| | | | | | | | | F | REVISION | ONS | | | | | | | | | | | |---|--|--|--|------------------|---------------------------|----------------------------------|-------------------------|------------------|----------|----------------------------|---------------|---------------------|--------------|-------------------------------|---------------------|-------------|---------------------------------------|-----------|-----------------|---| | LTR | | | | | | DESCRI | IPTION | ١ | | | DATE (YR-MOD) | | DA) APPROVED | | | | | | | | | Α | | te Vend
ghout. | lor CAC | 3E 187 | 14. Ac | id vend | or CA(| 3E 270 | 014. Ed | ditorial | change | s | | 91-0 | 8-28 | | M. A. Frye | | | | | В | Add | | dor CAGE 01295 for device type 01. Change boiler | | | | | | e boiler | r plate to add device 97-0 | | | 97-0 | 08-04 | | M | Monica L. Poelking | REV | SHEET | SHEET | В | SHEET
REV
SHEET | 15 | | | DEV | | | D | 0 | | | | | | | | | | | | | | SHEET
REV
SHEET
REV STATU | 15
JS | | | REV | | | B 1 | B 2 | B 3 | В | В | В | В | В | В | B 10 | B | B 12 | В | 1 | | REV SHEET REV SHEET REV STATU OF SHEETS PMIC N/A | 15
JS | | | SHE | ET
EPARI | ED BY arcia B. | 1 | 2 | В 3 | B 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | B 12 | 13 | 1 | | SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STA | 15
JS | CUIT | | SHE | EPARI
M: | arcia B. | 1
Kellel | 2
ner | | | 5 | 6 | 7
SE S | 8
UPPL | 9
.Y CE | 10 | 11 | 12
UMB | 13 | + | | SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STA MICF DF THIS DRAI FOR | ANDAI
ROCIRC
RAWIN | CUIT
IG
VAILAI | | SHE
PR | EPARI
M:
CKED
Tr | BY
nomas | 1
Kelleh | 2
ner
iuti | | MIC INV | D D CROCK | EFEN | 7 ISE SI COL | 8
UPPL
UMBL | 9
.Y CE
JS, O | NTEF | 11
R COL
43216 | LUMB | 13 | X | | SHEET REV SHEET REV STATL OF SHEETS PMIC N/A ST. MICF DF THIS DRAM FOR DER | ANDAI ROCIRC RAWIN WING IS AR USE BY PARTMEN GENCIES | CUIT
IG
AVAILAI
ALL
NTS
OF THE | BLE
E | SHE
PR
CHE | EPARI
M:
CKED
Tr | BY
nomas C | 1 Kellel J. Ricc A. Fry | 2
ner
iuti | | MIC INV | D D | EFEN | 7 ISE SI COL | 8
UPPL
UMBL | 9
.Y CE
JS, O | NTEF | 11
R COL
43216 | LUMB | 13
US | X | | SHEET REV SHEET REV STATU OF SHEETS PMIC N/A ST. MICF DF THIS DRAY FOR DER AND AG DEPARTM | ANDAI ROCIRC RAWIN WING IS AR USE BY PARTMEN GENCIES | CUIT
IG
AVAILAI
ALL
ITS
OF THE
DEFEN | BLE
E | SHE
PR
CHE | EPARI
M.
