
											F	REV	ısı	ON	S							
						LTR	Τ		1	DESC	RIP	TION	1				DA	TE	1	APP	ROV	ED
							1		***													
						İ										İ						
						1	•									•			•			
									•													
													/									
											_										\Box	
REV	1	1	П		Т											1					ı	
REV PAGE		E									L							-			-	+
PAGE REV STAT	~ _	REV								0 10		12		14	15	Н		\dashv			4	‡
PAGE	~ _	REV	ES		2 3		5 6	7	8	9 10	_		_									土
PAGE REV STATE OF PAGES Defense Ele	octronic	PAGE	ES	PF	EPA	RED	BY				Ņ	/	L I	T/	\F	Y	ıble	for	use	bv		
PAGE REV STATI OF PAGES Defense Ele Supply Cen	ectronic	PAGE	ES	PF ∠ CI	ON LECK	RED	BY	Q	ebor	ne	N Th	All nis d	lrawi partr	T#	\F is a	Yaila	ible lgen	for	use	bv		† G
PAGE REV STATU OF PAGES Defense Ele Supply Cen	ectronic	PAGE	ES	PF ∠ CI	ou ou	RED	BY	Q	ebor	ne	N Ti al Di	nis d I De epart	Irawi partr men	ng ment	is a ts a	Yaila ind A	ible Agen	for cles	use of	by the		
PAGE REV STATO OF PAGES Defense Ele Supply Cen Dayton, Ohl	ectronic ter o	PAGE	ES	PF CU	DECK B	RED	R D	Q	ebor		N Ti al Di	nis d I De epart	Irawi partr men	ing ment t of CRO	is ats a	Yaila Ind A Iense CUIT	Agen S, L	for cies INE	of AR.	by the	H-SF	
PAGE REV STATO OF PAGES Defense Ele Supply Cen Dayton, Ohl	ectronic ter o	PAGE	ES	PF	SPA SPA PAGE	RED CO VED	R. S.	i C	ebor	ne 38	The all Did	nis d I De epart	Irawi partr men :: MI DI MO	ing ment t of CRO GIT,	is a ts a CIRCAL	RY availa and A iense CUIT TO A IC S	Agen S, L NAL(INE	of AR,	by the HIC ERTI	GH-SF	PEED
PAGE REV STAT	ectronic ter o	PAGE	ES	PF CI CI AI	DECK B	VED COE	R. S.	A C	elor On St.	ne 38	The all Did	nis d I De epart	Irawi partr men :: MI DI MO	ing ment t of CRO GIT,	is a ts a CIRCAL	RY availa and A iense CUIT TO A IC S	Agen S, L NAL(INE	of AR,	by the HIC ERTI	H-SF	PEED

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DESC FORM 193

MAY 86

- 1. SCOPE
- 1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".
 - 1.2 Part number. The complete part number shall be as shown in the following example:

1.2.1 Device types. The device types shall identify the circuit function as follows:

Device type	Generic number	Circuit function
01	AU7572	12.5 microsecond, 11-bit linearity, 12-bit resolution CMOS A/D converter with 45 ppm/°C reference.
02	AD7572	12.5 microsecond, 11-bit linearity, 12-bit resolution CMOS A/D converter with 25 ppm/°C reference.
03	AD7572	12.5 microsecond, 12-bit linearity, 12-bit resolution CMOS A/D converter with 25 ppm/°C reference.
04	AD7572	5 microsecond, 11-bit linearity, 12-bit resolution CMOS A/D converter with 45 ppm/°C reference.
05	AD7572	5 microsecond, 11-bit linearity, 12-bit resolution CMOS
06	AD7572	A/D converter with 25 ppm/°C reference. 5 microsecond, 12-bit linearity, 12-bit resolution CMOS A/D converter with 25 ppm/°C reference.

