start synchronous circuit selection bit	0	Timer 3 count start synchronous circuit not selected		
		1	Timer 3 count start synchronous circuit selected		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When the contents of $\mathrm{I} 12, \mathrm{I} 13 \mathrm{I} 22$ and I 23 are changed, the external interrupt request flag (EXFO, EXF1) may be set.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- Ring oscillator (internal oscillator)
- Ceramic resonator
- RC oscillation circuit
- Quartz-crystal oscillation circuit
- Multi-plexer (clock selection circuit)
- Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.
Figure 47 shows the structure of the clock control circuit.
The 4554 Group operates by the ring oscillator clock (f(RING)) which is the internal oscillator after system is released from reset.
Also, the ceramic resonator or the RC oscillation can be used for the main clock (f(XIN)) of the 4554 Group. The CMCK instruction or CRCK instruction is executed to select the ceramic resonator or RC oscillator, respectively.
The quartz-crystal oscillator can be used for sub-clock (f(XCIN)).

Fig. 47 Clock control circuit structure

(1) Main clock generating circuit (f(Xin))

The ceramic resonator or RC oscillation can be used for the main clock of this MCU.
After system is released from reset, the MCU starts operation by the clock output from the ring oscillator which is the internal oscillator.
When the ceramic resonator is used, execute the CMCK instruction. When the RC oscillation is used, execute the CRCK instruction. The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuit and the ring oscillator stop.
Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the CMCK or the CRCK instruction is not executed in program, this MCU operates by the ring oscillator.

(2) Ring oscillator operation

When the MCU operates by the ring oscillator as the main clock ($f($ XIN $)$) without using the ceramic resonator or the RC oscillator, connect XIN pin to VSs and leave Xout pin open (Figure 49).
The clock frequency of the ring oscillator depends on the supply voltage and the operation temperature range.
Be careful that variable frequencies when designing application products.

(3) Ceramic resonator

When the ceramic resonator is used as the main clock ($f($ XIN $)$), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the CMCK instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 50).

(4) RC oscillation

When the RC oscillation is used as the main clock ($f(\mathrm{XIN})$), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 51).
The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

Fig. 48 Switch to ceramic resonance/RC oscillation

Fig. 49 Handling of XIN and Xout when operating ring oscillator

Fig. 50 Ceramic resonator external circuit

Fig. 51 External RC oscillation circuit

(5) External clock

When the external clock signal is used as the main clock ($f(\mathrm{XIN})$), connect the XIN pin to the clock source and leave Xout pin open. Then, execute the CMCK instruction (Figure 52).
Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the power down mode (POF and POF2 instructions) cannot be used when using the external clock.

(6) Sub-clock generating circuit $f(X \operatorname{XcIN})$

Sub-clock signal $f(X C I N)$ is obtained by externally connecting a quartz-crystal oscillator. Connect this external circuit and a quartzcrystal oscillator to pins XCIN and Xcout at the shortest distance. A feedback resistor is built in between pins XCIN and Xcout (Figure 53).

(7) Clock control register MR

Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A .

Fig. 52 External clock input circuit

Fig. 53 External quartz-crystal circuit

Table 18 Clock control register MR

Clock control register MR		at reset : 11002		at power down : state retained	R/W TAMR/
MR3	Operation mode selection bits	MR3 ${ }^{\text {MR2 }}$		Operation mode	
		0 0	Through mod	ncy not divided)	
		0 1	Frequency divid	2 mode	
MR2		1	Frequency divid	4 mode	
		1 1	Frequency d	8 mode	
MR1	Main clock oscillation circuit control bit	0	Main clock o	nabled	
		1	Main clock o	stop	
MRo	System clock selection bit	0	Main clock	RING))	
		1	Sub-clock (f		

Note : "R" represents read enabled, and "W" represents write enabled.

ROM ORDERING METHOD

1.Mask ROM Order Confirmation Form•
2.Mark Specification Form•
3.Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.
-For the mask ROM confirmation and the mark specifications, refer
to the "Renesas Technology Corp." Homepage
(http://www.renesas.com/en/rom).

LIST OF PRECAUTIONS

(1) Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. $0.1 \mu \mathrm{~F}$) between pins VDD and VSs at the shortest distance,
- equalize its wiring in width and length, and
- use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as Vpp pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about $5 \mathrm{k} \Omega$ (connect this resistor to CNVss/ Vpp pin as close as possible).

(2) Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

(3) Register initial values 2

The initial value of the following registers are undefined at RAM backup. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)
(4) Stack registers (SKs)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.
(5) Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.
Stop counting and then execute the TPSAB instruction to set prescaler data.

(6) Timer count source

Stop timer 1, 2, 3, 4 and LC counting to change its count source.
(7) Reading the count value

Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.
(8) Writing to the timer

Stop timer 1, 2, 3, 4 or LC counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB, TLCA) to write its data.
(9) Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload regiser R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1 , timer 3 or timer 4 underflows.

Avoid a timing when timer 4 underflows to stop timer 4.
When " H " interval extension function of the PWM signal is set to be "valid", set " 1 " or more to reload register R4H.

(11) Timer 5

Stop timer 5 counting to change its count source.
(13) Timer input/output pin

Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.
(13) Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to " 0 " to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down state, and stop the watchdog timer function.
- When the watchdog timer function and power down function are used at the same time, execute the WRST instruction before system enters into the power down state and initialize the flag WDF1.
(14) Multifunction
- Be careful that the output of ports D8 and D9 can be used even when INT0 and INT1 pins are selected.
- Be careful that the input/output of port D7 can be used even when input of CNTR0 pin are selected.
- Be careful that the input of port D7 can be used even when output of CNTR0 pin are selected.
- Be careful that the "H" output of port C can be used even when output of CNTR1 pin are selected.

(15) Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

(10) D8/INT0 pin

(1) Note [1] on bit 3 of register I1

When the input of the INTO pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

- Depending on the input state of the D8/INT0 pin, the external 0 interrupt request flag (EXFO) may be set when the bit 3 of register 11 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 54(1) and then, change the bit 3 of register 11 .
In addition, execute the SNZO instruction to clear the EXFO flag to "0" after executing at least one instruction (refer to Figure 54(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZO instruction (refer to Figure 543).

Fig. 54 External 0 interrupt program example-1
(2) Note [2] on bit 3 of register I1

When the bit 3 of register 11 is cleared to " 0 ", the RAM back-up mode is selected and the input of INTO pin is disabled, be careful about the following notes.

- When the key-on wakeup function of INT0 pin is not used (register K20 $=$ " 0 "), clear bits 2 and 3 of register 11 before system enters to the RAM back-up mode. (refer to Figure 55(1).

Fig. 55 External 0 interrupt program example-2
(3) Note on bit 2 of register 11

When the interrupt valid waveform of the D8/INT0 pin is changed with the bit 2 of register 11 in software, be careful about the following notes.

- Depending on the input state of the D8/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register 11 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 56(1) and then, change the bit 2 of register 11.
In addition, execute the SNZO instruction to clear the EXFO flag to "0" after executing at least one instruction (refer to Figure 56(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZO instruction (refer to Figure 563).

Fig. 56 External 0 interrupt program example-3

(a) Dg/INT1 pin

(1) Note [1] on bit 3 of register I2

When the input of the INT1 pin is controlled with the bit 3 of register I 2 in software, be careful about the following notes.

- Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register 12 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 57(1) and then, change the bit 3 of register I 2 .
In addition, execute the SNZ1 instruction to clear the EXF1 flag to " 0 " after executing at least one instruction (refer to Figure 57(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 57(3).

:	
LA 4	; (XX0×2)
TV1A	; The SNZ1 instruction is valid1
LA 8	; (1×××2)
TI2A	; Control of INT1 pin input is changed
NOP	.. (2)
SNZ1	; The SNZ1 instruction is executed (EXF1 flag cleared)
NOP	.. (3)
:	
X : these bits are not used here.	

Fig. 57 External 1 interrupt program example-1
(2) Note [2] on bit 3 of register I2

When the bit 3 of register 12 is cleared to " 0 ", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.

- When the key-on wakeup function of INT1 pin is not used (register K22 = "0"), clear bits 2 and 3 of register 12 before system enters to the RAM back-up mode. (refer to Figure 58(1).

:	
LA 0	; (00××2)
TI2A	; Input of INT1 disabled (1)
DI	
EPOF	
POF2	; RAM back-up
:	
\times : these bits are not used here.	

Fig. 58 External 1 interrupt program example-2
(3) Note on bit 2 of register 12

When the interrupt valid waveform of the D9/INT1 pin is changed with the bit 2 of register 12 in software, be careful about the following notes.

- Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register 12 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 59(1) and then, change the bit 2 of register 12.
In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 59(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 59(3).

Fig. 59 External 1 interrupt program example-3

(8) POF and POF2 instructions

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the power down state. Note that system cannot enter the power down state when executing only the POF or POF2 instruction.
Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF or POF2 instruction continuously.

(3) Power-on reset

When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to 2.0 V must be set to $100 \mu \mathrm{~s}$ or less. If the rising time exceeds $100 \mu \mathrm{~s}$, connect a capacitor between the RESET pin and Vss at the shortest distance, and input " L " level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

(2) Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.
When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 60);
supply voltage does not fall below to VRST, and its voltage re-goes up with no reset.
In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

Fig. 60 VDD and VRST
(2) Clock control

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).
The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instruction is valid. Other oscillation circuits and the ring oscillator stop.
(2) Ring oscillator

The clock frequency of the ring oscillator depends on the supply voltage and the operation temperature range.
Be careful that variable frequencies when designing application products.
Also, the oscillation stabilize wait time after system is released from reset is generated by the ring oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the ring oscillator clock.

3 External clock
When the external signal clock is used as the source oscillation (f(XIN)), note that the power down mode (POF and POF2 instructions) cannot be used.

24 Difference between Mask ROM version and One Time PROM version Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an electrical property by difference of a manufacture process, builtin ROM, and a layout pattern.

- a characteristic value
- a margin of operation
- the amount of noise-proof
- noise radiation, etc.,

Accordingly, be careful of them when swithcing.

CONTROL REGISTERS

Interrupt control register V1		at reset : 00002		at power down : 00002	R/W TAV1/TV1A
V13	Timer 2 interrupt enable bit	0	Interrupt disabled (SNZT2 instruction is valid)		
		1	Interrupt enabled (SNZT2 instruction is invalid)		
V12	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)		
		1	Interrupt enabled (SNZT1 instruction is invalid)		
V11	External 1 interrupt enable bit	0	Interrupt disabled (SNZ1 instruction is valid)		
		1	Interrupt enabled (SNZ1 instruction is invalid)		
V10	External 0 interrupt enable bit	0	Interrupt disabled (SNZO instruction is valid)		
		1	Interrupt enabled (SNZO instruction is invalid)		

Interrupt control register V2		at reset : 00002		at power down : 00002	R/W TAV2/TV2A
V23	Timer 4 interrupt enable bit	0	Interrupt disabled (SNZT4 instruction is valid)		
		1	Interrupt enabled (SNZT4 instruction is invalid)		
V22	Not used	0	This bit has no function, but read/write is enabled.		
		1			
V21	Timer 5 interrupt enable bit	0	Interrupt disabled (SNZT5 instruction is valid)		
		1	Interrupt enabled (SNZT5 instruction is invalid)		
V20	Timer 3 interrupt enable bit	0	Interrupt disabled (SNZT3 instruction is valid)		
		1	Interrupt enabled (SNZT3 instruction is invalid)		

Interrupt control register I1		at reset : 00002		at power down : state retained	R/W TAl1/TI1A
113	INT0 pin input control bit (Note 2)	0	INT0 pin input disabled		
		1	INT0 pin input enabled		
112	Interrupt valid waveform for INTO pin/ return level selection bit (Note 2)	0	Falling waveform/"L" level ("L" level is recognized with the SNZIO instruction)		
		1	Rising waveform/"H" level ("H" level is recognized with the SNZIO instruction)		
111	INT0 pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
110	INT0 pin Timer 1 count start synchronous circuit selection bit	0	Timer 1 count start synchronous circuit not selected		
		1	Timer 1 count start synchronous circuit selected		

Interrupt control register I2		at reset : 00002		at power down : state retained	R/W TAI2/TI2A
123	INT1 pin input control bit (Note 2)	0	INT1 pin input disabled		
		1	INT1 pin input enabled		
122	Interrupt valid waveform for INT1 pin/ return level selection bit (Note 2)	0	Falling waveform/"L" level ("L" level is recognized with the SNZI1 instruction)		
		1	Rising waveform/"H" level ("H" level is recognized with the SNZI1 instruction)		
121	INT1 pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
120	INT1 pin Timer 3 count start synchronous circuit selection bit	0	Timer 3 count start synchronous circuit not selected		
		1	Timer 3 count start synchronous circuit selected		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When the contents of $I 12, I 13 \mathrm{I} 22$ and I 23 are changed, the external interrupt request flag (EXFO, EXF1) may be set.

$\left.$| Clock control register MR | | at reset : 11002 | | | at power down : state retained |
| :---: | :--- | :---: | :---: | :--- | :--- | | R/WMR/ |
| :---: |
| TAMRA | \right\rvert\,

Timer control register PA		at reset : 02		at power down :02	W TPAA
PA0	Prescaler control bit	0	Stop (state initialized)		
		Operating			

| Timer control register W1 | | at reset : 00002 | | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | :--- | \(\left.\begin{array}{c}R/W

TAW1/TW1A\end{array}\right]\)

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: This function is valid only when the timer 1 count start synchronous circuit is selected ($(10=$ " " 1 ").
3: This function is valid only when the timer 3 count start synchronous circuit is selected (I20=" " 1 ").
4: Port C output is invalid when CNTR1 input is selected for the timer 3 count source.

