										RE	VISK	ONS	.												
LTR							DESC	RIPT	ION								Ì	DATI	E (YR	-MO-E	M)	APPROVED			
ı																	•				•				
																			l						
													_	_					Υ	r		_		T	
REV														_	_	<u> </u>		<u> </u>	_	_	<u> </u>	_	_	┞-	
SHEET	<u> </u>	_												┢	-	├-	H	-	\vdash	\vdash	-		_	╀	\vdash
REV SHEET		Н		\vdash	\vdash		\vdash			 			H	-	\vdash	╁	-		╁		<u> </u>				
REV STATUS	┰	RE	 :v	_						┢															
OF SHEETS		SH	EET		1	2	3	4	5	6	7	8	9	10	11										
PMIC N/A					PRE	PARE	D BY	, ,	R	K۸	00.	Pu			DE	FENS	F FI	FCTI	ONE	CS S	امول	LY CI	ENTF	≘R	
STANDA	חם	フェ	n	\neg			_		<u>~</u>	, Q	سد	u w	4			E113					15444				
SIANDA			ט			Ray Monnin				╁	MIC	ROCI	RCUI	TS,	LIN	IEAR	, H	GH	EFFI	CIE	NCY				
DRA					API	APPROVED BY					ı	LIN	EAR	REGU	LAT	OR,	MON	OL I 1	THIC	SIL	IC0	N			
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS DRAWING APPROVAL DATE OF MARCH 1988					†	SIZE			CAGE	CODE	 :	П													
AND AGE	ICIES !	OF TI	1E			24 MARCH 1988					A		(372	268	}		59	62	-87	774	+2			
DEPARTMEN	ii OF	VEFE	143E		RE	EVISION LEVEL						T		SHE	ET		1		OF		11				
A													į												

DESC FORM 193 SEP 87

a U.S. GOVERNMENT PRINTING OFFICE: 1987 -- 748-129/60911

5962-E654

1. SCOPE					
1.1 Scope. This drawing describes devic with 1.2.1 of MIL-STD-883, "Provisions for non-JAN devices".	e requireme the use of	nts for class MIL-STD-883 i	B microcircuit n conjunction v	ts in accor with compli	rdance iant
1.2 Part number. The complete part numb	er shall be	as shown in	the following e	example:	
5962-87742 01 Drawing number Device to (1.2.1) 1.2.1 Device type. The device type shall	1)	E 	M:	X d finish p L_M-38510 lows:	er
Device type Generic	number		Circuit funct	ion	
01 18	334	High ef	ficiency linea	r regulato	r
1.2.2 <u>Case outline</u> . The case outline should be seen that the case outline should be seen to be seen that the case outline should be seen to be seen that the case outline should be seen to be seen that the case outline should be seen to be seen that the case outline should be seen to be seen that the case outline should be seen to be seen that the case outline should be seen to be seen that the case outline should be seen to be seen that the case outline should be seen to be seen that the case outline should be seen to be seen that the case outline should be seen to be seen that the case outline should be seen to be seen that the case outline should be seen to be seen that the case outline should be seen to be seen that the case outline should be seen to be s	nall be as d			MIL-M-38510	O, and as
Outline letter		Case outli			
E D-	-2 (16-lead,	840" x .310"	x .200"), dua	I-1n-I1ne	package
Input supply voltage (VIN+) Driver current Driver source to sink voltage Crowbar current +1.5 V reference output current Fault alert voltage Fault alert current Error amplifier inputs Current sense inputs 0 V latch output voltage Power dissipation (PD): TA = +50°C TC = +25°C Storage temperature range Lead temperature (soldering, 10 secon Thermal resistance, junction-to-ambid Case E Thermal resistance, junction-to-case Case E	nds) ent (θ _J _C):	- 400 mA - 40 V dc - 200 mA - 10 mA - 40 V dc - 15 mA - 0.5 V d - 0.5 V d - 0.5 V d - 15 mA - 1000 mW - 2000 mW - 300°C - 100°C/W	3/	di× C	
<pre>1/ Voltages are referenced to pin 5 (V_{IN}- specified terminals. 2/ Derate above T_A = +50°C at 10 mW/°C. 3/ Derate above T_C = +25°C at 16 mW/°C.</pre>). Currents	s are positive	into, negativ	e out of t	he
STANDARDIZED MILITARY DRAWING	SIZE A			2-87742	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION L	EVEL	SHEET	2