1.2.2 <u>Case outlines</u>. The case outlines shall be as designated in appendix C of MIL-M-38510, and as follows:

Outline letter

Case outline

D-9 (24-lead, 1/4" x 1-1/4"), dual-in-line package.
C-4 (28-terminal, 0.45" x 0.45"), leadless ceramic square chip carrier package.

1.3 Absolute maximum ratings $(T_A = +25^{\circ}C, \text{ unless otherwise noted})$.

V _{DD} to DGND	-0.3 V to +7 V +0.3 V to -17 V -0.3 V, Vpp +0.3 V -15 V to +15 V
Digital input voltage to DGND: (Pins 17, 19-21)	-0.3 V, V _{DD} +0.3 V
(Pins 4-11, 13-16, 18, 22) Storage temperature	-0.3 V, V _{DD} +0.3 V -65°C to +150°C 1,000 mW 1/
Thermal resistance (θ_{JC}) : Case L	See MIL-M-38510, appendix C See MIL-M-38510, appendix C 175°C

1/ Derate power dissipation above +75°C by 10 mW/C.

MILITARY DRAWING	SIZE	67268	962-87591	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV	PAGE	2

1.4 Recommended operating conditions.

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510 - Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
- 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Load circuits. The load circuits shall be as specified on figures 2 and 3.
 - 3.2.3 Timing diagrams. Timing diagrams and tables shall be as specified on figures 4, 5, 6, and 7.
 - 3.2. Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.

MILITARY DRAWING	SIZE CODE IDENT. NO. 67268			DWG NO. 5962-87591		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO			REV	_	PAGE	3