Timer control register W4		at reset : 00002		at power down : 00002	R/W TAW4/TW4A
W43	CNTR1 output control bit	0	CNTR1 output invalid		
	W42	PWM signal "H" interval expansion function control bit	1	CNTR1 output valid	
W41		1	PWM signal " H " interval expansion function invalid		
	Timer 4 count source selection bit	0	Stop (state retained)		
		1	Operating		

Timer control register W5		at reset : 00002			at power down : state retained	R/W TAW5/TW5A
W53	Not used	0		This bit has no function, but read/write is enabled.		
W52	Timer 5 control bit	0		Stop (state initialized)		
				Operating		
W51	Timer 5 count value selection bits	W51 W50		Count value		
		0	0	Underflow occurs every 8192 counts		
		0	1	Underflow o	ery 16384 counts	
W50		1	0	Underflow occurs every 32768 counts		
		1	1	Underflow o	ery 65536 counts	

Timer control register W6	at reset : 00002		at power down : state retained	R/W TAW6/TW6A	
	Timer LC control bit	0	Stop (state retained)		
		Timer LC count source selection bit	0	Operating	Bit 4 (T54) of timer 5
		1	Prescaler output (ORCLK)		
W61	CNTR1 output auto-control circuit Selection bit	0	CNTR1 output auto-control circuit not selected		
	D7/CNTR0 pin function selection bit (Note 2)	1	CNTR1 output auto-control circuit selected		
		1	D7(I/O)/CNTR0 input		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: CNTR0 input is valid only when CNTR0 input is selected for the timer 1 count source.

LCD control register L1		at reset : 00002			at power down : state retained	R/W TAL1/TL1A
L13	Internal dividing resistor for LCD power supply selection bit (Note 2)	0		$2 \mathrm{r} \times 3,2 \mathrm{r} \times 2$		
		1		$r \times 3, r \times 2$		
L12	LCD control bit	0		Off		
		1		On		
L11	LCD duty and bias selection bits	L11	L10	Duty	Bi	
		0	0		Not available	
		0	1	1/2		
L10		1	0	1/3	$1 /$	
		1	1	1/4		

LCD control register L2		at reset : 00002		at power down : state retained	w
L23	VLC3/SEGo pin function switch bit (Note 3)	0	SEG0		
		1	VLC3		
L22	VLC2/SEG1 pin function switch bit (Note 4)	0	SEG1		
		1	VLC2		
L21	VLC1/SEG2 pin function switch bit (Note 4)	0	SEG2		
		1	VLC1		
L20	Internal dividing resistor for LCD power supply control bit	0	Internal dividing resistor valid		
		1	Internal dividing resistor invalid		

LCD control register L3		at reset : 00002		at power down : state retained	$\begin{gathered} \text { W } \\ \text { TL3A } \end{gathered}$
L33	SEG24/P33-SEG27/P30 pin function switch bit	0	SEG24-SEG27		
		1	P33-P30		
L32	SEG28/P23, SEG29/P22 pin function switch bit	0	SEG28, SEG29		
		1	P23, P22		
L31	SEG30/P21 pin function switch bit	0	SEG30		
		1	P21		
L30	SEG31/P20 pin function switch bit	0	SEG31		
		1	P20		

Notes 1: "R" represents read enabled, and " W " represents write enabled.
2: " r (resistor) multiplied by 3 " is used at $1 / 3$ bias, and " r multiplied by 2 " is used at $1 / 2$ bias.
3: VLC3 is connected to VDD internally when SEGo pin is selected.
4: Use internal dividing resistor when SEG1 and SEG2 pins are selected.

Pull-up control register PU0		at reset : 00002		at power down : state retained	$\begin{gathered} \text { R/W } \\ \text { TAPUO/ } \end{gathered}$
PU03	Port P03 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU02	Port P02 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU01	Port P01 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU00	Port POo pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

Pull-up control register PU1		at reset : 00002		at power down : state retained	$\begin{gathered} \text { R/W } \\ \text { TAPU1/ } \\ \text { TPU1A1A } \end{gathered}$
PU13	Port P13 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU12	Port P12 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU11	Port P11 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU10	Port P1o pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

Port output structure control register FR0		at reset : 00002		at power down : state retained	W TFR0A
FR03	Ports P12, P13 output structure selection bit	0	N-channel open-drain output		
	Ports P10, P11 output structure selection bit	0	CMOS output		
FR01	Ports P02, P03 output structure selection bit	1	CMOS output		
	Ports P00, P01 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
		1	N-channel open-drain output		

Port output structure control register FR1		at reset :00002		at power down : state retained	W TFR1A
FR13	Port D3 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR12	Port D2 output structure selection bit	0	N-channel open-drain output		
		Port D1 output structure selection bit	0	CMOS output	
			N-channel open-drain output		
FR10	Port Do output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		

Port output structure control register FR2		at reset : 00002		at power down : state retained	W TFR2A
FR23	Port D7/CNTR0 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR21	Port D5 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR20	Port D4 output structure selection bit	1	N-channel open-drain output		
		0	CMOS output		
		1	CMOS output		

Note: "R" represents read enabled, and "W" represents write enabled.

Key-on wakeup control register K0		at reset : 00002		at power down : state retained	R/W TAK0/ TK0A
K03	Port P03 key-on wakeup control bit	0	Key-on wakeup not used		
K02	Port P02 key-on wakeup control bit	1	Key-on wakeup used		
	Port P01 key-on wakeup control bit	1	Key-on wakeup not used		
K00	Port P00 key-on wakeup control bit	0	Key-on wakeup used		
		1	Key-on wakeup not used		
		0	Key-on wakeup not used		
		1	Key-on wakeup used		

Key-on wakeup control register K1		at reset : 00002		at power down : state retained	R/W TAK1/ TK1A
K13	Port P13 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K11	Port P11 key-on wakeup control bit	1	Key-on wakeup not used		
		0	Key-on wakeup used		
		1	Key-on wakeup not used		
		0	Key-on wakeup not used		

| Key-on wakeup control register K2 | at reset : 00002 | | at power down : state retained | R/W
 TAK2/
 TK2A |
| :---: | :--- | :---: | :--- | :--- | :--- |
| | INT1 pin return condition selection bit | 0 | | |
| K22 | | 1 | Returned by edge | |
| | INT0 pin return condition selection bit | 0 | Key-on wakeup invalid | |
| | | 1 | Key-on wakeup valid | |
| K20 | INT0 pin key-on wakeup control bit | 1 | Returned by level | |
| | | 0 | Key-on by edge | |
| | | 1 | Key-on wakeup invalid | |

Note: "R" represents read enabled, and "W" represents write enabled.

INSTRUCTIONS

The 4554 Group has the 136 instructions. Each instruction is described as follows;
(1) Index list of instruction function
(2) Machine instructions (index by alphabet)
(3) Machine instructions (index by function)
(4) Instruction code table

Symbol	Contents	Symbol	Contents
A	Register A (4 bits)	PS	Prescaler
B	Register B (4 bits)	T1	Timer 1
DR	Register DR (3 bits)	T2	Timer 2
E	Register E (8 bits)	T3	Timer 3
V1	Interrupt control register V1 (4 bits)	T4	Timer 4
V2	Interrupt control register V2 (4 bits)	T5	Timer 5
11	Interrupt control register 11 (4 bits)	TLC	Timer LC
12	Interrupt control register I2 (4 bits)	T1F	Timer 1 interrupt request flag
MR	Clock control register MR (4 bits)	T2F	Timer 2 interrupt request flag
PA	Timer control register PA (1 bit)	T3F	Timer 3 interrupt request flag
W1	Timer control register W1 (4 bits)	T4F	Timer 4 interrupt request flag
W2	Timer control register W2 (4 bits)	T5F	Timer 5 interrupt request flag
W3	Timer control register W3 (4 bits)	WDF1	Watchdog timer flag
W4	Timer control register W4 (4 bits)	WEF	Watchdog timer enable flag
W5	Timer control register W5 (4 bits)	INTE	Interrupt enable flag
W6	Timer control register W6 (4 bits)	EXFO	External 0 interrupt request flag
L1	LCD control register L1 (4 bits)	EXF1	External 1 interrupt request flag
L2	LCD control register L2 (4 bits)	P	Power down flag
L3	LCD control register L3 (4 bits)		
PU0	Pull-up control register PU0 (4 bits)	D	Port D (10 bits)
PU1	Pull-up control register PU1 (4 bits)	P0	Port P0 (4 bits)
FR0	Port output format control register FR0 (4 bits)	P1	Port P1 (4 bits)
FR1	Port output format control register FR1 (4 bits)	P2	Port P2 (4 bits)
FR2	Port output format control register FR2 (4 bits)	P3	Port P3 (4 bits)
FR3	Port output format control register FR3 (4 bits)	C	Port C (1 bit)
K0	Key-on wakeup control register K0 (4 bits)		
K1	Key-on wakeup control register K1 (4 bits)	X	Hexadecimal variable
K2	Key-on wakeup control register K2 (4 bits)	y	Hexadecimal variable
X	Register X (4 bits)	z	Hexadecimal variable
Y	Register Y (4 bits)	p	Hexadecimal variable
Z	Register Z (2 bits)	n	Hexadecimal constant
DP	Data pointer (10 bits)	i	Hexadecimal constant
	(It consists of registers X, Y, and Z)	j	Hexadecimal constant
PC	Program counter (14 bits)	$\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$	Binary notation of hexadecimal variable A
PCH	High-order 7 bits of program counter		(same for others)
PCL	Low-order 7 bits of program counter		
SK	Stack register (14 bits $\times 8$)	\leftarrow	Direction of data movement
SP	Stack pointer (3 bits)	\leftrightarrow	Data exchange between a register and memory
CY	Carry flag	?	Decision of state shown before "?"
RPS	Prescaler reload register (8 bits)	()	Contents of registers and memories
R1	Timer 1 reload register (8 bits)	-	Negate, Flag unchanged after executing instruction
R2	Timer 2 reload register (8 bits)	M (DP)	RAM address pointed by the data pointer
R3	Timer 3 reload register (8 bits)	a	Label indicating address a6 a5 a4 a3 a2 a1 a0
R4L	Timer 4 reload register (8 bits)	p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0
R4H	Timer 4 reload register (8 bits)		in page p5 p4 p3 p2 p1 po
RLC	Timer LC reload register (4 bits)	$\begin{aligned} & C \\ & + \\ & + \end{aligned}$	Hex. C + Hex. number x

Note : Some instructions of the 4554 Group has the skip function to unexecute the next described instruction. The 4554 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2 . Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes " 1 " if the TABP p, RT, or RTS instruction is skipped.

INDEX LIST OF INSTRUCTION FUNCTION

Note: p is 0 to 63 for M34554M8,
p is 0 to 95 for M34554MC and
p is 0 to 127 for M34554ED.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Note: p is 0 to 63 for M34554M8,
p is 0 to 95 for M34554MC and
p is 0 to 127 for M34554ED.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

INDEX LIST OF INSTRUCTION FUNCTION (continued)

$\begin{gathered} \text { Group- } \\ \text { ing } \end{gathered}$	Mnemonic	Function	Page
	CLD	(D) $\leftarrow 1$	80, 122
	RD	$\begin{aligned} & (\mathrm{D}(\mathrm{Y})) \leftarrow 0 \\ & (\mathrm{Y})=0 \text { to } 9 \end{aligned}$	87, 122
	SD	$\begin{aligned} & (\mathrm{D}(\mathrm{Y})) \leftarrow 1 \\ & (\mathrm{Y})=0 \text { to } 9 \end{aligned}$	89, 122
	SZD	$\begin{aligned} & (\mathrm{D}(\mathrm{Y}))=0 \text { ? } \\ & (\mathrm{Y})=0 \text { to } 7 \end{aligned}$	93, 122
	RCP	$(\mathrm{C}) \leftarrow 0$	87, 122
	SCP	(C) $\leftarrow 1$	89, 122
	TAPU0	$(\mathrm{A}) \leftarrow(\mathrm{PUO})$	99, 122
	TPUOA	$($ PUO $) \leftarrow(\mathrm{A})$	107, 122
	TAPU1	$(\mathrm{A}) \leftarrow(\mathrm{PU1} 1)$	99, 122
	TPU1A	$(\mathrm{PU1} 1) \leftarrow(\mathrm{A})$	108, 122
	TAKO	$(\mathrm{A}) \leftarrow(\mathrm{KO})$	98, 124
	TKOA	$(\mathrm{KO}) \leftarrow(\mathrm{A})$	105, 124
	TAK1	$(\mathrm{A}) \leftarrow(\mathrm{K} 1)$	98, 124
	TK1A	$(\mathrm{K} 1) \leftarrow($ A $)$	105, 124
	TAK2	$(\mathrm{A}) \leftarrow$ (K 2$)$	98, 124
	TK2A	$(\mathrm{K} 2) \leftarrow(\mathrm{A})$	105, 124
	TFROA	$($ FRO $) \leftarrow($ A $)$	103, 124
	TFR1A	$($ FR1 $) \leftarrow($ A $)$	104, 124
	TFR2A	$($ FR2 $) \leftarrow($ A $)$	104, 124
	CMCK	Ceramic resonator selected	81, 124
	CRCK	RC oscillator selected	81, 124
	TAMR	$(\mathrm{A}) \leftarrow(\mathrm{MR})$	99, 124
	TMRA	$(\mathrm{MR}) \leftarrow(\mathrm{A})$	107, 124

Group-	Mnemonic	Function	Page
	TAL1	$(\mathrm{A}) \leftarrow(\mathrm{L} 1)$	116, 124
	TL1A	$(\mathrm{L} 1) \leftarrow(\mathrm{A})$	124, 124
	TL2A	$(\mathrm{L} 2) \leftarrow$ (A$)$	124, 124
	TL3A	$(\mathrm{L} 3) \leftarrow$ (A$)$	113, 124
	NOP	$(\mathrm{PC}) \leftarrow(\mathrm{PC})+1$	128, 124
	POF	Transition to clock operating mode	108, 124
	POF2	Transition to RAM back-up mode	107, 124
	EPOF	POF, POF2 instructions valid	115, 124
	SNZP	$(\mathrm{P})=1$?	123, 124
	DWDT	Stop of watchdog timer function enabled	112, 146
	WRST	(WDF1) $=1$? After skipping, (WDF1) $\leftarrow 0$	116, 146
	RBK*	When TABP p instruction is executed, $\mathrm{P} 6 \leftarrow 0$	114, 146
	SBK*	When TABP p instruction is executed, $\mathrm{P}_{6} \leftarrow 1$	92, 146
	SVDE	At power down mode, voltage drop detection circuit valid	106, 146

Note: * (RBK, SBK) cannot be used in the M34554M8.

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

A n (Add n and accumulator)																			
Instruction code	D9 Do													Number of words	Number of cycles	Flag CY	Skip condition		
	0	0	0	1	1	0	n	n	n		0	6	n						
														1	1	-	Overflow = 0		
Operation:	$\begin{aligned} & (A) \leftarrow(A)+n \\ & n=0 \text { to } 15 \end{aligned}$													Grouping: Description:	Arithmetic operation				
															Adds the value n in the immediate field to register A , and stores a result in register A . The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.				

