										RE	EVIS	ION	s												
LTR							DES	CRIP	TION	ı								DA	TE (Y	R-MO	-DA)	1	APPF	ROVE	:D
																		DA	IE (Y	R-MO	-DA)			- Control of the cont	
REV	1						<u> </u>	Γ-		Γ	1					Γ		1		<u> </u>	Ι	_	<u> </u>		
SHEET						一	┢	-	╟	┢	┢	Н	Н	Н		_	-	\vdash	┢	┢╌	十	-	┝	╁	+-
REV														-			┢		┢	┢	\vdash	H	H	\vdash	\vdash
SHEET																				T	T	T	Г	T	
REV ST		Ľ	RE	٧																					
OF SHE	ETS	\perp	SH	EET	1	2	3	4	5	6	7	8	9	10	11	12	13	14							
•		٩R١	1	D	ĆHĘ	PARE	B	7 W	0) 0m	•	LA.	n	DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 MICROCIRCUITS, LINEAR, CMOS, 8-BIT, MICROPROCESSOR COMPATIBLE, A/D CONVERTER												
THIS DR FOR USE	AWING BY ALL AGENC TMENT	IS AV	/AILA ARTN OF TH	AENT E	DRA		30	PROV MAY	_	9	_		W	ITH Size A	TRA	CK/H	AGE	, MC	ONOL	ITHI	C S	62	ON		50

DESC FORM 193 SEP 87

 \circ U.S. Government printing office: 1987 — 748-129/60911 5962-E959

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510 - Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 <u>Design</u>, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full ambient operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444
SIZE
A
5962-88650
REVISION LEVEL
SHEET
3

DESC FORM 193A SEP 87

Test	 Symbol		Conditi	ons 1/ 2/	Gra	un A	Device	1 1 3	mits	l I Uni
		unl	-55°C < 1 ess otherw	[A < +125°C vise specified	subg		types		1	ĺ
Resolution	I IRES I	for w	is the mir hich no mi nteed.	nimum resoluti ssing codes a	ion 1,	2, 3	A11 	8.0		LSE
Total unadjusted error	TUE	3/				1	01		±1	
					2,	3, 12			±0.5	
				4-1	1, 8	2, 3	02	 	±1	LSE
Analog input leakage current	IIN	 			1, 2	2, 3	I FA		±3.0	μ /
Analog imput capacitance	CIA	See 4	.3.1c, T _A	= +25°C	4		ATT		60	pF
Reference input resistance	RIN	, ,			1, 2	., 3	A11	1.0	4.0	k۵
Digital input high level võltage	VΪΗ	CS, WR (Pin 7	and RD	inputs	1, 2	, 3	A11	2.4		γ
		Mode i	nput			1		3.5		
Digital input low level voltäge	VIL	CS, WR (Pin 7	, and RD i	inputs	1, 2	, 3	A11		0.8	٧
] 	Mode i	nput]	 	1	1.5	
Digital imput high current	IIH	CS and	RD inputs		1, 2	, 3	A11		±1.0	μА
	 	WR inp	ut		 	1	 	 	±3.0	
		Mode ii (Pin 7			- 		/ -	1	±200	
e footnotes at end of tabl	e.									
STANDARDIZED MILITARY DRAW			SIZE A			, de la constanta de la consta	5962-88	<u> </u>		• • • • • •