DESC FORM 193A

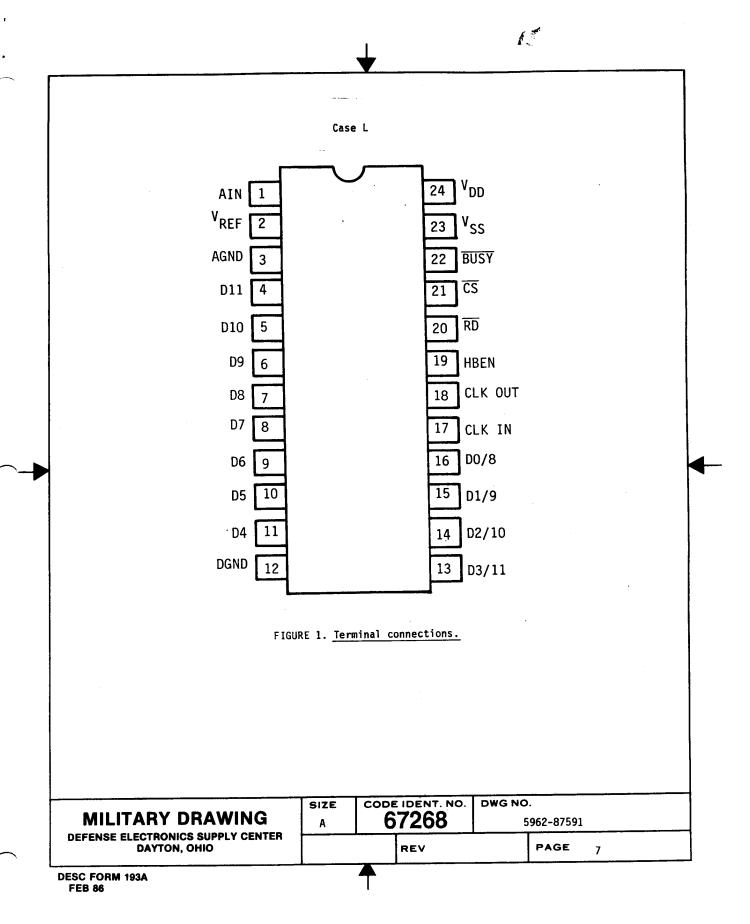
FEB 86

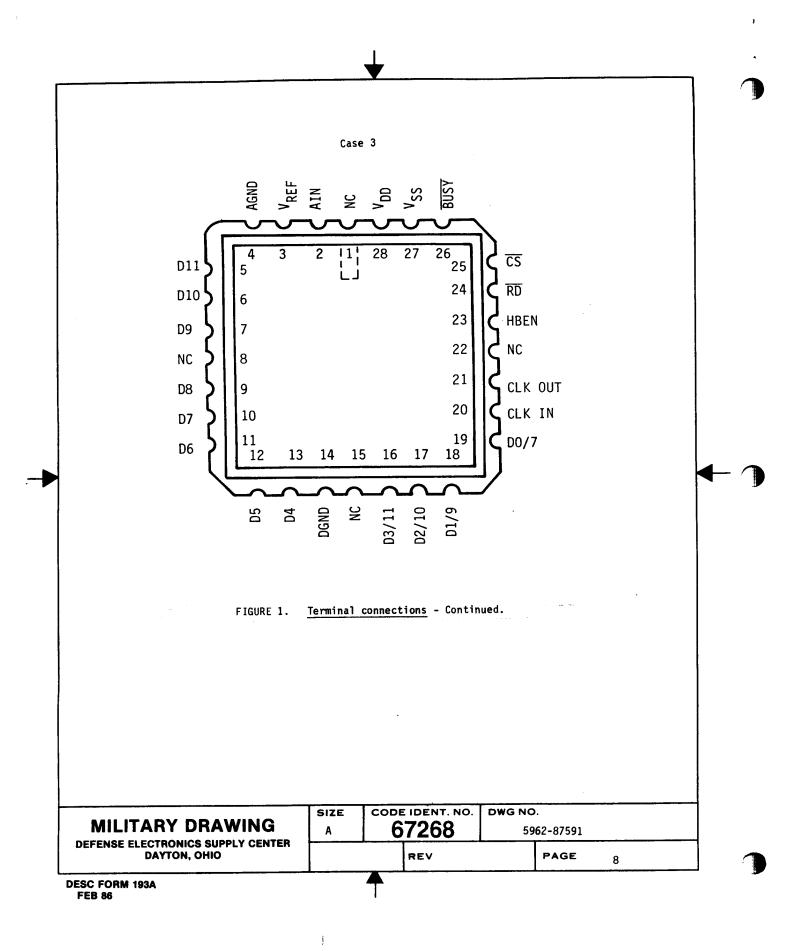
	TABLE I.	Elec	trical pe	rforman	ce charac	teristic	<u>s</u> .			
Test	Symbol		Cone	ditions T _A ≤ +1	25°C	 Device types	Group A subgroups		nits	Unit
t to make a supply	LE	T	less other			01, 02	1	-1		LSB
Integral linearity error	LE	- טפיו 	3 1, 155	15	-	104, 05 103, 06	2,3		21 (3/4)	
		<u> </u>				03, 06	12	-1/2	₹1 <i>/2/</i>	-
Differential linearity error	DLE	V _{DD} ≖	5 V, V _{SS}	= -15	<i></i>	A11	1,2,3	-1	+1	
Offset error	 V _{OS}	lγ _{DD} =	/DD = 5.V			A11 01, 04	1 2,3	-4	+4	LSB
	 	V _{SS} = -15 V				102, 05	<u>†</u> -,	-5	+5	_
		1				103, 06 102, 05	 	-4	+4	Ī
		<u> </u>				103, 06	12	-3	+3	
Full scale error including	AE	V _{DD} =	5 V			A11	1_1_	-15	+15	LSB
internal voltage reference error, (Ideal last code transition = FS-3/2LSB's		V _{SS} = -15 V Full scale = 5 V 				02, 03 105, 06	12	-10 	+10	
Full scale temperature	dĄE/dT	IV _{DD} ≖	= 5 V 1			01, 04	2,3		(45)	ppm/°C
coefficient, including internal voltage reference drift	,	VSS =	-15 V			02, 03 05, 06			25	
Analog input current	IIN	AIN =	. 5 V			A11	1,2,3		3.5	mA
Internal reference voltage output	Y _{REF}	V _{DD} =	= 5 V, Y _{SS}	; = -15	٧	A11	1	-5.3	-5.2	V
Internal reference output current sink capability	 		tant exter	nal loa	d during	A11	13,14,15	<u> </u>	550	μ Α
Digital input low voltage	IVINL I		RD, HBEN, 4.75 V,			A11	1,2,3		0.8	 -
Digital input high voltage	I VINH							2.4		
Digital input capacitance	CIN	T 				 	13		10	pF
Digital input current	I IIIN I	CS, RD, HBEN. VDD = 5.25 V, VSS = -15 V, AIN = 0 to VDD				A11 	1,2,3	-10	 +10 	 μ Α
	<u> </u> 	CLK	IN. V _{DD} = = -15 V, A	5.25 V, \IN = 0	to Y _{DD}	A11 	T 	 -20 	 +20 	
· · · · · · · · · · · · · · · · · · ·		 	SIZE		IDENT N	io. Dwo	S NO.	····	···	
MILITARY DRA			A	6	7268		5962-87	591		
DEFENSE ELECTRONICS SU DAYTON, OHIO		TER			REV		PAGE		4	
	·		<u> </u>						•	