AM (Add accumulator and Memory)

Operation: $\quad(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{M}(\mathrm{DP}))$

Grouping: Arithmetic operation
Description: Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.

AMC (Add accumulator, Memory and Carry)
 $C Y$ to register A. Stores the result in register A and carry flag CY .

AND (logical AND between accumulator and memory)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

BL p, a (Branch Long to address a in page p)

BLA p (Branch Long to address (D) + (A) in page p)

BM a (Branch and Mark to address a in page 2)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

BML p, a (Branch and Mark Long to address a in page p)

Instruction code	D9									Do					Number of words	Number of cycles	Flag CY	Skip condition					
	0	0	1	1	0	p4	p3	p2	p1		0	C +p	p										
	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline 1 & \mathrm{p} 6 & \mathrm{p} 5 & \mathrm{a} 6 & \mathrm{a} 5 & \mathrm{a} 4 & \mathrm{a} 3 & \mathrm{a} 2 & \mathrm{a} 1 & \mathrm{a0} \\ 2 & \begin{array}{\|c\|c\|c\|} \hline 2 \\ +\mathrm{p} \end{array} & \begin{array}{c} \mathrm{p} \\ +\mathrm{a} \end{array} & \mathrm{a} \\ \hline \end{array}$														2	2	-	-					
															Grouping: Subroutine call operation								
	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\ & (\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC}) \\ & (\mathrm{PCH}) \leftarrow \mathrm{p} \\ & (\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{a} 0 \end{aligned}$														Description: Call the subroutine: Calls the subroutine at address a in page p. Note: $\quad p$ is 0 to 63 for M34554M8, and p is 0 to 95 for M34554MC, and p is 0 to 127 for M34554ED. Be careful not to over the stack because the maximum level of subroutine nesting is 8 .								

BMLA p			d											
Instruction	D9									Do				
code	0	0	0	0	1	1	0	0	0		0	3	0	
	1	p6	p5	p4	0	0	p3	p2	p1	p 0	+p	p	p	16

Operation: $\quad(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$
$(\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC})$
$($ PCH $) \leftarrow$ p
$(\mathrm{PCL}) \leftarrow(\mathrm{DR} 2-\mathrm{DR} 0, \mathrm{~A} 3-\mathrm{Ao})$

Number of words	Number of cycles	Flag CY	Skip condition
2	2	-	-

Grouping: Subroutine call operation
Description: Call the subroutine : Calls the subroutine at address (DR2 DR1 DRo A3 A2 A1 A0)2 specified by registers D and A in page p.
Note: $\quad \mathrm{p}$ is 0 to 63 for M34554M8, and p is 0 to 95 for M34554MC, and p is 0 to 127 for M34554ED.
Be careful not to over the stack because the maximum level of subroutine nesting is 8 .

CLD (CLear port D)

Instruction	D9									Do					Number of	Number of	Flag CY	Skip condition
code	0	0	0	0	0	1	0	0	0	1	0	1	1		words	cycles		
															1	1	-	-
Operation:															Grouping:	Input/Outp	ut operation	
															Description	Sets (1) to	port D.	

CMA (CoMplement of Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

CMCK (Clock select: ceraMic oscillation ClocK)

CRCK (Clock select: Rc oscillation ClocK)

DEY (DEcrement register Y)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

DWDT (Disable WatchDog Timer)

Instruction code	D9									Do					Number of words	Number of cycles	Flag CY	Skip condition			
	1	0	1	0	0	1	1	1	0	0	2	9	C								
															1	1	-	-			
Operation:	Stop of watchdog timer function enabled														Grouping: Other operation						
															Description: Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.						

El (Enable Interrupt)

EPOF (Enable POF instruction)

| Instruction
 code | D9 | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 2 | | | | | | | | | | |

[^0]| Number of
 words | Number of
 cycles | Flag CY | Skip condition |
| :---: | :---: | :---: | :---: |
| 1 | 1 | - | - |

Grouping: Other operation
Description: Makes the immediate after POF or POF2 instruction valid by executing the EPOF instruction.

IAPO (Input Accumulator from port P0)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

IAP1 (Input Accumulator from port P1)

Instruction code	D9 Do													Number of words		Number of cycles	Flag CY	Skip condition
	1	0	0	1	1	0	0	0	0	1	2	6	1					
															1	1	-	-
Operation:	$(\mathrm{A}) \leftarrow(\mathrm{P} 1)$														Grouping:	Input/Output operation		
															Description	Transfers	he input of	Pt P1 to register

IAP2 (Input Accumulator from port P2)

IAP3 (Input Accumulator from port P3)

INY (INcrement register Y)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

LA n (Load n in Accumulator)

LXY X, y (Load register X and Y with x and y)

LZ z (Load register Z with z)

Operation: $\quad(Z) \leftarrow z z=0$ to 3
Grouping: RAM addresses
Description: Loads the value z in the immediate field to register Z.

NOP (No OPeration)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

OPOA (Output port P0 from Accumulator)

OP1A (Output port P1 from Accumulator)
 P1.

OR (logical OR between accumulator and memory)

POF (Power OFf1)

Instruction	D9 Do										D0				
code	0	0	0	0	0	0	0	0	1	0	2	0	0	2	

[^1]| Number of
 words | Number of
 cycles | Flag CY | Skip condition |
| :---: | :---: | :---: | :---: |
| 1 | 1 | - | - |
| Grouping: | Other operation | | |
| Description: | Puts the system in clock operating state by
 executing the POF instruction after execut-
 ing the EPOF instruction.
 If the EPOF instruction is not executed before
 executing this instruction, this instruction is
 equivalent to the NOP instruction. | | |

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

POF2 (Power OFf2)

RAR (Rotate Accumulator Right)

RB ${ }^{\text {j }}$ Res															
Instruction	D9										D				
code	0	0	0	1	0	0		1	1	j	i	2	0	4	$\stackrel{\text { C }}{\text { C }}$

Operation: $\quad(\mathrm{Mj}(\mathrm{DP})) \leftarrow 0$
$\mathrm{j}=0$ to 3

Number of words	Number of cycles	Flag CY	Skip condition
1	1	-	-
Grouping: Bit operation	Bit operation		
Descriptio	Clears (0) by the valu M(DP)	he conte e j in th	f bit j (bit spe mediate fie

RBK (Reset Bank flag)

Instruction code	D9									Do				Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	0	0	0	0		0	4	0116				
Operation:	When TABP p instruction is executed, $\mathrm{P}_{6} \leftarrow 0$													Grouping: Other operation			
														Description: Sets referring data area to pages 0 to 63 when the TABP p instruction is executed. Note: This instruction cannot be used in M34554M8.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

Operation: $\quad(\mathrm{CY}) \leftarrow 0$

Number of words 1Number of cycles
1
:---
:---
Arithmetic operation

RCP (Reset Port C)

RD (Reset port D specified by register Y)

RT (ReTurn from subroutine)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

RTI (ReTurn from Interrupt)

RTS (ReTurn from subroutine and Skip)

SBK (Set Bank flag)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

SC (Set Carry flag)

SCP (Set Port C)

SD (Set port D specified by register Y)

Instruction code	D9 Do												516	Number of words 1	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	0	1	0		0	1					
Operation:	$\begin{aligned} & (D(Y)) \leftarrow 1 \\ & (Y)=0 \text { to } 9 \end{aligned}$													Grouping:	Input/Output operation		
														Description:	Sets (1) to a bit of port D specified by register Y .		

SEA n (Skip Equal, Accumulator with immediate data n)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

SEAM (Skip Equal, Accumulator with Memory)

SNZ1 (Skip if Non Zero condition of external 1 interrupt request flag)

Operation: $\quad \mathrm{V} 11=0:(E X F 1)=1$?
After skipping, (EXF1) $\leftarrow 0$
V11 = 1: SNZ1 = NOP
(V11 : bit 1 of the interrupt control register V 1)

Grouping: Interrupt operation
Description: When V11 = 0 : Skips the next instruction when external 1 interrupt request flag EXF1 is " 1 ." After skipping, clears (0) to the EXF1 flag. When the EXF1 flag is " 0 ," executes the next instruction.
When $\mathrm{V} 11=1$: This instruction is equivalent to the NOP instruction.

SNZIO (Skip if Non Zero condition of external 0 Interrupt input pin)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

SNZI1 (Skip if Non Zero condition of external 1 Interrupt input pin)

SNZP (Skip if Non Zero condition of Power down flag)

SNZT1 (Skip if Non Zero condition of Timer 1 interrupt request flag)

SNZT2 (Skip if Non Zero condition of Timer 2 interrupt request flag)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

SNZT3 (Skip if Non Zero condition of Timer 3 interrupt request flag)

SNZT4 (Skip if Non Zero condition of Timer 4 inerrupt request flag)

Instruction code	D9 Do													Number of words	Number of cycles	Flag CY	Skip condition			
	1	0	1	0	0	0	0	0	1	12	2	8	316							
Operation:	$\mathrm{V} 23=0:(\mathrm{T} 4 \mathrm{~F})=1$?													Grouping: Timer operation						
	(V23 = bit 3 of interrupt control register V 2)													Description	When V23 $=0$: Skips the next instruction when timer 4 interrupt request flag T4F is "1." After skipping, clears (0) to the T4F					
															flag. When the T4F flag is " 0 ," executes the next instruction.					
															When $\mathrm{V} 23=1$: This instruction is equiva-					

SNZT5 (Skip if Non Zero condition of Timer 5 inerrupt request flag)

SVDE (Set Voltage Detector Enable flag)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

SZB j (Skip if Zero, Bit)

SZC (Skip if Zero, Carry flag)

SZD (Skip if Zero, port D specified by register Y)

T1AB (Transfer data to timer 1 and register R1 from Accumulator and register B)

Instruction code	D9									Do				$\begin{aligned} & \text { Number of } \\ & \text { words } \end{aligned}$	Number of cycles	Flag CY	Skip condition		
	1	0	0		1	1	0	0	0	$0{ }_{2}$	2	3	$0{ }_{16}$						
Operation:	$(\mathrm{T} 17-\mathrm{T} 14) \leftarrow(\mathrm{B})$													Grouping: Timer operation					
	$($ R17-R14) $\leftarrow(\mathrm{B})$													Description	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1. Transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1.				
	$(\mathrm{T} 13-\mathrm{T} 10) \leftarrow(\mathrm{A})$																		
	$(\mathrm{R13-R10}) \leftarrow(\mathrm{A})$																		

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

T2AB (Transfer data to timer 2 and register R2 from Accumulator and register B)

T3AB (Transfer data to timer 3 and register R3 from Accumulator and register B)

T4AB (Transfer data to timer 4 and register R4L from Accumulator and register B)

T4HAB (Transfer data to register R4H from Accumulator and register B)

Instruction code	D9 Do													Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	1	1	0	1	1	$1{ }_{2}$	2	3	716				
Operation:	$\begin{aligned} & (\mathrm{R} 4 \mathrm{H} 7-\mathrm{R} 4 \mathrm{H} 4) \leftarrow(\mathrm{B}) \\ & (\mathrm{R} 4 \mathrm{H} 3-\mathrm{R} 4 \mathrm{H} 0) \leftarrow(\mathrm{A}) \end{aligned}$													Grouping:	Timer operation		
														Description:	Transfers the contents of register B to the high-order 4 bits of timer 4 and timer 4 reload register R4H. Transfers the contents of register A to the low-order 4 bits of timer 4 and timer 4 reload register R4H.		

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAB (Transfer data to Accumulator from register B)

TAB1 (Transfer data to Accumulator and register B from timer 1)

Operation: $\quad(B) \leftarrow(T 17-T 14)$
$(\mathrm{A}) \leftarrow(\mathrm{T} 13-\mathrm{T} 10)$

Grouping: Timer operation
Description: Transfers the high-order 4 bits (T17-T14) of timer 1 to register B.
Transfers the low-order 4 bits (T13-T10) of timer 1 to register A.

TAB2 (Transfer data to Accumulator and register B from timer 2)

Instruction code	D9									Do			
	1	0	0	1	1	1	0	0	0	1	2	7	1

Operation: $\quad(B) \leftarrow(T 27-T 24)$
$(\mathrm{A}) \leftarrow(\mathrm{T} 23-\mathrm{T} 20)$

Number of words	Number of cycles	Flag CY	Skip condition
1	1	-	-
Grouping: Timer operation	Timer operation		
Description:	Transfers the high-order 4 bits (T27-T24) of timer 2 to register B. Transfers the low-order 4 bits (T23-T20) of timer 2 to register A.		

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAB3 (Transfer data to Accumulator and register B from timer 3)

TAB4 (Transfer data to Accumulator and register B from timer 4)

TABE (Transfer data to Accumulator and register B from register E)

Operation: $\quad(\mathrm{B}) \leftarrow\left(\mathrm{E}_{7}-\mathrm{E}_{4}\right)$
$(\mathrm{A}) \leftarrow\left(\mathrm{E}_{3}-\mathrm{E} 0\right)$

Grouping: Register to register transfer
Description: Transfers the high-order 4 bits (E7-E4) of register E to register B , and low-order 4 bits of register E to register A .

TABP p (Transfer data to Accumulator and register B from Program memory in page p)

Operation: $\quad(S P) \leftarrow(S P)+1$
$(\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC})$
$($ РСН $) \leftarrow$ p
$(\mathrm{PCL}) \leftarrow(\mathrm{DR} 2-\mathrm{DR} 0, \mathrm{~A} 3-\mathrm{A} 0)$
$(\mathrm{B}) \leftarrow(\mathrm{ROM}(\mathrm{PC})) 7-4$
$($ A $) \leftarrow($ ROM $(P C)) 3-0$
$(\mathrm{PC}) \leftarrow(\mathrm{SK}(\mathrm{SP}))$
$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$

Description: Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p.
The pages which can be referred as follows; after the SBK instruction: 64 to 127 after the RBK instruction: 0 to 63 after system is released from reset or returned from power down: 0 to 63.
Note: p is 0 to 63 for M34554M8, and p is 0 to 95 for M34554MC, and p is 0 to 127 for M34554ED. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used.

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TABPS (Transfer data to Accumulator and register B from PreScaler)

TAD (Transfer data to Accumulator from register D)

TAl1 (Transfer data to Accumulator from register I1)

TAI2 (Transfer data to Accumulator from register I2)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAK0 (Transfer data to Accumulator from register K0)

TAK1 (Transfer data to Accumulator from register K1)

TAK2 (Transfer data to Accumulator from register K2)

Instruction code	D9									Do				$\begin{aligned} & \text { Number of } \\ & \text { words } \end{aligned}$	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	1	1	0	1		2	5	A ${ }_{16}$				
Operation:	$(\mathrm{A}) \leftarrow$ (K2)													Grouping: Input/Output operation			
														Description:	Transfers the contents of key-on wakeup control register K2 to register A.		

