|                             |                                                     |             | REVISIONS                                  |                 |          |
|-----------------------------|-----------------------------------------------------|-------------|--------------------------------------------|-----------------|----------|
|                             | LTR                                                 | DESC        | RIPTION                                    | DATE            | APPROVED |
|                             |                                                     |             |                                            |                 |          |
|                             |                                                     |             |                                            |                 |          |
|                             | 1                                                   | l           |                                            | j               | l        |
|                             |                                                     |             |                                            |                 |          |
|                             |                                                     | •           |                                            |                 |          |
|                             |                                                     |             |                                            |                 |          |
|                             |                                                     |             |                                            |                 |          |
|                             |                                                     |             |                                            |                 |          |
|                             |                                                     |             |                                            |                 |          |
|                             |                                                     |             |                                            |                 |          |
| i                           |                                                     |             |                                            |                 |          |
|                             |                                                     |             |                                            |                 |          |
|                             |                                                     |             |                                            |                 |          |
|                             |                                                     |             |                                            |                 |          |
|                             |                                                     |             |                                            |                 |          |
|                             |                                                     |             |                                            |                 | ŀ        |
|                             |                                                     |             |                                            |                 |          |
|                             |                                                     |             |                                            |                 |          |
|                             |                                                     |             |                                            |                 |          |
|                             |                                                     |             |                                            |                 | l        |
|                             |                                                     |             |                                            |                 | i        |
|                             |                                                     |             |                                            |                 | į        |
| REV                         | 7777                                                |             | ППП                                        |                 |          |
| PAGE                        |                                                     |             |                                            |                 |          |
| REV STATUS REV              |                                                     |             |                                            |                 |          |
| OF PAGES PAGES              | 1 2 3 4 5                                           | 6 7 8 9     |                                            |                 |          |
| Defense Electronics         | PREPARED B                                          | B. Kelleher | <b>MILITAR</b>                             | Y DR            | AWING    |
| Supply Center Dayton, Ohio  | CHECKED B                                           |             | This drawing is ava<br>all Departments and | ilable for ι    | ise by   |
|                             | Da Diano                                            |             | Department of Defen                        |                 |          |
| Original date               | APPROVED BY  TITLE: MICROCIRCUIT, LINEAR, LINE DRIV |             |                                            | R, LINE DRIVER, |          |
| of drawing: 30 JULY<br>1987 | Math                                                | Markage     |                                            |                 |          |
| 1307                        | SIZE CODE                                           | IDENT. NO.  | DWG NO. 596                                | 2-87            | 524      |
|                             |                                                     | 7268        |                                            |                 |          |
| AMSC N/A                    | REV                                                 |             | PAGE 1                                     | OF              | 9        |

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DESC FORM 193 MAY 86

| 1. SCOPE                                                                                                                                                                                                                                                                                              |                                                     |                                                                                       |                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 1.1 Scope. This drawing desc<br>1.2.1 of MIL-STD-883, "Provision<br>devices".                                                                                                                                                                                                                         | ribes device requirem<br>is for the use of MIL-     | ents for class B mi<br>STD-883 in conjunct                                            | crocircuits in accordance with<br>ion with compliant non-JAN |
| 1.2 Part number. The complet                                                                                                                                                                                                                                                                          | e part number shall b                               | e as shown in the f                                                                   | following example:                                           |
| 5962-87524                                                                                                                                                                                                                                                                                            | 01                                                  | P                                                                                     | <u>X</u>                                                     |
| <br>                                                                                                                                                                                                                                                                                                  |                                                     | i                                                                                     |                                                              |
| Drawing number                                                                                                                                                                                                                                                                                        | Device type<br>(1.2.1)                              | Case outline (1.2.2)                                                                  | Lead finish per<br>MIL-M-38510                               |
| 1.2.1 Device type. The device                                                                                                                                                                                                                                                                         | e type shall identify                               | the circuit functi                                                                    | on as follows:                                               |
| Device type                                                                                                                                                                                                                                                                                           | Generic number                                      | Circ                                                                                  | cuit function                                                |
| 01                                                                                                                                                                                                                                                                                                    | 9637A                                               | Dual diffe                                                                            | erential line driver                                         |
| 1.2.2 <u>Case outline</u> . The case follows:                                                                                                                                                                                                                                                         | outline shall be as d                               | lesignated in append                                                                  | dix C of MIL-M-38510, and as                                 |
| Outline letter                                                                                                                                                                                                                                                                                        |                                                     | Case outli                                                                            | <u>ne</u>                                                    |
| P                                                                                                                                                                                                                                                                                                     | D-4 (8-1                                            | ead, $1/4^{n} \times 3/8^{n}$ ),                                                      | dual-in-line package                                         |
| 1.3 Absolute maximum ratings                                                                                                                                                                                                                                                                          | . <u>1</u> /                                        |                                                                                       |                                                              |
| Supply voltage range Input voltage Differential input voltage Output voltage range Output sink current Storage temperature range Internal power dissipation Lead temperature (solderin Thermal resistance, junct Case P Junction temperature (TJ)  1.4 Recommended operating con Supply voltage (VCC) | n 2/ ng, 60 seconds) ion-to-case (θ <sub>JC</sub> ) | *15 V dc<br>*15 V dc<br>0.5 V dc<br>50 mA<br>65 C to<br>400 mW<br>\$ee MIL-<br>+175 C | M-38510, appendix C                                          |
|                                                                                                                                                                                                                                                                                                       |                                                     | all currents are po                                                                   |                                                              |