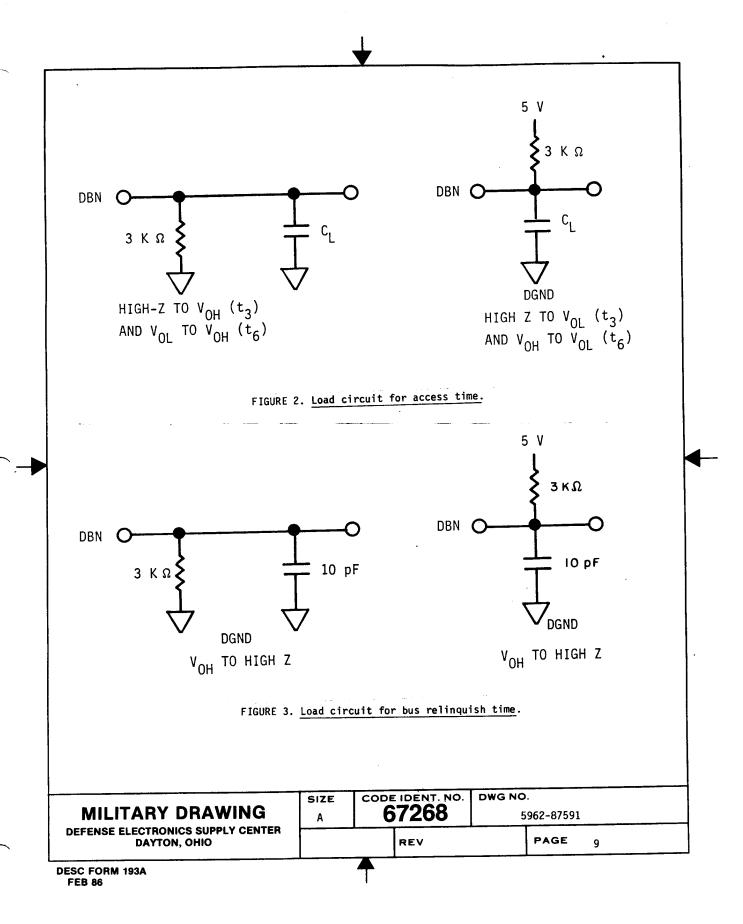
Test	Symbol	l un	Cor -55°C < less othe	ditions TA < +1 erwise s	L25°C	Device types	Group A subgroups			Unit
Digital output low voltage	V _{OL}	ÌVnn =	0/8, BUSY 4.75 V, = 1.6 mA	Y99 = .	OUT -15 V,	A11	1,2,3		0.4	٧
Digital output high voltage	V _{OH}	T ISour 	ce = 200	μ Α				4.0		j
Floating state leakage current	ILKG	D11-D V _{DD} =	0/8. 5.25 V,	V _{SS} =	-15 V	 A11 	1,2,3	-10	+10	μА
Floating state output capacitance	COUT					A11	13,14,15		15	pF
Conversion time using synchronous clock	tconv					04,05,06 101,02,03	13,14,15		5 12.5	μS
Conversion time using asynchronous clock 1/						04,05,06 101,02,03	9,10,11	4.8 12.0	5.2 13.0	
Power supply current from V _{DD}	I _{DD}	lVss =	5.25 V, -15.75 \ RD = BUSY	/ / = HIG	Н;	ATT	1,2,3	 	7 	mA I
Power supply current from V _{SS}	I _{SS}	TA _{IN} =	: 5 V			 			12	
CS to RD setup time	t ₁	See f	igures 6,	, 7, 8,	and 9	A11	9,14,15	0		ns
RD to BUSY propagation delay 2/	t ₂	T 1					9		190 1270	
Data access time after RD, CL = 60 pF (see figure 2)	t ₃ <u>3</u> /	 				 	9	Ť -	110 150	
Data access time after RD, CL = 100 pF	t ₃ <u>3</u> /	Ť					9	Ť ⁻	 125 170	[[[
(see figure 2) RD pulse width	t4	†				į	9,14,15	i .	 	Γ
CS to RD hold time	t ₅	†				j .	9,14,15	0		[
Data setup time after BUSY CL = 60 pF	t ₆ <u>3</u> /	T 					9 9 14,15	Ť ⁻	70 1 70 1 100	! [[
(see figure 2) See footnotes at end of tab	ole.					1	1 27,20	•		-
MILITARY DRA	WING		SIZE		7268	D. DWG N	5962-8759	1		
DEFENSE ELECTRONICS SUF DAYTON, OHIO	PLY CEN	TER		<u>. </u>	REV	5962-875				