Test	Symbol	Conditions 1/ 2/ -55°C < T _A < +125°C	Group A	Device	Li	mits	Unit
	<u> </u>	unless otherwise specified	subgroups	types	Min	Max	
Digital input low current	IIT	CS, WR, RD, and mode inputs	1, 2, 3	A11		-1.0	μА
Digital input capacitance	CID	CS, WR, RD, and mode inputs, See 4.3.1c, T _A = +25 C	4	A11		8.0	pF
Digital output high level voltage	v _{OH}	DB _O - DB ₇ , OFI, and INT loutputs, I _{SOURCE} = 360 µA	1, 2, 3	A11	4.0		٧
Digital output low level voltage	V _{OL}	DB _O - DB ₇ , OFL, and INT outputs, I _{SINK} = 1.6 mA	1, 2, 3	A11		0.4	٧
Floating state leakage current	I _{OUT}	DB _O - DB ₇	1, 2, 3	A11		±3.0	μА
Digital output capacitance	COUT	See 4.3.1c, T _A = +25°C	4	A11		8.0	pF
Supply current from V _{DD}	I _{DD}	CS = RD = 0 V	1, 2, 3	A11	1	20.0	mA
Power supply sensitivity	PSS	V _{DD} = 5.0 V ±5%	1, 2, 3	All		±.25	LSB
CS to RD/WR setup time	tcss	<u>6</u> / <u>7</u> /	9,10,11	A11	0		ns
CS to RD/WR hold time	t _{CSH}	<u>6</u> / <u>7</u> /	9,10,11	A11	0		ns
CS to RDY delay	t _{RDY}	C _L = 50 pF, pull-up resistor = 2.0 kΩ	9	A11		70	ns
		6/ 7/	10, 11			100	
Conversion time (RD mode)	tCRD	See figure 3. 7/	9	A11	İ	1.6	μS
			10, 11	j-	İ	2.5	
ee footnotes at end of table	e.			1			
STANDARDIZED							

DESC FORM 193A SEP 87

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SHEET

REVISION LEVEL

Test	Crack = 3	Ţ	Paddal at a	<u> </u>	1.	1		
1651	Symbol 	! 	Conditions 1/2/ -55°C < TA < +125°C ess otherwise specif	Group / subgroup ied 	Device types	Li Min	mits Max	Uni
Data access time (\overline{RD} mode) t _{ACCO}	4/	<u>7</u> /	9	A11	 	1.62	ns
				10, 11			2.55	
RD to TNT delay (RD mode)	tINTH	CL =	50 pF <u>7</u> /	9	Å11		175	ns
				10, 11			225	
Data hold time	t _{DH}	<u>5</u> /	<u>6</u> / <u>7</u> /	9	All	 	60	ns
	 	 		10, 11	_ 		100	
Delay time between conversion	tp	<u>6</u> /	7/	9	All	500		ns
				10, 11	- 	600		
Write pulse width	twR	<u>6</u> /		9,10,11	A11	0.6	50	μS
Delay time between WR and RD pulses	t _{RD}	<u>6</u> /		9	All	600	İ	ns
				10, 11		700		
Date access time (WR/RD mode)	tACC1	<u>4</u> /	6/	9	All		160	ns
				10, 11			250	
RD to TNT delay	t _{R1}	<u>6</u> /		9	All		140	ns
				10, 11] j];	225	
e footnotes at end of tabl	e.							
STANDARDIZE)	es ey	SIZE		S. Carlotte, and Applications	na alika menada	A Secretory of	
MILITARY DRAW	:-		Ai					

DESC FORM 193A SEP 87

Test	Symbol	Conditions 1/2/ -55°C < TA < +T25°C	Group A				Unit	
		-55 C < 1A < +125 C unless otherwise specified 	subgroups 	typesi 	Min	Max		
WR to INT delay	tINTL	C _L = 50 pF <u>6</u> /	9	A11		1.0	μS	
	 		10, 11			1.7		
Data access time (WR/RD mode)	tacc2	4/ 6/	9	A11		70	ns	
	 	 	10, 11			110	i	
WR to INT delay (Stand alone operation)	tIHWR	C _L = 50 pF <u>6</u> /	9	All		100	ns	
	 		10, 11]	150		
Data access time after INT (Stand alone operation)	t _{ID}	6/	9	A11		50	ns	
	 		10, 11	 		75 I		