1.4 Recommended operating conditions.

Ambient operating temperature range (TA) - - - - - -55°C to +125°C

- 2. APPLICABLE DOCUMENTS
- 2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MTL-STD-883

- Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Block diagram. The block diagram shall be as specified on figure 2.
 - 3.2.3 Case outline. The case outline shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full ambient operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 SIZE A 5962-87742 REVISION LEVEL SHEET 3

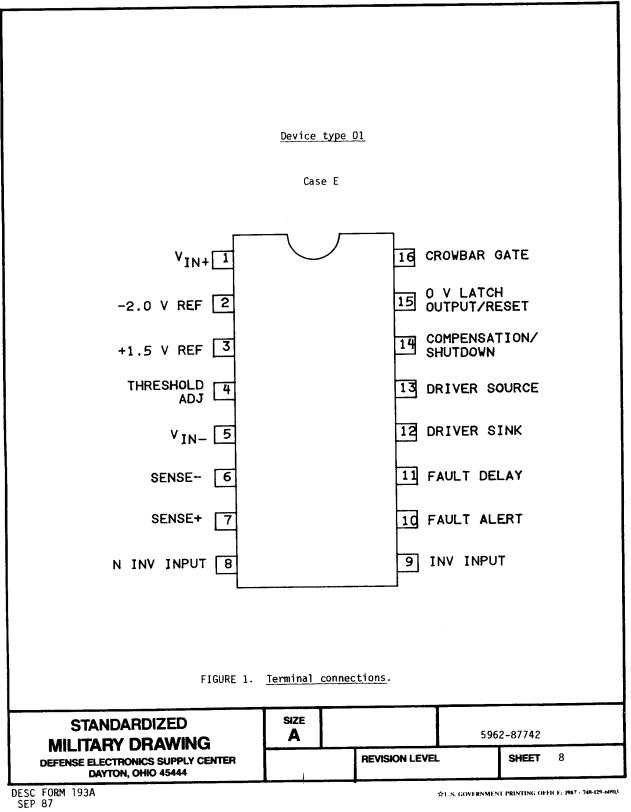
TABLE	I. Electr	ical perfor	mance cha	racteristics	•			
Test	Symbol	-55°(unless	Conditions C < TA < + otherwise	1/ 125°C specified	Group A subgroup			 Unit
Standby supply current	I _{SBY}				1, 2, 3		7.0	mA
	+1.	5 V Referen	ce section	1				
Output voltage	V _{OUT1}	-55°C <u><</u> TJ			1	1.485	 1.515 	V
	† 	 			2, 3	1.47	1.53	
Line regulation	V _{RLINE1}	V _{IN+} = 5.0	V to 35 \	1	1, 2, 3	3	10] mV
Load regulation	V _{RLOAD1}	I _{OUT} = 0 m	A to 2.0 m	nA	1, 2, 3	3 	10	
	-2.0	V Reference	section	2/				
Output voltage (referenced to VIN+)	V _{OUT2}	-55°C <u><</u> TJ	< +125°C		1	2.04	 1.96 	 V
(referenced to TN+)		 			2, 3	2.06	11.94	T
Line regulation	V _{RLINE2}	V _{IN+} = 5.0	V to 35	٧.	1, 2,	3	15	l mV
	Er	ror amplifi	er section)				
Input offset voltage	v _{os}	V _{CM} = 1.5	V		1, 2,	3	6.0	mV
Input bias current	I IB1	V _{CM} = 1.5	٧		1, 2,	3	-4.0	 μΑ
Input offset current	Ios	V _{CM} = 1.5	٧		1, 2,	3	1.0	1
Small signal open loop gain	AVOL	Output at Ipin 13 con	inected th	in 12 = V _{IN+} rough 20Ω	4, 5,	6 50		dB
See footnotes at end of tabl	e.							
STANDARDIZED MILITARY DRAWI		SIZE A	5962-87742					
DEFENSE ELECTRONICS SUPPL DAYTON, OHIO 45444	Y CENTER		RE	/ISION LEVEL		SHEET	4	