TAL1 (Transfer data to Accumulator from register L1)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAM \mathbf{j} (Transfer data to Accumulator from Memory)

TAMR (Transfer data to Accumulator from register MR)

TAPU0 (Transfer data to Accumulator from register PU0)

TAPU1 (Transfer data to Accumulator from register PU1)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TASP (Transfer data to Accumulator from Stack Pointer)

TAV1 (Transfer data to Accumulator from register V1)

TAV2 (Transfer data to Accumulator from register V2)

TAW1 (Transfer data to Accumulator from register W1)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAW2 (Transfer data to Accumulator from register W2)

TAW3 (Transfer data to Accumulator from register W3)

Instruction code	D9									Do			D ${ }_{16}$	$\begin{array}{c}\text { Number of } \\ \text { words }\end{array}$	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	0	1	1	0		2	4					
Operation:	$(\mathrm{A}) \leftarrow(\mathrm{W} 3)$													Grouping: Timer operation			
														Description:	Transfers the contents of timer control register W3 to register A.		

TAW4 (Transfer data to Accumulator from register W4)

TAW5 (Transfer data to Accumulator from register W5)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAW6 (Transfer data to Accumulator from register W6)

TAX (Transfer data to Accumulator from register X)

TAY (Transfer data to Accumulator from register Y)

Instruction code	D9									Do					Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	1	1	1		0	1						
															1	1	-	-

Operation: $\quad(\mathrm{A}) \leftarrow(\mathrm{Y})$

Grouping: Register to register transfer
Description: Transfers the contents of register Y to register A.

TAZ (Transfer data to Accumulator from register Z)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TBA (Transfer data to register B from Accumulator)

TDA (Transfer data to register D from Accumulator)

TEAB (Transfer data to register E from Accumulator and register B)

TFROA (Transfer data to register FR0 from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TFR1A (Transfer data to register FR1 from Accumulator)

TFR2A (Transfer data to register FR2 from Accumulator)

Instruction code	D9									Do				$\begin{gathered} \text { Number of } \\ \text { words } \end{gathered}$	Number of cycles	Flag CY	Skip condition
	1	0	0	0	1	0	1	0	1		2	2	A				
														1	1	-	-
Operation:	$($ FR2 $) \leftarrow($ A $)$													Grouping: Input/Output operation			
														Description: Transfers the contents of register A to the port output structure control register FR2.			

TI1A (Transfer data to register I1 from Accumulator)

Instruction code	D9									Do				$\begin{gathered} \text { Number of } \\ \text { words } \\ \hline \end{gathered}$	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	1	0	1	1		2	1	716				
Operation:	$($ I1) $\leftarrow($ A $)$													Grouping: Interrupt operation			
														Description: Transfers the contents of register A to rupt control register 11 .			

TI2A (Transfer data to register I2 from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TK0A (Transfer data to register K0 from Accumulator)

TK1A (Transfer data to register K1 from Accumulator)

TK2A (Transfer data to register K2 from Accumulator)

TL1A (Transfer data to register L1 from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TL2A (Transfer data to register L2 from Accumulator)																	
Instruction code	D9 Do													Number of words	Number of cycles 1	Flag CY	Skip condition
	1	0	0	0	0	0	1	0	1	$1{ }_{2}$	2	0	B 16				
Operation:	$(\mathrm{L} 2) \leftarrow(\mathrm{A})$													Grouping: Description	LCD operation		
															Transfers control re	he conten ister L2.	f register A to LCD

TL3A (Transfer data to register L3 from Accumulator)

TLCA (Transfer data to timer LC and register RLC from Accumulator)

Instruction code	D9									Do				Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	0	1	1	0		2	0	D 16	words			
Operation:	$\begin{aligned} & (\mathrm{LC}) \leftarrow(\mathrm{A}) \\ & (\mathrm{RLC}) \leftarrow(\mathrm{A}) \end{aligned}$													Grouping:	Timer operation		
														Description:	Transfers the contents of register A to timer LC and reload register RLC.		

TMA j (Transfer data to Memory from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TMRA (Transfer data to register MR from Accumulator)

TPAA (Transfer data to register PA from Accumulator)

TPSAB (Transfer data to Pre-Scaler from Accumulator and register B)

TPU0A (Transfer data to register PU0 from Accumulator)

Instruction code	D9									Do				Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	1	0	1	1	0		2	2	D ${ }_{16}$	words	cycles	-	
Operation:	$(\mathrm{PUO}) \leftarrow(\mathrm{A})$													Grouping:	Input/Output operation		
														Description:	Transfers the contents of register A to pullup control register PUO.		

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TPU1A (Transfer data to register PU1 from Accumulator)

TR1AB (Transfer data to register R1 from Accumulator and register B)

TR3AB (Transfer data to register R3 from Accumulator and register B)

TV1A (Transfer data to register V1 from Accumulator)

Instruction code	D9									Do				Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	1	1	1	1		0	3	F_{16}	words	cycles	-	-
Operation:	$(\mathrm{V} 1) \leftarrow(\mathrm{A})$													Grouping:	Interrupt operation		
														Description:	Transfers the contents of register A to interrupt control register V1.		

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TV2A (Transfer data to register V2 from Accumulator)

TW1A (Transfer data to register W1 from Accumulator)

TW2A (Transfer data to register W2 from Accumulator)

TW3A (Transfer data to register W3 from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TW4A (Transfer data to register W4 from Accumulator)

Instruction code	D9									Do				Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	1	0	0	0	12	2	1	116				
														1	1	-	-
Operation:	$(\mathrm{W} 4) \leftarrow(\mathrm{A})$													Grouping: Timer operation			
														Description:	Transfers the contents of register A to timer control register W4.		

TW5A (Transfer data to register W5 from Accumulator)

Instruction code	D9 Do														Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	1	0	0	1		2	1	2					
															1	1	-	-
Operation:	$(\mathrm{W} 5) \leftarrow(\mathrm{A})$														Grouping: Timer operation			
															Description: Transfers the contents of register A to timer control register W5.			

TW6A (Transfer data to register W6 from Accumulator)

TYA (Transfer data to register Y from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

WRST (Watchdog timer ReSeT)

XAM j (eXchange Accumulator and Memory data)

XAMD j (eXchange Accumulator and Memory data and Decrement register Y and skip)

Operation:	$(A) \longleftrightarrow(M(D P))$
	$(X) \leftarrow(X) \operatorname{EXOR}(\mathrm{j})$
	$\mathrm{j}=0$ to 15
	$(\mathrm{Y}) \leftarrow(\mathrm{Y})-1$

Description: After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . Subtracts 1 from the contents of register Y . As a result of subtraction, when the contents of register Y is 15 , the next instruction is skipped. When the contents of register Y is not 15. the next instruction is executed.
XAMI j (eXchange Accumulator and Memory data and Increment register Y and skip)

Instruction code	Ds									D					
	1	0	1	1	1	0	j	j	j	j		2	E	j	

Operation: $\quad(\mathrm{A}) \longleftrightarrow(\mathrm{M}(\mathrm{DP}))$
$(\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j})$
$j=0$ to 15
$(Y) \leftarrow(Y)+1$

Number of words	Number of cycles	Flag CY	Skip condition
1	1	-	$(\mathrm{Y})=0$
Grouping:	RAM to register transfer		
Description:	After exchanging the contents of M(DP) with the contents of register A, an exclusive		
	OR operation is performed between regis- ter X and the value in the immediate field,		
	and stores the result in register X. Adds 1 to the contents of register Y . As a re- sult of addition, when the contents of register Y is 0 , the next instruction is skipped. when the contents of register Y is not 0 , the next instruction is executed.		

MACHINE INSTRUCTIONS (INDEX BY TYPES)

Parameter Type of instructions	Mnemonic	Instruction code													Function
			D8	D7	D6	D5	D4	D3	D2	D1	Do	Hexadecimal notation			
	TAB	0	0	0	0	0	1	1	1	1	0	01 E	1	1	$(A) \leftarrow(B)$
	TBA	0	0	0	0	0	0	1	1	1	0	0 O E	1	1	$(B) \leftarrow(A)$
	TAY	0	0	0	0	0	1	1	1	1	1	01 F	1	1	$(\mathrm{A}) \leftarrow(\mathrm{Y})$
	TYA	0	0	0	0	0	0	1	1	0	0	$0 \quad 0 \mathrm{C}$	1	1	$(\mathrm{Y}) \leftarrow(\mathrm{A})$
	TEAB	0	0	0	0	0	1	1	0	1	0	01 A	1	1	$\begin{aligned} & (\mathrm{E} 7-\mathrm{E} 4) \leftarrow(\mathrm{B}) \\ & (\mathrm{E} 3-\mathrm{E} 0) \leftarrow(\mathrm{A}) \end{aligned}$
	TABE	0	0	0	0	1	0	1	0	1	0	02 A	1	1	$\begin{aligned} & (B) \leftarrow\left(E_{7}-E_{4}\right) \\ & (A) \leftarrow\left(E_{3}-E_{0}\right) \end{aligned}$
	TDA	0	0	0	0	1	0	1	0	0	1	029	1	1	$(\mathrm{DR} 2-\mathrm{DR} 0) \leftarrow\left(\mathrm{A}_{2}-\mathrm{A} 0\right)$
	TAD	0	0	0	1	0	1	0	0	0	1	$\begin{array}{lll}0 & 5 & 1\end{array}$	1	1	$\begin{aligned} & \left(\mathrm{A}_{2}-\mathrm{A}_{0}\right) \leftarrow(\mathrm{DR} 2-\mathrm{DR} 0) \\ & \left(\mathrm{A}_{3}\right) \leftarrow 0 \end{aligned}$
	TAZ	0	0	0	1	0	1	0	0	1	1	053	1	1	$\begin{aligned} & \left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right) \leftarrow\left(\mathrm{Z}_{1}, \mathrm{Z}_{0}\right) \\ & (\mathrm{A} 3, \mathrm{~A} 2) \leftarrow 0 \end{aligned}$
	TAX	0	0	0	1	0	1	0	0	1	0	$0 \quad 52$	1	1	$(\mathrm{A}) \leftarrow(\mathrm{X})$
	TASP	0	0	0	1	0	1	0	0	0	0	050	1	1	$\begin{aligned} & \left(\mathrm{A}_{2}-\mathrm{A} 0\right) \leftarrow(\mathrm{SP} 2-\mathrm{SP} 0) \\ & (\mathrm{A} 3) \leftarrow 0 \end{aligned}$
	LXY x, y	1	1	x3	x2	x1	x0	y3	y2	y1	yo	$3 \times \mathrm{y}$	1	1	(X) $\leftarrow x x=0$ to 15 $(Y) \leftarrow y y=0$ to 15
	LZ z	0	0	0	1	0	0	1	0	Z1	zo	$\begin{array}{lll} 0 & 4 & 8 \\ & \\ +Z \end{array}$	1	1	$(\mathrm{Z}) \leftarrow \mathrm{zz}=0$ to 3
	INY	0	0	0	0	0	1	0	0	1	1	$0 \quad 13$	1	1	$(\mathrm{Y}) \leftarrow(\mathrm{Y})+1$
	DEY	0	0	0	0	0	1	0	1	1	1	$\begin{array}{lll}0 & 1 & 7\end{array}$	1	1	$(\mathrm{Y}) \leftarrow(\mathrm{Y})-1$
	TAM j	1	0	1	1	0	0	j	j	j	j	2 C j	1	1	$\begin{aligned} & (A) \leftarrow(M(D P)) \\ & (X) \leftarrow(X) \operatorname{EXOR}(j) \\ & j=0 \text { to } 15 \end{aligned}$
	XAM j	1	0	1	1	0	1	j	j	j	j	2 D j	1	1	$(\mathrm{A}) \leftarrow \rightarrow(\mathrm{M}(\mathrm{DP}))$ $(\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j})$ $j=0$ to 15
	XAMD j	1	0	1	1	1	1	j	j	j	j	2 F j	1	1	$\begin{aligned} & (A) \leftarrow \rightarrow(M(D P)) \\ & (X) \leftarrow(X) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \\ & (\mathrm{Y}) \leftarrow(\mathrm{Y})-1 \end{aligned}$
	XAMI j	1	0	1	1	1	0	j	j	j	j	2 E j	1	1	$\begin{aligned} & (A) \leftarrow \rightarrow(\mathrm{M}(\mathrm{DP})) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \\ & (\mathrm{Y}) \leftarrow(\mathrm{Y})+1 \end{aligned}$
	TMA j	1	0	1	0	1	1	j	j	j	j	2 B j	1	1	$\begin{aligned} & (M(D P)) \leftarrow(A) \\ & (X) \leftarrow(X) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \end{aligned}$

Skip condition		Datailed description
	- - - - - - -	Transfers the contents of register B to register A. Transfers the contents of register A to register B. Transfers the contents of register Y to register A . Transfers the contents of register A to register Y. Transfers the contents of register B to the high-order 4 bits (E7-E4) of register E, and the contents of register A to the low-order 4 bits (E3-E0) of register E. Transfers the high-order 4 bits (E7-E4) of register E to register B, and low-order 4 bits (E3-E0) of register E to register A. Transfers the contents of the low-order 3 bits ($A_{2}-A_{0}$) of register A to register D. Transfers the contents of register D to the low-order 3 bits $(A 2-A 0)$ of register A. Transfers the contents of register Z to the low-order 2 bits $(A 1, A 0)$ of register A. Transfers the contents of register X to register A. Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2-A0) of register A.
Continuous description - $(Y)=0$ $(Y)=15$	- - - -	Loads the value x in the immediate field to register X , and the value y in the immediate field to register Y . When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped. Loads the value z in the immediate field to register Z. Adds 1 to the contents of register Y . As a result of addition, when the contents of register Y is 0 , the next instruction is skipped. When the contents of register Y is not 0 , the next instruction is executed. Subtracts 1 from the contents of register Y . As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15 , the next instruction is executed.
$(Y)=15$ $(Y)=0$	- - - - - - -	After transferring the contents of $M(D P)$ to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . Subtracts 1 from the contents of register Y . As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15 , the next instruction is executed. After exchanging the contents of $\mathrm{M}(\mathrm{DP})$ with the contents of register A , an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y . As a result of addition, when the contents of register Y is 0 , the next instruction is skipped. When the contents of register Y is not 0 , the next instruction is executed. After transferring the contents of register A to $M(D P)$, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X .