- V_{DD} = +5.0 V; $V_{REF}(+)$ = +5.0 V; $V_{RFF}(-)$ = GND = 0 V unless otherwise specified. Specifications apply for RD mode (Pin 7 = 0 V).
- 2/ All input control signals are specified with $t_r=t_f=20$ ns (10 percent to 90 percent of +5.0 V) and timed from a voltage level of 1.6 V.
- 3/ Includes gain error, offset error and linearity error.
- $\frac{4}{}$ Measured with load circuits of figure 2 and defined as the time required for an output to cross 0.8 V to 2.4 V.
- $^{5/}$ Defined as the time required for the data lines to change 0.5 V when loaded with the circuits of figure 2 and is measured only for the initial test and after process or design changes which may affect T_{DH} .
- $\frac{6}{}$ Refer to timing diagrams of figure 3. These parameters, if not tested, shall be guaranteed to the limits specified in table I.
- 7/ Refer to timing diagram of figure 3 ($\overline{\text{RD}}$ mode). These parameters are tested to subgroup 9 under group A test requirements.

STANDARDIZED MILITARY DRAWING	SIZE A	59	62-88650
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 7

-			
	Device types	 A11 	1
	Case outlines	Rand 2	1
	Terminal number	Terminal symbol	1
T	1	VIN	ľ
į	2	DB _O (LSB)	
1	3	DB ₁	
į	4	DB ₂	
i	5	DB ₃	i
į	6	WR/RDY	
i	7	Mode	
į	8	RD i	
ſ	9	INT	
į	10	GND	
	11	V _{REF} _	
į	12	V _{REF+}	
! 	13	cs	
į	14	DB4	
İ	15	DB ₅	
į	16	DB ₆	
	17	DB7(MS8)	
ĺ	18	OFL	
	19	NC	
	20	v _{DD}	
_			

FIGURE 1. Terminal connections.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A
5962-88650

REVISION LEVEL
SHEET
8

- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 Yerification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening.</u> Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125$ °C, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5, 6, 7, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 ($C_{\rm IA}$, $C_{\rm ID}$, and $C_{\rm OUT}$ measurements) shall be measured only for the initial test and after process or design changes which may affect capacitance.
 - d. Subgroup 12 test is used for grading and part selection at T_A = +25°C and is not included in PDA calculations.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life, test method 1005 of MIL-STD-883 conditions.
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARDIZED MILITARY DRAWING	SIZE A	5962			2-88650		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	_	SHEET	12		

TABLE II. Electrical test requirements.

 MIL-STD-883 test requirements 	Subgroups (per method 5005, table I)
 Interim electrical parameters (method 5004) 	1
Final electrical test parameters (method 5004)	1*, 2, 3, 12
Group A test requirements (method 5005)	1, 2, 3, 4, 9, 10**, 11**, 12
Groups C and D end-point electrical parameters (method 5005)	1 .

* PDA applies to subgroup 1.

** Subgroups 10 and 11 if not tested, are guaranteed to the limits specified in table I.

5. PACKAGING

 $5.1\,$ Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

- 6.1 <u>Intended use.</u> Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

STANDA	RDIZED
MILITARY	DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE A		5962	-88650		
	REVISION LEVEL		SHEET	13	

DESC FORM 193A SEP 87 6.4 Approved source of supply. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing	Vendor	Vendor	Replacement military specification part number
part number	CAGE	similar part	
	number	number <u>1</u> /	
5962-8865001RX	24355	AD7820UQ/883B	M38510/14601BRX
5962-88650012X	24355	AD7820UE/883B	M38510/14601B2X
5962-8865002RX	24355	AD7820TQ/883B	M38510/14602BRX
5962-88650022X	24355	AD7820TE/883B	M38510/14602B2X

1/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number

Vendor name and address

24355

Analog Devices 1 Technology Way Norwood, MA 02062

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE Α

5962-88650

REVISION LEVEL

SHEET

DESC FORM 193A SEP 87

± U. S. GOVERNMENT PRINTING OFFICE: 1988-549-904

0.8193 _ _ _