TABLE I. <u>Electrical performance characteristics</u> - Continued.												
Test	 Symbol	 -55°	Condit C < T	ions 1/ < +125°C		Group		j	Ţ	 Unit 		
	<u> </u>	unless	other	ise specified				Min	Max	<u> </u>		
	Error amp	olifier sec	tion -	Continued					· 			
Common mode rejection ratio	CMRR	V _{CM} = 0.5	V to 3	33 V, V _{IN+} = 35	5 V	4, 5,	6	60		 		
Power supply rejection ratio	 PSRR 	V _{IN+} = 5.0 V _{CM} = 1.5	O V to V	35 V,	 	4, 5,	6	 70 	 	dB 		
Driver section <u>3</u> /												
Maximum output current	 I _{OUT(max)}					1, 2,	3	 200 	 	l mA		
Saturation voltage	I I V _{SAT} I	I _{OUT} = 100	O mA			1, 2,	3		1.2	V		
Output leakage current	I I _{LO}	 Pin 12 = 3 pin 14 = 3 	35 V, ; V _{IN-}	oin 13 = V _{IN-} ,		1, 2,	3		50	μA		
Shutdown input voltage at pin 14	 V _{IN} (SHTDN) 	 I _{OUT <} 100 pin 12 = '	0 μA, (V _{IN} +	oin 13 = V _{IN-} ,	1	1, 2,	3	0.4	 	V		
Shutdown input current at pin 14	IIIN (SHTDN)	 Pin 14	VINĀ,	oin 12 = V _{IN+} , oin 13 = V _{IN-}		1, 2,	3	 	 -150 	 μ A 		
	Fa	ult amplifi	er sec	tion								
Under-and over-voltage fault threshold	V _{TH1}	V _{CM} = 1.5	V, at	E/A inputs		1, 2,	3	120	180	mV 		
Common-mode sensitivity	VCMS	 V _{IN+} = 35 33 V	v, v _C	y = 1.5 V to		1, 2,	3	<u> </u>	-0.8	%/V		
Supply sensitivity	V _{SS}	V _{CM} = 1.5 to 35 V	ν, ν _Ι	V+ = 5.0 V		1, 2,	3		-1.0			
See footnotes at end of table												
STANDARDIZED MILITARY DRAWIN	ıG	SIZE A				59	52-8	37742				
DEFENSE ELECTRONICS SUPPLY DAYTON, OHIO 45444				REVISION LEVEL			s	HEET	5			

TABLE I. <u>E</u>	lectrical p	erfo rman ce	chara	cteristics - C	ontinu	ed.		-:-	
Test	Symbol	-55°	Condit C < Ta	ions 1/		up A Proups	1	mits	Unit
	<u> </u>	unless	otherw	<pre>< +125°C ise specified</pre>		•	Min	Max	1
	Fault amp	lifier sec	tion -	Continued				.	
Fault delay	lt _{FD}				9, 1	0, 11	30	60	ms/μF
Fault alert output current	I _{OUT} (pin 10)				1,	2, 3	2.0	 	mA
Fault alert saturation voltage	 V _{SAT} (pin 10)	I _{OUT} = 1.0	mA		1,	2, 3	 	 0.5 	V
0 V latch output current	 I _{OUT} (pin 15)				1,	2, 3	2.0	 	 mA
O V latch saturation voltage	VSAT (pin 15)	I _{OUT} = 1.0) mA		 1, 	2, 3	 	1 1.3 	 V
O V latch output reset voltage	VRESET				1,	2, 3	0.3	0.6	
Crowbar gate current	 I _{OUT} (pin 16)				1,	2, 3	-100	 	mA
Crowbar gate leakage current	I _{LO} (pin 16)	V _{IN+} = 35	V, pi	n 16 = V _{IN} _	1,	2, 3		 -50 	 μ A
	Current	sense amp	lifier	section					
Threshold voltage	 V _{TH2} 	Pin 4 oper Y _{IN-}	ı, V _{CM}	= V _{IN+} or	11,	2, 3	130	 170 	mV
		Pin 4 = 0 or V _{IN-}	.5 V,	ACW = AIN+	1,	2, 3	40	60	T
See footnotes at end of table									
STANDARDIZED MILITARY DRAWIN	NG	SIZE A				5962	-87742		
DEFENSE ELECTRONICS SUPPL' DAYTON, OHIO 45444				REVISION LEVEL	•		SHEET	6	