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note: p is 0 to 63 for M34554M8,
p is 0 to 95 for M34554MC and
p is 0 to 127 for M34554ED.

Skip condition		Datailed description
Continuous description	-	Loads the value n in the immediate field to register A . When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped. Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DRo A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used. The pages which can be referred as follows; after the SBK instruction: 64 to 127 after the RBK instruction: 0 to 63 after system is released from reset or returned from power down: 0 to 63.
-	-	Adds the contents of $\mathrm{M}(\mathrm{DP})$ to register A . Stores the result in register A . The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	-	Adds the value n in the immediate field to register A , and stores a result in register A . The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	-	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	-	Takes the OR operation between the contents of register A and the contents of $M(D P)$, and stores the result in register A.
-	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
$(C Y)=0$	-	Skips the next instruction when the contents of carry flag CY is "0."
-		Stores the one' s complement for register A' s contents in register A.
-	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
-	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	-	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
$\begin{gathered} (M j(D P))=0 \\ j=0 \text { to } 3 \end{gathered}$	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of $\mathrm{M}(\mathrm{DP})$ is " 0 ." Executes the next instruction when the contents of bit j of $\mathrm{M}(\mathrm{DP})$ is " 1. ."
$(\mathrm{A})=(\mathrm{M}(\mathrm{DP}))$	-	Skips the next instruction when the contents of register A is equal to the contents of $M(D P)$. Executes the next instruction when the contents of register A is not equal to the contents of M (DP).
$(\mathrm{A})=\mathrm{n}$	-	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.

MACHINE INSTRUCTIONS (continued)

	Mnemonic						struc	ction	cod						
		D9	D8	D7	D6	D5	D4	D3	D2	D1	Do	Hexadecimal notation	$\stackrel{1}{2}^{3}$	${ }_{2}{ }_{2}$	
	B a	0	1	1	a6	a5	a4	аз	a2	a 1	ao	$\begin{aligned} & 18 \text { a } \\ & +\mathrm{a} \end{aligned}$	1	1	$(\mathrm{PCL}) \leftarrow \mathrm{a}-\mathrm{a} 0$
	BL p, a	0	0						p2	p1	po	$0 \underset{+p}{0} \underset{\sim}{E}$	2	2	$\begin{aligned} & (\mathrm{PCH}) \leftarrow \mathrm{p}(\text { Note }) \\ & (\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{ao} \end{aligned}$
				p5	a6	a5	a4	a3	a2	a1	a0	$\begin{aligned} & 2 p a \\ & +p+a \end{aligned}$			
	BLA p	0 1	0	$\begin{aligned} & 0 \\ & \text { p5 } \end{aligned}$	0 p4	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	p3	0 p2	0 p1	0 po	$\begin{array}{lll} 0 & 1 & 0 \\ 2 & p & p \\ +p \end{array}$	2	2	(РCH) $\leftarrow \mathrm{p}$ (Note) $(\mathrm{PCL}) \leftarrow(\mathrm{DR} 2-\mathrm{DR} 0, \mathrm{~A} 3-\mathrm{A} 0)$
	BM a	0	1	0	a6	as	a4	аз	a2	a1	ao		1	1	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\ & (\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC}) \\ & (\mathrm{PCH}) \leftarrow 2 \\ & (\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{a} 0 \end{aligned}$
	BML p, a	0 1	0 p6	1 p5	1 a6	0 a5	p4 a4	р3 аз	p2 a2	p1 a1	po ao	$\begin{aligned} & 0 \quad C_{+p} p \\ & 2 p p^{2} \\ & +p+a \end{aligned}$	2	2	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\ & (\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC}) \\ & (\mathrm{PCH}) \leftarrow \mathrm{p}(\mathrm{Note}) \\ & (\mathrm{PCL}) \leftarrow \mathrm{a}-\mathrm{ao} \end{aligned}$
	BMLA p		0 p6	0 p5	0 p4	1	1	0 p3	$\begin{aligned} & 0 \\ & \text { p2 } \end{aligned}$	0 p1	0 po		2	2	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$ $(\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC})$ $(\mathrm{PCH}) \leftarrow \mathrm{p}$ (Note) $(P C L) \leftarrow\left(\right.$ DR2-DRo $\left._{2}, \mathrm{~A}_{3}-\mathrm{A}_{0}\right)$
	RTI	0	0	0	1	0	0	0	1	1	0	046	1	1	$\begin{aligned} & (\mathrm{PC}) \leftarrow(\mathrm{SK}(\mathrm{SP})) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \end{aligned}$
	RT	0	0	0	1	0	0	0	1	0	0	044	1	2	$\begin{aligned} & (\mathrm{PC}) \leftarrow(\mathrm{SK}(\mathrm{SP})) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \end{aligned}$
	RTS	0	0	0	1	0	0	0	1	0	1	045	1	2	$\begin{aligned} & (\mathrm{PC}) \leftarrow(\mathrm{SK}(\mathrm{SP})) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \end{aligned}$

Note: p is 0 to 63 for M34554M8,
p is 0 to 95 for M34554MC and p is 0 to 127 for M34554ED.

\begin{tabular}{|c|c|c|}
\hline Skip condition \& \& Datailed description

\hline \& -
-

- \& | Branch within a page : Branches to address a in the identical page. |
| :--- |
| Branch out of a page : Branches to address a in page p. |
| Branch out of a page : Branches to address (DR2 DR1 DRo $\left.A_{3} A_{2} A 1 A 0\right) 2$ specified by registers D and A in page p . |

\hline -

- \& -
-
-
- \& | Call the subroutine in page 2 : Calls the subroutine at address a in page 2. |
| :--- |
| Call the subroutine: Calls the subroutine at address a in page p. |
| Call the subroutine: Calls the subroutine at address (DR2 DR1 DRo A3 A2 A1 A0)2 specified by registers D and A in page p. |

\hline Skip at uncondition \& -

-
- \& | Returns from interrupt service routine to main routine. |
| :--- |
| Returns each value of data pointer ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt. |
| Returns from subroutine to the routine called the subroutine. |
| Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition. |

\hline
\end{tabular}

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Parameter Type of instructions	Mnemonic	Instruction code													Function
			D8	D7	D6	D5	D4	D3	D2	D1	Do	Hexadecimal notation			
	DI	0	0	0	0	0	0	0	1	0	0	$0 \quad 0 \quad 4$	1	1	$($ INTE $) \leftarrow 0$
	EI	0	0	0	0	0	0	0	1	0	1	$0 \quad 05$	1	1	$(\mathrm{INTE}) \leftarrow 1$
	SNZ0	0	0	0	0	1	1	1	0	0	0	038	1	1	$\begin{aligned} & \text { V10 = 0: }(E X F 0)=1 ? \\ & \text { After skipping, }(E X F O) \leftarrow 0 \\ & \text { V10 }=1: \text { SNZ0 = NOP } \end{aligned}$
	SNZ1	0	0	0	0	1	1	1	0	0	1	039	1	1	$\begin{aligned} & \text { V11 = } 0:(\text { EXF1 })=1 ? \\ & \text { After skipping, }(\text { EXF1 }) \leftarrow 0 \\ & \text { V11 }=1: \text { SNZ1 = NOP } \end{aligned}$
	SNZIO	0	0	0	0	1	1	1	0	1	0	03 A	1	1	$112=1:($ INTO $)=$ "H" ?
															I12 = $0:($ INTO $)=$ "L" ?
$\begin{aligned} & \bar{\circ} \mathrm{O} \end{aligned}$	SNZI1	0	0	0	0	1	1	1	0	1	1	03 B	1	1	$122=1:($ INT1 $)=$ "H" ?
5															$\mathrm{I} 22=0$: (INT1) = "L" ?
	TAV1	0	0	0	1	0	1	0	1	0	0	$0 \quad 54$	1	1	$(\mathrm{A}) \leftarrow(\mathrm{V} 1)$
	TV1A	0	0	0	0	1	1	1	1	1	1	03 F	1	1	$(\mathrm{V} 1) \leftarrow(\mathrm{A})$
	TAV2	0	0	0	1	0	1	0	1	0	1	055	1	1	$(\mathrm{A}) \leftarrow$ (V 2$)$
	TV2A	0	0	0	0	1	1	1	1	1	0	03 E	1	1	$(\mathrm{V} 2) \leftarrow(\mathrm{A})$
	TAI1	1	0	0	1	0	1	0	0	1	1	253	1	1	$(\mathrm{A}) \leftarrow(\mathrm{l} 1)$
	TI1A	1	0	0	0	0	1	0	1	1	1		1	1	$(11) \leftarrow(A)$
	TAI2	1	0	0	1	0	1	0	1	0	0	254	1	1	$(\mathrm{A}) \leftarrow$ (I 2$)$
	TI2A	1	0	0	0	0	1	1	0	0	0	218	1	1	$(\mathrm{I} 2) \leftarrow(\mathrm{A})$
	TPAA	1	0	1	0	1	0	1	0	1	0	2 A A	1	1	$(\mathrm{PA} 0) \leftarrow(\mathrm{A} 0)$
	TAW1	1	0	0	1	0	0	1	0	1	1	24 B	1	1	$(\mathrm{A}) \leftarrow(\mathrm{W} 1)$
	TW1A	1	0	0	0	0	0	1	1	1	0	20 E	1	1	$(\mathrm{W} 1) \leftarrow(\mathrm{A})$
	TAW2	1	0	0	1	0	0	1	1	0	0	24 C	1	1	$(\mathrm{A}) \leftarrow(\mathrm{W} 2)$
	TW2A	1	0	0	0	0	0	1	1	1	1	20 F	1	1	$(\mathrm{W} 2) \leftarrow(\mathrm{A})$
	TAW3	1	0	0	1	0	0	1	1	0	1	24 D	1	1	$(\mathrm{A}) \leftarrow(\mathrm{W} 3)$
	TW3A	1	0	0	0	0	1	0	0	0	0	210	1	1	$(\mathrm{W} 3) \leftarrow(\mathrm{A})$
	TAW4	1	0	0	1	0	0	1	1	1	0	24 E	1	1	$(\mathrm{A}) \leftarrow(\mathrm{W} 4)$
	TW4A	1	0	0	0	0	1	0	0	0	1	211	1	1	$(\mathrm{W} 4) \leftarrow(\mathrm{A})$
	TAW5	1	0	0	1	0	0	1	1	1	1	24 F	1	1	$(\mathrm{A}) \leftarrow(\mathrm{W} 5)$
	TW5A	1	0	0	0	0	1	0	0	1	0	212	1	1	$(\mathrm{W} 5) \leftarrow(\mathrm{A})$

Skip condition		Datailed description
-	-	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
-	-	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
$V 10=0:(E X F O)=1$	-	When V10 $=0$: Skips the next instruction when external 0 interrupt request flag EXF0 is "1." After skipping, clears (0) to the EXF0 flag. When the EXF0 flag is "0," executes the next instruction. When $\mathrm{V} 10=1$: This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
$\mathrm{V} 11=0:(E X F 1)=1$	-	When V11 = 0 : Skips the next instruction when external 1 interrupt request flag EXF1 is " 1 ." After skipping, clears (0) to the EXF1 flag. When the EXF1 flag is " 0 ," executes the next instruction. When $\mathrm{V} 11=1$: This instruction is equivalent to the NOP instruction. (V11: bit 1 of interrupt control register V 1)
$\begin{gathered} (\text { INTO })=" \mathrm{H} " \\ \text { However, } 112=1 \end{gathered}$	-	When I12 = 1 : Skips the next instruction when the level of INTO pin is "H." (I12: bit 2 of interrupt control register I1)
$\begin{gathered} (\text { INTO })=" L " \\ \text { However, } \mathrm{I} 12=0 \end{gathered}$	-	When $112=0$: Skips the next instruction when the level of INTO pin is "L."
$\begin{gathered} (\text { INT1 })=" \mathrm{H} " \\ \text { However, } 122=1 \end{gathered}$	-	When $\mathrm{I} 22=1$: Skips the next instruction when the level of INT1 pin is "H." (I22: bit 2 of interrupt control register I2)
$\begin{gathered} (\text { INT1 })=" L " \\ \text { However, } 122=0 \end{gathered}$	-	When $\mathrm{I} 22=0$: Skips the next instruction when the level of INT1 pin is "L."
-	-	Transfers the contents of interrupt control register V1 to register A.
-	-	Transfers the contents of register A to interrupt control register V1.
-	-	Transfers the contents of interrupt control register V2 to register A.
-	-	Transfers the contents of register A to interrupt control register V2.
-	-	Transfers the contents of interrupt control register I1 to register A.
-	-	Transfers the contents of register A to interrupt control register I1.
-	-	Transfers the contents of interrupt control register 12 to register A.
-	-	Transfers the contents of register A to interrupt control register I2.
-	-	Transfers the contents of register A to timer control register PA.
-	-	Transfers the contents of timer control register W1 to register A.
-	-	Transfers the contents of register A to timer control register W1.
-	-	Transfers the contents of timer control register W2 to register A.
-	-	Transfers the contents of register A to timer control register W2.
-	-	Transfers the contents of timer control register W3 to register A.
-	-	Transfers the contents of register A to timer control register W3.
-	-	Transfers the contents of timer control register W4 to register A.
-	-	Transfers the contents of register A to timer control register W4.
-	-	Transfers the contents of timer control register W5 to register A.
-	-	Transfers the contents of register A to timer control register W5.

Skip condition		Datailed description
-	-	Transfers the contents of timer control register W6 to register A.
-	-	Transfers the contents of register A to timer control register W6.
-	-	Transfers the high-order 4 bits of prescaler to register B, and transfers the low-order 4 bits of prescaler to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS, and transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.
-	-	Transfers the high-order 4 bits of timer 1 to register B, and transfers the low-order 4 bits of timer 1 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1.
-	-	Transfers the high-order 4 bits of timer 2 to register B, and transfers the low-order 4 bits of timer 2 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2, and transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2.
-	-	Transfers the high-order 4 bits of timer 3 to register B, and transfers the low-order 4 bits of timer 3 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 3 and timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 and timer 3 reload register R3.
-	-	Transfers the high-order 4 bits of timer 4 to register B, and transfers the low-order 4 bits of timer 4 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 4 and timer 4 reload register R4L, and transfers the contents of register A to the low-order 4 bits of timer 4 and timer 4 reload register R4L.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 4 reload register R 4 H , and transfers the contents of register A to the low-order 4 bits of timer 4 reload register R4H.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 reload register R1.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 reload register R3.
-	-	Transfers the contents of timer 4 reload register R4L to timer 4.
-	-	Transfers the contents of register A to timer LC and timer LC reload register RLC.