2/ Rating applies to ambient temperature up to 125°C. Above 125°C ambient, derate linearl at 120°C/W.

| MILITARY DRAWING                               | SIZE | CODE IDENT. NO. | DWG NO. |     |
|------------------------------------------------|------|-----------------|---------|-----|
|                                                | A    | 67268           | 5962-87 | 524 |
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO |      | ₩EV             | PAGE    | 2   |

### 2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

**SPECIFICATION** 

MILITARY

MIL-M-38510

- Microcircuits, General Specification for

**STANDARD** 

MILITARY

MIL-STD-883

- Test Methods and Procedures for Microelectronics

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

#### REQUIREMENTS

- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction and physical dimensions shall be as specified in MIL-M-38510 and herein.
- 3.2.1 Terminal connections and logic diagram. The terminal connections and logic diagram shall be as specified on figure 1.
- 3.2.2 Case outline. The case outline shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended ambient operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein
- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.

| MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO | SIZE<br>A | 67268 | DWG NO.<br>5962-87524 |  |
|-----------------------------------------------------------------|-----------|-------|-----------------------|--|
|                                                                 |           | REV   | PAGE 3                |  |

**DESC FORM 193A** 

**FEB 86** 

| A STATE OF THE STA | TABLE              | I. Electrical performance charac                                              | teristics.           |                        |              |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------|----------------------|------------------------|--------------|---------|
| Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Symbol             | Conditions<br>-55°C < TA < +125°C<br>unless otherwise specified <u>1</u> /    | Group A<br>subgroups | Lia<br>Min             | nits<br>Max  | Unit    |
| Differential input threshold voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ψ <sub>TH</sub>    | V <sub>CM</sub> = ±7.0 V                                                      | 1, 2, 3              | -0.2                   | 0.2          | V       |
| Differential input threshold voltage resistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V <sub>TH(R)</sub> | V <sub>CM</sub> = ±7.0 V                                                      | 1, 2, 3              | -0.4                   | 0.4          | ٧       |
| Input current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <br>  I            | 0 V \(\leq V_{CC} \leq 5.5 V \rightarrow V_I^+ = 10 V                         | 1, 2, 3              | <del></del>  <br> <br> | 3.25         | mA      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br> -<br>         | V <sub>I</sub> + = -10 V                                                      | 1, 2, 3              | -3.25                  |              | mA      |
| Output voltage low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V <sub>OL</sub>    | V <sub>CC</sub> = 4.5 V, I <sub>OL</sub> = 20 mA                              | 1, 2, 3              | <br> <br> <br>         | 0.5          | ٧       |
| Output voltage high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>OH</sub>    | V <sub>CC</sub> = 4.5 V, I <sub>OH</sub> = -1.0 mA                            | 1, 2, 3              | <br> 2.5<br>           |              | ٧       |
| Output short circuit current 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ios                | V <sub>CC</sub> = 5.5 V, V <sub>0</sub> = 0 V                                 | 1, 2, 3              | -100                   | -40<br>      | mA      |
| Supply current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ICC                | $V_{CC} = 5.5 \text{ V}, V_{I}^{+} = 0.5 \text{ V},$ $V_{I}^{-} = \text{GND}$ | 1, 2, 3              |                        | <br>  50<br> | mA<br>l |
| Propagation delay to high<br>level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tpLH               | V <sub>CC</sub> = 5.0 V, See figure 2<br>  T <sub>A</sub> = 25°C              | 9                    | <br>                   | <br>  25<br> | ns<br>l |
| Propagation delay to low<br>level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tpHL               | ;<br> <br> -<br> -                                                            | 9                    | 1                      | <br>  25<br> | l ns    |