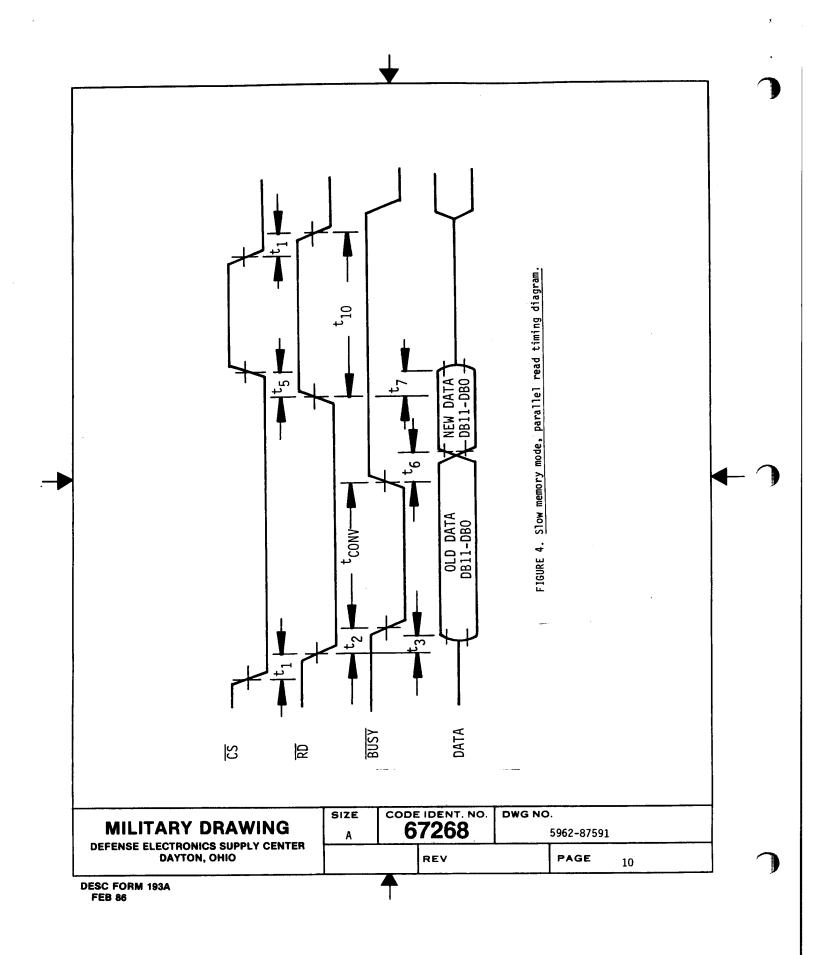
Test	 Symbol	Conditions -55°C < T _A < +125°C	Device	Group A	<u> Li</u>	Unit	
		-55°C < T _A < +125°C unless otherwise specified	types	subgroups		Max	
Bus relinquish time (see figure 3)	t ₇ 4/		A11	9 14,15	20	75 90	<u> </u>
HBEN to RD setup time	t ₈			9,14,15	0	<u> </u> 	ns
HBEN to RD hold time	tg			9,14,15	0		
Delay between successive read operations	t ₁₀			14,15	 500 	!	Γ