Parameter Type of instructions	Mnemonic						stru	ction	cod				$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$	
		D9 D8 D7 D6 D5 D4 D3 D2 D1 Do $\begin{gathered}\text { Hexadecimal } \\ \text { notation }\end{gathered}$													
	SNZT1	1	0	1	0	0				0	0	28	1	1	$\mathrm{V} 12=0:(\mathrm{T} 1 \mathrm{~F})=1$? After skipping, $(\mathrm{T} 1 \mathrm{~F}) \leftarrow 0 \quad \mathrm{~V} 12=1: \mathrm{NOP}$
	SNZT2	1	0	1	0	0	0	0	0	0	1	281	1	1	V13 $=0:(\mathrm{T} 2 \mathrm{~F})=1$? After skipping, $(\mathrm{T} 2 \mathrm{~F}) \leftarrow 0 \quad \mathrm{~V} 13=1: \mathrm{NOP}$
	SNZT3	1	0	1	0	0	0	0	0	1	0	282	1	1	$\begin{aligned} & \mathrm{V} 20=0:(\mathrm{T} 3 \mathrm{~F})=1 ? \\ & \text { After skipping, }(\mathrm{T} 3 \mathrm{~F}) \leftarrow 0 \quad \mathrm{~V} 20=1: \mathrm{NOP} \end{aligned}$
	SNZT4	1	0	1	0					1	1	283	1	1	$\begin{aligned} & \mathrm{V} 23=0:(\mathrm{T} 4 \mathrm{~F})=1 ? \\ & \text { After skipping, }(\mathrm{T} 4 \mathrm{~F}) \leftarrow 0 \quad \mathrm{~V} 23=1: \mathrm{NOP} \end{aligned}$
	SNZT5	1	0	1	0	0	0	0	1	0	0	284	1	1	$\begin{aligned} & \text { V21 }=0:(\mathrm{T} 5 \mathrm{~F})=1 ? \\ & \text { After skipping, }(\mathrm{T} 5 \mathrm{~F}) \leftarrow 0 \quad \text { V21 }=1: \mathrm{NOP} \end{aligned}$
	IAP0	1	0	0	1		0	0	0	0	0	260	1	1	$(\mathrm{A}) \leftarrow(\mathrm{P} 0)$
	OPOA	1	0	0	0	1	0	0	0	0	0	220	1	1	$(\mathrm{P} 0) \leftarrow(\mathrm{A})$
	IAP1	1	0	0	1	1	0	0	0	0	1	261	1	1	$(\mathrm{A}) \leftarrow(\mathrm{P} 1)$
	OP1A	1	0	0	0	1	0	0	0	0	1	221	1	1	$(\mathrm{P} 1) \leftarrow(\mathrm{A})$
	IAP2	1	0	0	1	1	0	0	0	1	0	262	1	1	$(\mathrm{A}) \leftarrow(\mathrm{P} 2)$
	IAP3	1	0	0	1	1	0	0	0	1	1	263	1	1	$(\mathrm{A}) \leftarrow(\mathrm{P} 3)$
	CLD	0	0	0	0	0	1	0	0	0	1	011	1	1	(D) $\leftarrow 1$
	RD	0	0	0	0	0	1	0		0	0	014	1	1	$\begin{aligned} & (\mathrm{D}(\mathrm{Y})) \leftarrow 0 \\ & (\mathrm{Y})=0 \text { to } 9 \end{aligned}$
	SD	0	0	0	0	0	1	0	1	0	1	015	1	1	$\begin{aligned} & (D(Y)) \leftarrow 1 \\ & (Y)=0 \text { to } 9 \end{aligned}$
	SZD		0	0	0						0	024	1	1	$\begin{aligned} & (\mathrm{D}(\mathrm{Y}))=0 ? \\ & (\mathrm{Y})=0 \text { to } 7 \end{aligned}$
		0	0	0	0	1	0	1	0	1	1	02 B	1	1	
	RCP		0	1	0	0	0	1		0	0	28 C	1	1	(C) $\leftarrow 0$
	SCP	1	0	1	0	0	0	1	1	0	1	28 D	1	1	(C) $\leftarrow 1$
	TAPU0	1	0	0	1	0	1	0	1	1	1	257	1	1	$(\mathrm{A}) \leftarrow(\mathrm{PU} 0)$
	TPU0A	1	0	0	0	1	0	1	1	0	1	22 D	1	1	$(\mathrm{PUO}) \leftarrow(\mathrm{A})$
	TAPU1	1	0	0	1	0	1	1	1	1	0	25 E	1	1	$(\mathrm{A}) \leftarrow(\mathrm{PU1})$
	TPU1A	1	0	0	0	1	0	1	1	1	0	22 E	1	1	$(\mathrm{PU1}) \leftarrow(\mathrm{A})$

Skip condition		Datailed description
$\begin{aligned} & \mathrm{V} 12=0:(\mathrm{T} 1 \mathrm{~F})=1 \\ & \mathrm{~V} 13=0:(\mathrm{T} 2 \mathrm{~F})=1 \\ & \mathrm{~V} 20=0:(\mathrm{T} 3 \mathrm{~F})=1 \\ & \mathrm{~V} 23=0:(\mathrm{T} 4 \mathrm{~F})=1 \\ & \mathrm{~V} 21=0:(\mathrm{T} 5 \mathrm{~F})=1 \end{aligned}$	-	Skips the next instruction when the contents of bit 2 (V12) of interrupt control register V1 is " 0 " and the contents of T1F flag is " 1 ." After skipping, clears (0) to T1F flag. Skips the next instruction when the contents of bit 3 (V13) of interrupt control register V1 is " 0 " and the contents of T2F flag is " 1 ." After skipping, clears (0) to T2F flag. Skips the next instruction when the contents of bit 0 (V20) of interrupt control register V2 is " 0 " and the contents of T3F flag is " 1 ." After skipping, clears (0) to T3F flag. Skips the next instruction when the contents of bit 3 (V23) of interrupt control register V2 is " 0 " and the contents of T4F flag is " 1 ." After skipping, clears (0) to T4F flag. Skips the next instruction when the contents of bit 1 (V21) of interrupt control register V2 is " 0 " and the contents of T5F flag is " 1 ." After skipping, clears (0) to T5F flag.
	- - - - - - - - - - - - - - - - - -	Transfers the input of port P0 to register A. Outputs the contents of register A to port P0. Transfers the input of port P1 to register A. Outputs the contents of register A to port P1. Transfers the input of port P2 to register A. Transfers the input of port P3 to register A. Sets (1) to all port D. Clears (0) to a bit of port D specified by register Y . Sets (1) to a bit of port D specified by register Y. Skips the next instruction when a bit of port D specified by register Y is " 0 ." Executes the next instruction when a bit of port D specified by register Y is "1." Clears (0) to port C. Sets (1) to port C. Transfers the contents of pull-up control register PUO to register A. Transfers the contents of register A to pull-up control register PU0. Transfers the contents of pull-up control register PU1 to register A. Transfers the contents of register A to pull-up control register PU1.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note: * (SBK, RBK) cannot be used in the M34554M8.
The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 95 in the M34554MC.

INSTRUCTION CODE TABLE

$\$ 0$	D	000000	0000	100001	00001	000100	00010	000110	000	01000	0010	010	010	01100	001101	01110	001111		011000
D3-D	$\begin{gathered} \text { Hex. } \\ \text { notation } \end{gathered}$	00	01	02	03	04	05	06	07	08	09	OA	OB	OC	OD	OE	OF	10-17	18-1F
0000	0	NOP	BLA	$\begin{gathered} \text { SZB } \\ 0 \end{gathered}$	BMLA	RBK*	TASP	$\begin{gathered} \hline \text { A } \\ 0 \end{gathered}$	$\begin{gathered} \hline \text { LA } \\ 0 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 0 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 16 \end{gathered}$	$\begin{gathered} \hline \text { TABP } \\ 32^{*} \end{gathered}$	$\begin{array}{c\|} \hline \text { TABP } \\ 48^{*} \end{array}$	BML	BML	BL	BL	BM	B
0001	1	-	CLD	SZB	-	SBK*	TAD	$\begin{gathered} \hline \mathrm{A} \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { LA } \\ 1 \end{gathered}$	TABP	$\begin{gathered} \text { TABP } \\ 17 \end{gathered}$	$\begin{gathered} \hline \text { TABP } \\ 33^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 49^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0010	2	POF	-	$\begin{gathered} \text { SZB } \\ 2 \end{gathered}$	-	-	TAX	$\begin{aligned} & \mathrm{A} \\ & 2 \end{aligned}$	$\begin{gathered} \mathrm{LA} \\ 2 \end{gathered}$	$\begin{array}{c\|} \text { TABP } \\ 2 \end{array}$	$\begin{array}{\|c} \text { TABP } \\ 18 \end{array}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 34^{\star} \\ \hline \end{array}$	$\begin{gathered} \text { TABP } \\ 50^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0011	3	SNZP	INY	$\begin{gathered} \text { SZB } \\ 3 \end{gathered}$	-	-	TAZ	$\begin{aligned} & \mathrm{A} \\ & 3 \end{aligned}$	$\begin{gathered} \mathrm{LA} \\ 3 \end{gathered}$	$\begin{array}{c\|} \hline \text { TABP } \\ 3 \\ \hline \end{array}$	$\begin{gathered} \text { TABP } \\ 19 \end{gathered}$	$\begin{array}{\|c} \mathrm{TABP} \\ 35^{*} \\ \hline \end{array}$	$\begin{gathered} \text { TABP } \\ 51^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0100	4	DI	RD	SZD	-	RT	TAV1	$\begin{aligned} & \hline \text { A } \\ & 4 \end{aligned}$	$\begin{gathered} \mathrm{LA} \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { TABP } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 20 \end{gathered}$	$\begin{array}{c\|} \hline \text { TABP } \\ 36^{*} \end{array}$	$\begin{gathered} \text { TABP } \\ 52^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0101	5	El	SD	SEAn	-	RTS	TAV2	$\begin{aligned} & \hline \text { A } \\ & 5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { LA } \\ 5 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 5 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 21 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { TABP } \\ 37^{*} \\ \hline \end{array}$	$\begin{gathered} \text { TABP } \\ 53^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0110	6	RC	-	SEAM	-	RTI	-	$\begin{gathered} \text { A } \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { LA } \\ 6 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 6 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { TABP } \\ 22 \end{array}$	$\begin{array}{\|c} \hline \text { TABP } \\ 38^{*} \\ \hline \end{array}$	$\begin{gathered} \text { TABP } \\ 54^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0111	7	SC	DEY	-	-	-	-	$\begin{aligned} & \mathrm{A} \\ & 7 \\ & \hline \end{aligned}$	$\begin{gathered} \text { LA } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { TABP } \\ 7 \end{gathered}$	$\begin{array}{\|c} \text { TABP } \\ 23 \end{array}$	$\begin{array}{c\|} \hline \text { TABP } \\ 39^{*} \\ \hline \end{array}$	$\begin{gathered} \text { TABP } \\ 55^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1000	8	POF2	AND	-	SNZO	$\begin{gathered} \mathrm{LZ} \\ 0 \end{gathered}$	-	$\begin{aligned} & \hline \text { A } \\ & 8 \\ & \hline \end{aligned}$	$\begin{gathered} \text { LA } \\ 8 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 8 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 24 \end{array}$	$\begin{gathered} \text { TABP } \\ 40^{*} \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 56^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1001	9	-	OR	TDA	SNZ1	$\begin{gathered} \hline \mathrm{LZ} \\ 1 \end{gathered}$	-	$\begin{gathered} \hline \text { A } \\ 9 \end{gathered}$	$\begin{gathered} \hline \mathrm{LA} \\ 9 \end{gathered}$	$\begin{array}{c\|} \hline \text { TABP } \\ 9 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { TABP } \\ 25 \end{array}$	$\begin{array}{\|c} \hline \text { TABP } \\ 41^{*} \end{array}$	$\begin{gathered} \text { TABP } \\ 57^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1010	A	AM	TEAB	TABE	SNZIO	$\begin{gathered} \mathrm{LZ} \\ 2 \end{gathered}$	-	$\begin{gathered} \hline \mathrm{A} \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & \text { LA } \\ & 10 \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline \text { TABP } \\ 10 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 26 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 42^{*} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 58^{*} \end{array}$	BML	BML	BL	BL	BM	B
1011	B	AMC	-	-	SNZI1	$\begin{gathered} \mathrm{LZ} \\ 3 \end{gathered}$	EPOF	$\begin{gathered} \hline \text { A } \\ 11 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { LA } \\ & 11 \\ & \hline \end{aligned}$	$\begin{gathered} \text { TABP } \\ 11 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 27 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { TABP } \\ 43^{\star} \\ \hline \end{array}$	$\begin{gathered} \text { TABP } \\ 59^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1100	C	TYA	CMA	-	-	$\begin{gathered} \mathrm{RB} \\ 0 \end{gathered}$	$\begin{gathered} \text { SB } \\ 0 \end{gathered}$	$\begin{gathered} \text { A } \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & \text { LA } \\ & 12 \\ & \hline \end{aligned}$	$\begin{gathered} \text { TABP } \\ 12 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 28 \end{array}$	$\begin{gathered} \text { TABP } \\ 44^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 60^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1101	D	-	RAR	-	-	RB	$\begin{gathered} \mathrm{SB} \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { A } \\ 13 \end{gathered}$	$\begin{aligned} & \text { LA } \\ & 13 \end{aligned}$	$\begin{gathered} \text { TABP } \\ 13 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 29 \end{gathered}$	$\begin{array}{\|c} \hline \text { TABP } \\ 45^{*} \\ \hline \end{array}$	$\begin{gathered} \text { TABP } \\ 61^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1110	E	TBA	TAB	-	TV2A	$\begin{gathered} \mathrm{RB} \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{SB} \\ 2 \end{gathered}$	$\begin{gathered} \text { A } \\ 14 \end{gathered}$	$\begin{aligned} & \text { LA } \\ & 14 \end{aligned}$	$\begin{gathered} \text { TABP } \\ 14 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 30 \end{array}$	$\begin{gathered} \text { TABP } \\ 46^{*} \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 62^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1111	F	-	TAY	SZC	TV1A	$\begin{gathered} \hline \mathrm{RB} \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{SB} \\ 3 \end{gathered}$	$\begin{gathered} \hline \text { A } \\ 15 \end{gathered}$	$\begin{gathered} \text { LA } \\ 15 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 15 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 31 \end{array}$	$\begin{array}{c\|} \hline \text { TABP } \\ 47^{*} \end{array}$	$\begin{gathered} \text { TABP } \\ 63^{*} \end{gathered}$	BML	BML	BL	BL	BM	B

The above table shows the relationship between machine language codes and machine language instructions. D3-Do show the low-order 4 bits of the machine language code, and D9-D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "-."