TABLE I.	Electrical	performance characteristics - Co	ntinued.			_
Test	Symbol	Conditions 1/ -55°C < T _A < +125°C	Group A	Limi	ts	Unit
		-55°C < T _A < +125°C unless otherwise specified	subgroups 		Max	
C	urrent sen	se amplifier section - Continued				
Threshold supply sensitivity	ΔV _{TH2}	V _{IN+} = 5.0 V to 35 V, Pin 4 open, V _{CM} = V _{IN} -	1, 2, 3	 - 	0.3	 %/V
Adjustment input current	IIIN	Pin 4 = 0.5 V	1, 2, 3	- -	- 10	
Sense input bias current	II _{IB2}	I VCW = AIN+	1, 2, 3		200	 -
		ACW = AIN-	1, 2, 3	-	200	

1/ Unless otherwise specified, V_{IN}^+ = 15 V, V_{IN}^- = 0 V and T_A = -55°C to +125°C.


Z/ When using both the 1.5 V and -2.0 V references, the current out of pin 3 should be balanced by an equivalent current into pin 2. The -2.0 V output will change -2.3 mV per μA imbalance.

3/ The driver section contains a thermal shutdown which turns the driver off at approximately +165°C.

If pin 15 (0 V latch output) is tied to pin 14 (compensation/shutdown), the 0 V latch will be reset.

- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).

STANDARDIZED MILITARY DRAWING	SIZE A		596	2-87742	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	-	SHEET	7

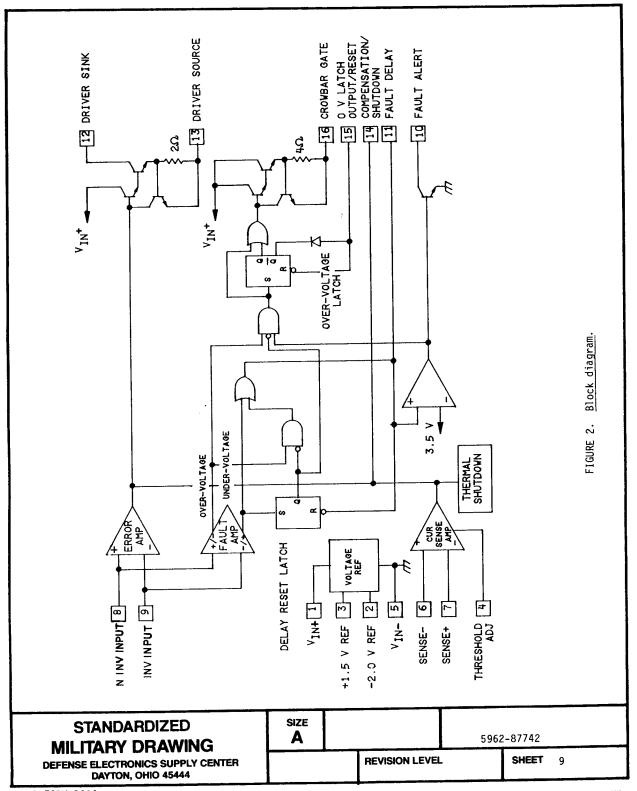


TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	1
Final electrical test parameters (method 5004)	1*,2,3,4,9
Group A test requirements (method 5005)	1,2,3,4,5,6, 9,10,11
Groups C and D end-point electrical parameters (method 5005)	1,2,3

^{*} PDA applies to subgroup 1.

- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method $\overline{5005}$ of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 7 and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).

STANDARDIZED MILITARY DRAWING	SIZE A		596	2-877 42	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVE	L	SHEET	10

- (2) $T_A = +125^{\circ}C$, minimum.
- (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
 - 6. NOTES
- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.
- 6.4 Approved source of supply. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

	Vendor CAGE number	Vendor similar part number	1/
5962-8774201EX	48726	UC1834J/883B	

Caution. Do not use this number for item acquisition. Items acquired by this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number Vendor name and address

48726

Unitrode Integrated Circuits Corporation 7 Continental Boulevard Merrimack, NH 03054

STANDARDIZED MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE A		596	2-87742		
	REVISION LEVEL	•	SHEET	11	