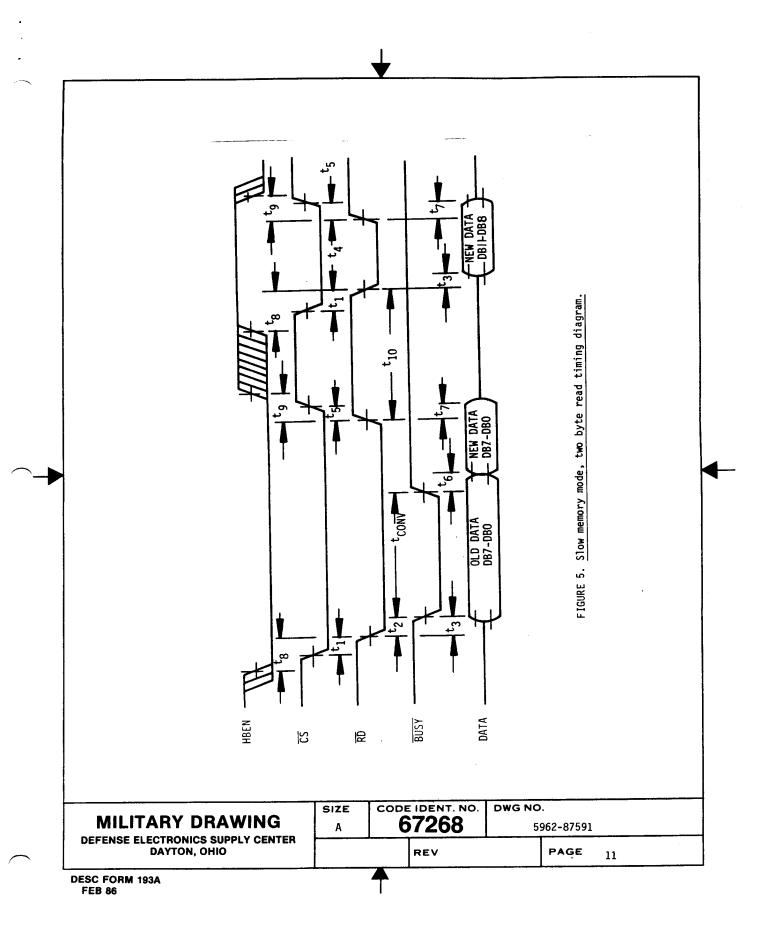
Conversion time using asynchronous clock is measured by setting the clock frequency at the appropriate value (see 1.4) and checking all remaining tested specifications.