The codes for the second word of a two-word instruction are described below.

	The second word		
BL	$1 p$	paaa	aaaa
BML	$1 p$	paaa	aaaa
BLA	$1 p$	pp00	pppp
BMLA	$1 p$	pp00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

- * * (SBK and RBK instructions) cannot be used in the M34554M8.
- * cannot be used after the SBK instruction is executed in the M34554MC.
- A page referred by the TABP instruction can be switched by the SBK and RBK instructions in the M34554MC/ED.
- The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 95 in the M34554MC.
- The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 127 in the M34554ED.

$$
\text { (Ex. TABP } 0 \rightarrow \text { TABP 64) }
$$

- The pages which can be referred by the TABP instruction after the RBK instruction is executed are 0 to 63 .
- When the SBK instruction is not used, the pages which can be referred by the TABP instruction are 0 to 63 .

INSTRUCTION CODE TABLE (continued)

	2	100000	1000011	1000101	1000111	100100	100101	100110	0100111	1101000	1010011	1010101	101011	101100	101101	101110	101111	110000
D3-D	$0 \begin{gathered} \text { Hex. } \\ \text { notation } \end{gathered}$	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30-3F
0000	0	-	TW3A	OPOA	T1AB	-	TAW6	IAPO	TAB1	SNZT1	1 -	WRST	$\begin{gathered} \hline \text { TMA } \\ 0 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAM } \\ 0 \end{array}$	$\begin{gathered} \text { XAMI } \\ 0 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 0 \end{gathered}$	LXY
0001	1	-	TW4A	OP1A	T2AB	-	-	IAP1	TAB2	SNZT2	$2-$	-	$\begin{gathered} \hline \text { TMA } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 1 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 1 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 1 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 1 \end{gathered}$	LXY
0010	2	-	TW5A	-	T3AB	-	TAMR	IAP2	TAB3	SNZT3	3	-	$\begin{gathered} \text { TMA } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 2 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { XAMI } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 2 \end{gathered}$	LXY
0011	3	-	TW6A	-	T4AB	-	TAI1	IAP3	TAB4	SNZT4	4 SVDE	-	$\begin{array}{\|c} \text { TMA } \\ 3 \\ \hline \end{array}$	$\begin{array}{\|c} \text { TAM } \\ 3 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { XAM } \\ 3 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { XAMI } \\ 3 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 3 \end{array}$	LXY
0100	4	-	TK1A	-	-	-	TAI2	-	-	SNZT5	5	-	$\begin{array}{\|c\|} \hline \text { TMA } \\ \hline \end{array}$	$\begin{gathered} \hline \text { TAM } \\ 4 \end{gathered}$	$\begin{array}{\|c} \hline \text { XAM } \\ 4 \end{array}$	$\begin{gathered} \text { XAMI } \\ 4 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 4 \end{gathered}$	LXY
0101	5	-	TK2A	- TP	TPSAB	-	-	-	TABPS	S	-	-	$\begin{gathered} \text { TMA } \\ 5 \end{gathered}$	$\begin{array}{\|c} \text { TAM } \\ 5 \end{array}$	$\begin{array}{\|c} \hline \text { XAM } \\ 5 \\ \hline \end{array}$	$\begin{gathered} \text { XAMI } \\ 5 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 5 \end{gathered}$	LXY
0110	6	-	TMRA	-	-	-	TAKO	-	-	-	-	-	$\begin{gathered} \text { TMA } \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { TAM } \\ 6 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { XAM } \\ 6 \\ \hline \end{array}$	$\begin{gathered} \text { XAMI } \\ 6 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 6 \\ \hline \end{array}$	LXY
0111	7	-	TI1A	T	T4HAB	-	TAPU0	-	-	-	T4R4L	-	$\begin{gathered} \text { TMA } \\ 7 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 7 \\ \hline \end{array}$	$\begin{gathered} \text { XAM } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMI } \\ 7 \\ \hline \end{array}$	$\begin{gathered} \text { XAMD } \\ 7 \end{gathered}$	LXY
1000	8	-	TI2A	TFR0A	-	-	-	-	-	-	-	-	$\begin{gathered} \hline \text { TMA } \\ 8 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { TAM } \\ 8 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { XAM } \\ 8 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { XAMI } \\ 8 \end{array}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 8 \end{array}$	LXY
1001	9	-	-	TFR1A	-	-	TAK1	-	-	-	-	-	$\begin{array}{\|c} \text { TMA } \\ 9 \end{array}$	$\begin{array}{\|c} \text { TAM } \\ 9 \\ \hline \end{array}$	$\begin{gathered} \text { XAM } \\ 9 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 9 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 9 \end{gathered}$	LXY
1010	A	TL1A	-	TFR2A	-	TAL1	TAK2	-	-	-	CMCK	TPAA	$\begin{array}{\|c} \hline \text { TMA } \\ 10 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { TAM } \\ 10 \\ \hline \end{array}$	$\begin{gathered} \hline \text { XAM } \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 10 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 10 \end{gathered}$	LXY
1011	B	TL2A	TK0A	- T	TR3AB	TAW1	-	-	-	-	CRCK	-	$\begin{array}{\|c} \hline \text { TMA } \\ 11 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { TAM } \\ 11 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { XAM } \\ 11 \\ \hline \end{array}$	$\begin{gathered} \text { XAMI } \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 11 \\ \hline \end{gathered}$	LXY
1100	C	TL3A	-	-	-	TAW2	-	-	-	RCP	DWDT	-	$\begin{gathered} \text { TMA } \\ 12 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { TAM } \\ 12 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { XAM } \\ 12 \\ \hline \end{array}$	$\begin{gathered} \hline \text { XAMI } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 12 \\ \hline \end{array}$	LXY
1101	D	TLCA	-	TPU0A	-	TAW3	-	-	-	SCP	-	-	$\begin{array}{\|c} \hline \text { TMA } \\ 13 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { TAM } \\ 13 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { XAM } \\ 13 \\ \hline \end{array}$	$\begin{gathered} \hline \text { XAMI } \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 13 \\ \hline \end{gathered}$	LXY
1110	E	TW1A	-	TPU1A	-	TAW4	TAPU1	-	-	-	-	-	$\begin{gathered} \text { TMA } \\ 14 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TAM } \\ 14 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { XAM } \\ \hline \end{array}$	$\begin{gathered} \text { XAMI } \\ 14 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 14 \end{array}$	LXY
1111	F	TW2A	-	-	TR1AB	TAW5	-	-	-	-	-	-	$\begin{array}{\|c} \text { TMA } \\ 15 \end{array}$	$\begin{array}{\|c} \hline \text { TAM } \\ 15 \\ \hline \end{array}$	$\begin{gathered} \hline \text { XAM } \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 15 \end{gathered}$	$\begin{gathered} \text { XAMD } \\ 15 \\ \hline \end{gathered}$	LXY

The above table shows the relationship between machine language codes and machine language instructions. D3-Do show the loworder 4 bits of the machine language code, and D9-D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "-."

The codes for the second word of a two-word instruction are described below.

	The second word		
BL	$1 p$	paaa	aaaa
BML	$1 p$	paaa	aaaa
BLA	$1 p$	$p p 00$	$p p p p$
BMLA	$1 p$	$p p 00$	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

ABSOLUTE MAXIMUM RAINGS

Symbol	Parameter	Conditions	Ratings	Unit
VdD	Supply voltage		-0.3 to 6.5	V
VI	Input voltage P0, P1, P2, P3, D0-D7, $\overline{\text { RESET, XIN, XCIN, VDCE }}$		-0.3 to VDD+0.3	V
VI	Input voltage CNTR0, CNTR1, INT0, INT1		-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, D0-D9, RESET, CNTR0, CNTR1	Output transistors in cut-off state	-0.3 to VDD+0.3	V
Vo	Output voltage C, XouT, XCOUT		-0.3 to VDD+0.3	V
Vo	Output voltage SEG0-SEG31, COM0-COM3		-0.3 to VDD+0.3	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		300
Topr	Operating temperature range		-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature range		-40 to 125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS 1

(Mask ROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, VDD $=2$ to 5.5 V , unless otherwise noted)
(One Time PROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{VDD}=2.5$ to 5.5 V , unless otherwise noted)

Symbol	Parameter	Conditions		Limits			Unit
				Min.	Typ.	Max.	
VDD	Supply voltage (when ceramic resonator is used)	Mask ROM ver	$\mathrm{f}(\mathrm{STCK}) \leq 6 \mathrm{MHz}$	4		5.5	V
			$\mathrm{f}($ STCK $) \leq 4.4 \mathrm{MHz}$	2.7		5.5	
			$\mathrm{f}(\mathrm{STCK}) \leq 2.2 \mathrm{MHz}$	2		5.5	
		One Time PRO	$\mathrm{f}(\mathrm{STCK}) \leq 6 \mathrm{MHz}$	4		5.5	
			$\mathrm{f}($ STCK) $\leq 4.4 \mathrm{MHz}$	2.7		5.5	
			$\mathrm{f}(\mathrm{STCK}) \leq 2.2 \mathrm{MHz}$	2.5		5.5	
VDD	Supply voltage (when RC oscillation is used)	$\mathrm{f}($ STCK $) \leq 4.4 \mathrm{MHz}$		2.7		5.5	V
VRAM	RAM back-up voltage	at RAM back-up mode		1.8			V
VSS	Supply voltage				0		V
VLC3	LCD power supply (Note 1)	Mask ROM version		2		VDD	V
		One Time PROM version		2.5		VDD	
VIH	"H" level input voltage	P0, P1, P2, P3, D0-D7, VDCE		0.8Vdd		VDD	V
VIH	"H" level input voltage	XIN, XCIN		0.7VDD		VDD	V
VIH	"H" level input voltage	RESET		0.85VDD		VDD	V
VIH	"H" level input voltage	CNTR0, CNTR1, INT0, INT1		0.8VDD		VDD	V
VIL	"L" level input voltage	P0, P1, P2, P3, D0-D7, VDCE		0		0.2VDD	V
VIL	"L" level input voltage	XIN, XCIN		0		0.3VDD	V
VIL	"L" level input voltage	RESET		0		0.3VDD	V
VIL	"L" level input voltage	CNTR0, CNTR1, INT0, INT1		0		0.15VDD	V
IOH(peak)	"H" level peak output current	P0, P1, D0-D6	VDD $=5 \mathrm{~V}$			-20	mA
			VDD $=3 \mathrm{~V}$			-10	
IOH (peak)	"H" level peak output current	D7, C CNTR0, CNTR1	$\mathrm{VDD}=5 \mathrm{~V}$			-30	mA
			VDD $=3 \mathrm{~V}$			-15	
$\mathrm{IOH}(\mathrm{avg})$	"H" level average output current (Note 2)	P0, P1, D0-D6	$\mathrm{VDD}=5 \mathrm{~V}$			-10	mA
			$\mathrm{VDD}=3 \mathrm{~V}$			-5	
$\mathrm{IOH}(\mathrm{avg})$	"H" level average output current (Note 2)	D7, C CNTR0, CNTR1	$\mathrm{VDD}=5 \mathrm{~V}$			-20	mA
			VDD $=3 \mathrm{~V}$			-10	
IoL(peak)	"L" level peak output current	P0, P1	$\mathrm{VDD}=5 \mathrm{~V}$			24	mA
			$V D D=3 \mathrm{~V}$			12	
IoL(peak)	"L" level peak output current	Do-D6, C CNTRO, CNTR1	$V D D=5 \mathrm{~V}$			24	mA
			$V D D=3 \mathrm{~V}$			12	
IOL(peak)	"L" level peak output current	RESET	$\mathrm{VDD}=5 \mathrm{~V}$			10	mA
			VDD $=3 \mathrm{~V}$			4	
IOL(avg)	"L" level average output current (Note 2)	P0, P1	VDD $=5 \mathrm{~V}$			12	mA
			VDD $=3 \mathrm{~V}$			6	
IOL(avg)	"L" level average output current (Note 2)	Do-D6, C CNTR0, CNTR1	VDD $=5 \mathrm{~V}$			15	mA
			$\mathrm{VDD}=3 \mathrm{~V}$			7	
IOL(avg)	"L" level average output current (Note 2)	RESET	VDD $=5 \mathrm{~V}$			5	mA
			$\mathrm{VDD}=3 \mathrm{~V}$			2	
इloh(avg)	"H" level total average current	P0, P1, D0-D6				-60	mA
		D7, C, CNTR0,				-60	
इlOL(avg)	"L" level total average current	P0, P1, D0-D6				80	mA
		D7-D9, C, $\overline{\text { RESET }}$, CNTR0, CNTR1				80	

Notes 1: At $1 / 2$ bias: VLC1 $=$ VLC2 $=(1 / 2) \cdot$ VLC3
At $1 / 3$ bias: VLC1 $=(1 / 3) \cdot$ VLC3, VLC2 $=(2 / 3) \cdot$ VLC3
2: The average output current is the average value during 100 ms .