 $\underline{1}$ / Only one output should be shorted at a time.

| MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO | SIZE<br>A | 7268 | 5962-87524 |  |
|-----------------------------------------------------------------|-----------|------|------------|--|
|                                                                 |           | REV  | PAGE 4     |  |

CASE P

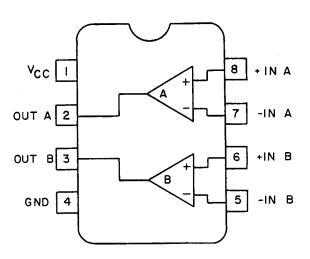
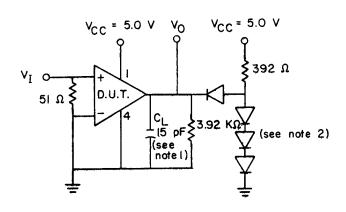





FIGURE 1. Terminal connections and logic diagram (top view).

67268 DWG NO. SIZE **MILITARY DRAWING** Α 5962-87524 DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO REV PAGE 5





# NOTES:

- NOTES: 1.  $C_L$  includes jig and probe capacitance 2. All diodes are FD700 or equivalent 3.  $V_I$  input conditions: Amplitude = 1.0 V; offset = 0.5 V; pulse width = 100 ns; PRR = 5.0 MHz;  $t_r = t_f \le 5.0$  ns

FIGURE 2. Switching time test circuit and waveforms.

| MILITARY DRAWING                               | SIZE CODE IDENT. NO. 67268 |     | DWG NO.<br>5962-87524 |  |
|------------------------------------------------|----------------------------|-----|-----------------------|--|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO |                            | REV | PAGE 6                |  |

- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
  - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
  - a. Burn-in test (method 1015 of MIL-STD-883).
    - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
    - (2)  $T_A = +125^{\circ}C$ , minimum.
  - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-SID-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
  - 4.3.1 Group A inspection.
    - a. Tests shall be as specified in table II herein.
    - b. Subgroups 4, 5, 6, 7, 8, 10, and 11 in table I, method 5005 of MIL-STD-883 shall be omitted.
  - 4.3.2 Groups C and D inspections.
    - a. End-point electrical parameters shall be as specified in table II herein.
    - b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
      - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
      - (2)  $T_A = +125^{\circ}C$ , minimum.
      - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.

| MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO | SIZE | 67268 | DWG NO.<br>5962-87524 |  |
|-----------------------------------------------------------------|------|-------|-----------------------|--|
|                                                                 |      | REV   | PAGE 7                |  |

# TABLE II. Electrical test requirements.

| MIL-STD-883 test requirements                                      | Subgroups<br>(per method<br>5005, table I) |
|--------------------------------------------------------------------|--------------------------------------------|
| Interim electrical parameters (method 5004)                        | 1                                          |
| Final electrical test parameters<br>(method 5004)                  | 1*, 2, 3                                   |
| Group A test requirements<br>  (method 5005)                       | 1, 2, 3, 9                                 |
| Groups C and D end-point<br>electrical parameters<br>(method 5005) | 1                                          |

<sup>\*</sup> PDA applies to subgroup 1.

## 5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

#### 6. NOTES

- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

| MILITARY DRAWING                               | SIZE | 67268 | DWG NO.<br>5962-87524 |
|------------------------------------------------|------|-------|-----------------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO |      | REV   | PAGE 8                |

6.4 Approved source of supply. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

| Military drawing<br>part number | Yendor<br>CAGE<br>number | Yendor<br>similar part<br>number <u>1</u> / |
|---------------------------------|--------------------------|---------------------------------------------|
| 5962-8752401PX                  | 07263                    | UA9637ARMQM                                 |

 $\underline{1}/$  Caution: Do not use this number for item acquisition. Items acquired by this number may not satisfy the performance requirements of this drawing.

**Vendor CAGE** number

07263

**Vendor** name and address

Fairchild Semiconductor Corp. 313 Fairchild Drive Mountain View, CA 94043

**MILITARY DRAWING** DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO

CODE IDENT. NO. SIZE Α

DWG NO.

67268

5962-87524

REV

PAGE 9