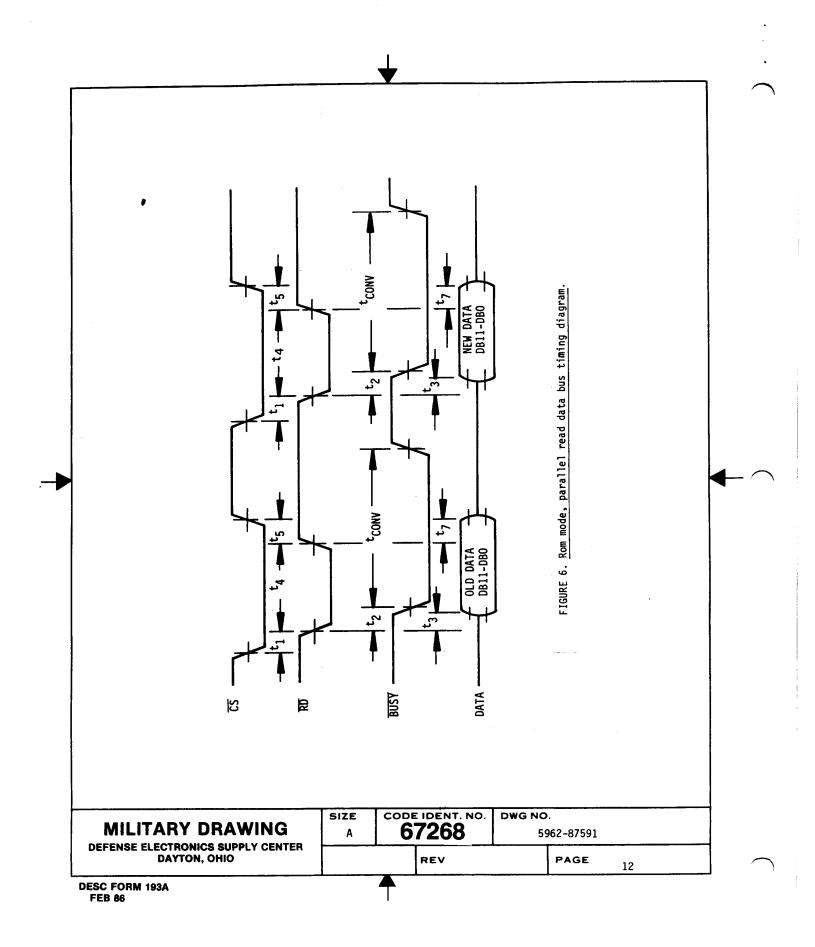

2/ All input control signals are specified with $t_p = t_f = 5$ ns (10 percent to 90 percent of +5 V) and timed from a voltage level of 1.6 V. Time t_6 and t_{10} are measured only for the initial test and after process or design changes which may affect switching parameters.