RECOMMENDED OPERATING CONDITIONS 2

(Mask ROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, VDD $=2$ to 5.5 V , unless otherwise noted)
(One Time PROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, VDD $=2.5$ to 5.5 V , unless otherwise noted)

Symbol	Parameter	Conditions			Limits			Unit
					Min.	Typ.	Max.	
$f(X I N)$	Oscillation frequency (with a ceramic resonator)	Mask ROM version	Through mode	$\mathrm{VDD}=4$ to 5.5 V			6	MHz
				$\mathrm{VDD}=2.7$ to 5.5 V			4.4	
				VDD $=2$ to 5.5 V			2.2	
			Frequency/2 mode	$\mathrm{VDD}=2.7$ to 5.5 V			6	
				VDD $=2$ to 5.5 V			4.4	
			Frequency/4, 8 mode	VDD $=2$ to 5.5 V			6	
		One Time PROM version	Through mode	$\mathrm{VDD}=4$ to 5.5 V			6	
				$\mathrm{VDD}=2.7$ to 5.5 V			4.4	
				$\mathrm{VDD}=2.5$ to 5.5 V			2.2	
			Frequency/2 mode	$\mathrm{VDD}=2.7$ to 5.5 V			6	
				VDD $=2.5$ to 5.5 V			4.4	
			Frequency/4, 8 mode	$\mathrm{VDD}=2.5$ to 5.5 V			6	
$f(X I N)$	Oscillation frequency (at RC oscillation) (Note)	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V					4.4	MHz
$f(X I N)$	Oscillation frequency (with a ceramic resonator selected, external clock input)	Mask ROM version	Through mode	$\mathrm{VDD}=4$ to 5.5 V			4.8	MHz
				$\mathrm{VDD}=2.7$ to 5.5 V			3.2	
				VDD $=2$ to 5.5 V			1.6	
			Frequency/2 mode	$\mathrm{VDD}=2.7$ to 5.5 V			4.8	
				VDD $=2$ to 5.5 V			3.2	
			Frequency/4, 8 mode	$\mathrm{VDD}=2$ to 5.5 V			4.8	
		One Time PROM version	Through mode	$\mathrm{VDD}=4$ to 5.5 V			4.8	
				$\mathrm{VDD}=2.7$ to 5.5 V			3.2	
				$\mathrm{VDD}=2.5$ to 5.5 V			1.6	
			Frequency/2 mode	$\mathrm{VDD}=2.7$ to 5.5 V			4.8	
				$\mathrm{VDD}=2.5$ to 5.5 V			3.2	
			Frequency/4, 8 mode	$\mathrm{VDD}=2.5$ to 5.5 V			4.8	
$f($ XCIN $)$	Oscillation frequency (sub-clock)	Quartz-crystal oscillator					50	kHz
f(CNTR)	Timer external input frequency	CNTR0, CNTR1					f(STCK)/6	Hz
tw(CNTR)	Timer external input period ("H" and "L" pulse width)	CNTR0, CNTR1			3/f(STCK)			S
TPON	Power-on reset circuit valid supply voltage rising time	Mask ROM version		$\mathrm{VDD}=0 \rightarrow 2 \mathrm{~V}$			100	$\mu \mathrm{s}$
		One Time PROM version		$\mathrm{VDD}=0 \rightarrow 2.5 \mathrm{~V}$			100	

Note: The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

ELECTRICAL CHARACTERISTICS 1

(Mask ROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, VDD $=2$ to 5.5 V , unless otherwise noted)
(One Time PROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, VDD $=2.5$ to 5.5 V , unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min.	Typ.	Max.	
Vон	" H " level output voltage P0, P1, Do-D6	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$	$\mathrm{IOH}=-10 \mathrm{~mA}$	3			V
			$\mathrm{IOH}=-3 \mathrm{~mA}$	4.1			
		$\mathrm{V} D \mathrm{D}=3 \mathrm{~V}$	$\mathrm{IOH}=-5 \mathrm{~mA}$	2.1			
			$\mathrm{IOH}=-1 \mathrm{~mA}$	2.4			
Voh	" H " level output voltage D7, C, CNTR0, CNTR1	$\mathrm{VDD}=5 \mathrm{~V}$	$\mathrm{IOH}=-20 \mathrm{~mA}$	3			V
			$\mathrm{IOH}=-6 \mathrm{~mA}$	4.1			
		$\mathrm{V} D \mathrm{D}=3 \mathrm{~V}$	$\mathrm{IOH}=-10 \mathrm{~mA}$	2.1			
			$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4			
Vol	"L" level output voltage P0, P1	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$	$\mathrm{IOL}=12 \mathrm{~mA}$			2	V
			$\mathrm{IOL}=4 \mathrm{~mA}$			0.9	
		$\mathrm{V} D \mathrm{D}=3 \mathrm{~V}$	IOL $=6 \mathrm{~mA}$			0.9	
			$\mathrm{IOL}=2 \mathrm{~mA}$			0.6	
Vol	"L" level output voltage Do-D9, C, CNTR0, CNTR1	$\mathrm{VDD}=5 \mathrm{~V}$	$\mathrm{IOL}=15 \mathrm{~mA}$			2	V
			$\mathrm{IOL}=5 \mathrm{~mA}$			0.9	
		$\mathrm{V} D \mathrm{D}=3 \mathrm{~V}$	$\mathrm{IOL}=9 \mathrm{~mA}$			1.4	
			$\mathrm{IOL}=3 \mathrm{~mA}$			0.9	
Vol	"L" level output voltage RESET	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$	$\mathrm{IOL}=5 \mathrm{~mA}$			2	V
			$\mathrm{IOL}=1 \mathrm{~mA}$			0.6	
		$\mathrm{V} D \mathrm{D}=3 \mathrm{~V}$	$\mathrm{IOL}=2 \mathrm{~mA}$			0.9	
IIH	" H " level input current P0, P1, P2, P3, Do-D7, VDCE, RESET CNTRO, CNTR1, INTO, INT1	$\mathrm{VI}=\mathrm{VDD}$				1	$\mu \mathrm{A}$
IIL	$\begin{aligned} & \text { "L" level input current } \\ & \text { P0, P1, P2, P3, D0-D7, VDCE, } \\ & \text { CNTR0, CNTR1, INT0, INT1 } \end{aligned}$	V I $=0 \mathrm{~V}$ P0, P1 No pull-up				-1	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS 2

(Mask ROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{VDD}=2$ to 5.5 V , unless otherwise noted)
(One Time PROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, VDD $=2.5$ to 5.5 V , unless otherwise noted)

Symbol	Parameter		Test conditions			Limits		Unit		
			Min.	Typ.	Max.					
IDD	Supply current	at active mode (with a ceramic resonator)			$\begin{aligned} & \text { VDD }=5 \mathrm{~V} \\ & f(\mathrm{XIN})=6 \mathrm{MHz} \\ & f(\mathrm{XCIN})=32 \mathrm{kHz} \end{aligned}$	$f($ STCK $)=f($ XIN $) / 8$		1.4	2.8	mA
			$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 4$			1.6	3.2			
			$\mathrm{f}($ STCK) $=\mathrm{f}(\mathrm{XIN}) / 2$			2	4			
			$f($ STCK $)=f($ XIN $)$			2.8	5.6			
			$\begin{aligned} & \text { VDD }=5 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz} \\ & \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz} \end{aligned}$	$f($ STCK $)=f($ XIN $) / 8$		1.1	2.2	mA		
				$\mathrm{f}($ STCK) $=\mathrm{f}(\mathrm{XIN}) / 4$		1.2	2.4			
				$f($ STCK $)=f($ XIN $) / 2$		1.5	3			
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN})$		2	4			
			$\begin{aligned} & \text { VDD }=3 \mathrm{~V} \\ & f(\mathrm{XIN})=4 \mathrm{MHz} \\ & f(\mathrm{XCIN})=32 \mathrm{kHz} \end{aligned}$	$f($ STCK $)=f($ XIN $) / 8$		0.4	0.8	mA		
				$f($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 4$		0.5	1			
				f (STCK) $=\mathrm{f}(\mathrm{XIN}) / 2$		0.6	1.2			
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{XIN})$		0.8	1.6			
		at active mode (with a quartz-crystal oscillator)	$\begin{aligned} & \mathrm{VDD}=5 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=\text { stop } \\ & \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz} \end{aligned}$	$f($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 8$		55	110	$\mu \mathrm{A}$		
				$f($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 4$		60	120			
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{XIN}) / 2$		65	130			
				$f($ STCK $)=f($ XIN $)$		70	140			
			$\begin{aligned} & \text { VDD }=3 \mathrm{~V} \\ & f(\mathrm{XIN})=\text { stop } \\ & f(\mathrm{XCIN})=32 \mathrm{kHz} \end{aligned}$	$f($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 8$		12	24	$\mu \mathrm{A}$		
				$f($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 4$		13	26			
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 2$		14	28			
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN})$		15	30			
		at clock operation mode (POF instruction execution)	$f(\mathrm{XCIN})=32 \mathrm{kHz}$	VDD $=5 \mathrm{~V}$		20	60	$\mu \mathrm{A}$		
				$\mathrm{VDD}=3 \mathrm{~V}$		5	15			
		at RAM back-up mode (POF2 instruction execution)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			0.1	1	$\mu \mathrm{A}$		
			Vdd $=5 \mathrm{~V}$				10			
			$\mathrm{V} D \mathrm{D}=3 \mathrm{~V}$				6			
Rpu	Pull-up resistor value P0, P1, RESET		$\mathrm{VI}=0 \mathrm{~V}$	Vdd $=5 \mathrm{~V}$	30	60	125	$k \Omega$		
			$V D D=3 \mathrm{~V}$	50	120	250				
$\mathrm{V} \mathrm{T}_{+}-\mathrm{V} \mathrm{T}_{-}$	Hysteresis CNTR0, CNTR1, INT0, INT1			VdD $=5 \mathrm{~V}$			0.2		V	
			VDD $=3 \mathrm{~V}$			0.2				
$\mathrm{V}_{+}+\mathrm{V}_{\mathrm{T}}$	Hysteresis $\overline{\mathrm{RESET}}$		VDD $=5 \mathrm{~V}$			1		V		
			VDD $=3 \mathrm{~V}$			0.4				
f (RING)	Ring oscillator clock frequency		$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$		1	2	3	MHz		
			$\mathrm{VDD}=3 \mathrm{~V}$		0.5	1	1.8			
$\Delta f(X I N)$	```Frequency error (with RC oscillation, error of external R, C not included) (Note)```		$\mathrm{VDD}=5 \mathrm{~V} \pm 10$ \% $\mathrm{Ta}=25^{\circ} \mathrm{C}$				± 17 ± 17	\%		
RCOM	COM output impedance		VDD $=5 \mathrm{~V}$			1.5	7.5	k Ω		
			$\mathrm{VDD}=3 \mathrm{~V}$			2	10			
RSEG	SEG output impedance		$\mathrm{VDD}=5 \mathrm{~V}$			1.5	7.5	$\mathrm{k} \Omega$		
			VDD $=3 \mathrm{~V}$			2	10			
RVLC	Internal resistor for LCD power supply		When dividing resistor $2 r \times 3$ selected		300	480	960	$\mathrm{k} \Omega$		
			When dividing resistor $2 r \times 2$ selected		200	320	640			
			When dividing resistor $r \times 3$ selected		150	240	480			
			When dividing resistor $r \times 2$ selected		100	160	320			

Note: When RC oscillation is used, use the external 33 pF capacitor (C).

VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS
($\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min.	Typ.	Max.	
VRSt	Detection voltage (Note 1)			1.4	1.5	1.6	V
		$\mathrm{Ta}=25^{\circ} \mathrm{C}$		1.1		1.9	
IRST	Operation current	at power down (Note 2)	$\mathrm{VDD}=5 \mathrm{~V}$		50	100	$\mu \mathrm{A}$
			$\mathrm{V} D \mathrm{D}=3 \mathrm{~V}$		30	60	
TRST	Detection time	VDD \rightarrow (VRST-0.1 V) (Note 3)			0.2	1.2	ms

Notes 1: The detected voltage (VRST) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.
2: After the SVDE instruction is executed, the voltage drop detectin circuit is valid at power down mode.
3: The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [V ST- 0.1 V] .
BASIC TIMING DIAGRAM

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4554 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.
The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.
Table 25 shows the product of built-in PROM version. Figure 61 shows the pin configurations of built-in PROM versions.
The One Time PROM version has pin-compatibility with the mask ROM version.

Table 25 Product of built-in PROM version

Part number	PROM size $(\times 10$ bits $)$	RAM size $(\times 4$ bits $)$	Package	ROM type
M34554EDFP	16384 words	512 words	$64 P 6 N-A$	One Time PROM [shipped in blank]

PIN CONFIGURATION (TOP VIEW)

Fig. 61 Pin configuration of built-in PROM version

(1) PROM mode

The built-in PROM version has a PROM mode in addition to a normal operation mode. The PROM mode is used to write to and read from the built-in PROM.
In the PROM mode, the programming adapter can be used with a general-purpose PROM programmer to write to or read from the built-in PROM as if it were M5M27C256K.
Programming adapter is listed in Table 26. Contact addresses at the end of this data sheet for the appropriate PROM programmer.

- Writing and reading of built-in PROM

Programming voltage is 12.5 V . Write the program in the PROM of the built-in PROM version as shown in Figure 62.

(2) Notes on handling

(1) A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
(2) For the One Time PROM version shipped in blank, Renesas Technology corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 63 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

(3) Difference between Mask ROM version and One Time PROM version

Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an electrical property by difference of a manufacture process, built-in ROM, and a layout pattern.

- a characteristic value
- a margin of operation
- the amount of noise-proof
- noise radiation, etc.,

Accordingly, be careful of them when swithcing.

Table 26 Programming adapter

Part number	Name of Programming Adapter
M34554EDFP	PCA7448

Fig. 62 PROM memory map

Fig. 63 Flow of writing and test of the product shipped in blank

PACKAGE OUTLINE

64P6N-A

EIAJ Package Code	JEDEC Code	Weight(g)	Lead Material
QFP64-P-1414-0.80	-	1.11	Alloy 42

Plastic 64pin $14 \times 14 \mathrm{~mm}$ body QFP

Recommended Mount Pad

Symbol	Dimension in Millimeters		
	Min	Nom	Max
A	-	-	3.05
A1	0	0.1	0.2
A2	-	2.8	-
b	0.3	0.35	0.45
c	0.13	0.15	0.2
D	13.8	14.0	14.2
E	13.8	14.0	14.2
e	-	0.8	-
HD	16.5	16.8	17.1
HE	16.5	16.8	17.1
L	0.4	0.6	0.8
L1	-	1.4	-
x	-	-	0.2
y	-	-	0.1
θ	0°	-	10°
b2	-	0.5	-
I2	1.3	-	-
MD	-	14.6	-
ME	-	14.6	-

Keep safety first in your circuit designs

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
2. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
3. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
4. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
5. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage liability or other loss resulting from the information contained herein
6. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
7. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
8. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be mported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
9. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.
http://www.renesas.com

[^0]: Operation: POF instruction, POF2 instruction valid

[^1]: Operation: Transition to clock operating mode