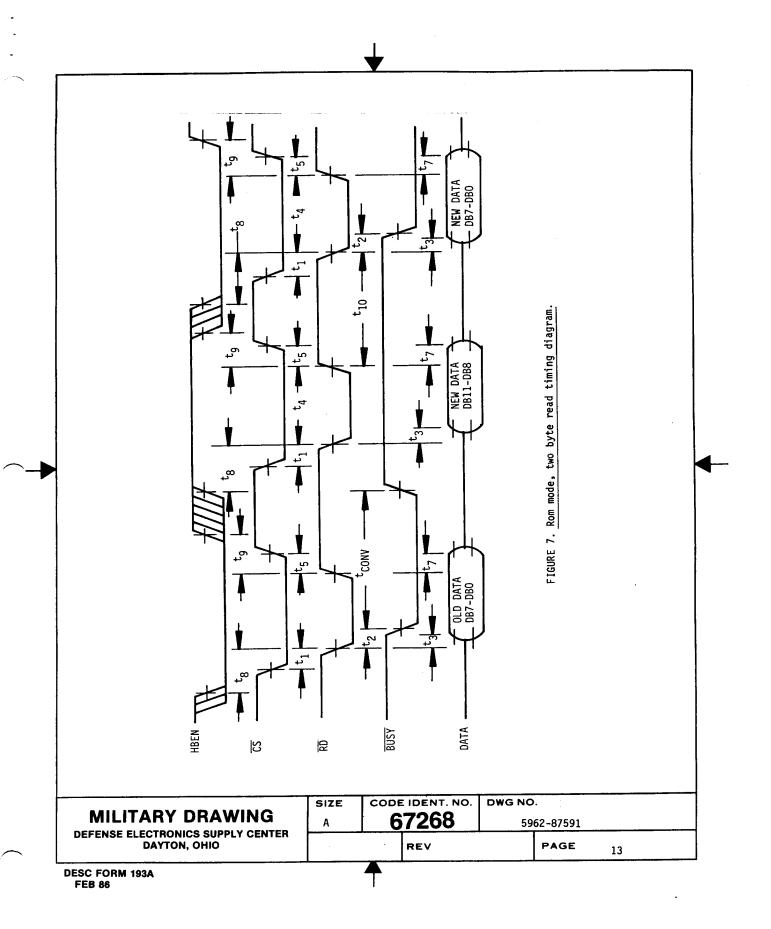

3/ Time t₃ and t₆ are measured with the load circuits of figure 2 and defined as the time required for an output to cross 0.8 V or 2.4 V.


4/ Time to is defined as the time required for the data lines to change 0.5 V when loaded with the circuits of figure 3.


- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 <u>Verification and review.</u> DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test (method 1015 of MIL-STD-883).
 - (1) Test condition A or B using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125$ °C, minimum.


MILITARY DRAWING	SIZE	67268	DWG NO. 5962-87591		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV		PAGE	6





- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-SID-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5, 6, 7, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Special subgroup 12 (as referenced in table I) added for grading and selection tests at 25°C, not included in PDA.
 - d. Special subgroups 13, 14, and 15 (as referenced in table I) shall be measured only for the initial test and after process or design changes which may affect the parameter in these subgroups. Subgroup 13 is +25°C tests, subgroup 14 is +125°C tests, and subgroup 15 is -55°C tests.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - (1) Test condition A or B using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
 Interim electrical parameters (method 5004)	1
 Final electrical test parameters (method 5004)	1*,2,3,4,9,10, 11,12
 Group A test requirements (method 5005)	1,2,3,4,9,10, 11,12
 Groups C and D end-point electrical parameters (method 5005)	1,12

^{*}PDA applies to subgroup 1.

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO

SIZE
CODE IDENT NO. DWG NO.

5962-87591

REV
PAGE 14

- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
- 6. NOTES
- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.
- 6.4 Approved source of supply. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar part number <u>1</u> /	Replacement [military specification part number
5962-8759101LX	24355	AD7572SQ12/883B	N/A
5962-87591013X -	. "	AD7572SE12/883B	1
5962-8759102LX -	"	AD7572TQ12/883B	• 1
5962-87591023X -	j "	AD7572TE12/883B	į " i
1 5962-8759103LX	j "	AD7572UQ12/883B	i " i
5962-87591033X -	"	AD7572UE12/883B	į " i
5962-8759104LX -		AD7572S005/883B	i "i
5962-87591043X ~		AD7572SE05/883B	į " į
5962-8759105LX	i "	AD7572TQ05/8838	į i
5962-87591053X		AD7572TE05/883B	i "i
5962-8759106LX /		AD7572UQ05/883B	i "i
5962-87591063X	i •	AD7572UE05/883B	i "
•		1	

1/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

N/A = Not applicable

Vendor CAGE number

24355

Vendor name and address

Analog Devices 1 Technology Way Norwood, MA 02062

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO

SIZE CODE IDENT. NO. DWG NO.

A 67268 5962-87591

REV PAGE 15