CKED
TY | BY nomas of the by Michael APPRC | 1 Kellel J. Ricc A. Fry | 2
ner
iuti | | MIC
INV
SILI | D D CROCK | FFEN
IRCUIER, TT | 7 ISE SI COL | UPPL
UMBL
DIGITA
MPA | 9
.Y CE
JS, O | NTEF
HIO | 11
R COL
43216
CED
JTS, N | LUMB | US
S, HE | × | DESC FORM 193 JUL 94 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 5962-E074-97 SHEET OF 15 1 ## 1. SCOPE - 1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classe Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN. - 1.2 PIN. The PIN is as shown in the following examples. For device classes M and Q: For device class V: - 1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a nonRHA device. - 1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows: | Device type | <u>Generic numbe</u> r | Circuit function | |-------------|------------------------|-------------------------------------| | 01 | 54ACT04 | Hex inverter, TTL compatible inputs | | 02 | 54ACT11004 | Hex inverter, TTL compatible inputs | 1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as listed below. Since the device class designator has been added after the original issuance of this drawing, device classes M and Q designators will not be included in the PIN and will not be marked on the device. | Device class | Device requirements documentation | |--------------|---| | М | Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A | | Q or V | Certification and qualification to MIL-PRF-38535 | | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89734 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
B | SHEET 2 | 1.2.4 Case outline(s). The case outline(s) are as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | |----------------|------------------------|------------------|------------------------------| | С | GDIP1-T14 or CDIP2-T14 | 14 | Dual-in-line | | D | GDFP1-F14 or CDFP2-F14 | 14 | Flat pack | | R | GDIP1-T20 or CDIP2-T20 | 20 | Dual-in-line | | 2 | CQCC1-N20 | 20 | Square leadless chip carrier | 1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. # 1.3 Absolute maximum ratings. 1/2/3/ | Supply voltage range (V _{CC}) | 0.5 V dc to +6.0 V dc | |---|--| | DC input voltage range (V _{IN}) | 0.5 V dc to Vc + 0.5 V dc | | DC output voltage range (Vout) | 0.5 V dc to \(\frac{1}{2} \cdot \) + 0.5 V dc | | DC input diode current | ±20 mA | | DC output diode current (per pin) | ±50 mA | | DC output source or sink current | ±50 mA | | DC Vcc or GND current | ±150 mA | | Maximum power dissipation (哈) | 500 mW | | Storage temperature range (T _{STG}) | 65C to +150°C | | Lead temperature (soldering, 10 seconds) | +300C | | Thermal resistance, junction-to-case (⊖ _{JC}) | See MILSTD-1835 | | Junction temperature (T _J) | +175C <u>4</u> / | | | | ### 1.4 Recommended operating conditions. 2/3/5/ | Supply voltage range (Vcc) | 4.5 V dc to +5.5 V dc | |--|-----------------------| | Minimum high level input voltage (V _H) | 2.0 V dc | | Maximum low level input voltage (Vi.) | 0.8 V dc | | Input voltage range (V _N) | +0.0 V dc to \c | | Output voltage range (Vout) | +0.0 V dc to ∀c | | Maximum input rise or fall rate (△t/△V): | 0 to 8 ns/V | | Case operating temperature range (Tc) | -55°C to +125°C | # 1.5 Digital logic testing for device classes Q and V. | Fault coverage measurement of manufacturing | | |---|---------------| | logic tests (MIL-STD-883, test method 5012) | XX percent_6/ | ^{1/} Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. ^{6/} Values will be added when they become available. | STANDARD | |--------------------------------| | MICROCIRCUIT DRAWING | | DEFENSE SUPPLY CENTER COLUMBUS | | COLUMBUS, OHIO 43216-5000 | | SIZE
A | | 5962-89734 | |------------------|---------------------|------------| | | REVISION LEVEL
B | SHEET
3 | ^{2/} Unless otherwise noted, all voltages are referenced to GND. The limits for the parameters specified herein shall apply over the full specified V_C range and case temperature range of -55°C to +125°C. ^{4/} Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with method 5004 of MIL-STD-883, ^{5/} Unused inputs must be held high or low to prevent them from floating. #### 2. APPLICABLE DOCUMENTS 2.1 Government specification, standards, and handbooks. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation. ### **SPECIFICATION** **MILITARY** MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for. #### **STANDARDS** #### **MILITARY** MIL-STD-883 - Test Methods and Procedures for Microelectronics. MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. #### **HANDBOOKS** #### **MILITARY** MIL-HDBK-103 - List of Standard Microcircuit Drawings (SMD's). MIL-HDBK-780 - Standard Microcircuit Drawings. (Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2.2 Non-Government publications. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of the documents which are DOD adopted are those listed in the issue of the DODISS cited in the solicitation. Unless otherwise specified, the issues of documents not listed in the DODISS are the issues of the documents cited in the solicitation. ### **ELECTRONIC INDUSTRIES ASSOCIATION (EIA)** JEDEC Standard No. 20 - Standardized for Description of 54/74ACXXXX and 54/74ACTXXXX Advanced High-Speed CMOS Devices. JEDEC Standard No. 17 - Standardized for Description of Latch-up in CMOS Integrated Circuits. (Applications for copies should be addressed to the Electronics Industries Association, 2001 Eye Street, NW, Washington, DC 20006.) (Non-Government standards and other publications are normally available from the organizations that prepare or distribute the documents. These documents may also be available in or through libraries or other informational services.) 2.3 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. # **STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000** | SIZE
A | | 5962-89734 | |------------------|---------------------|------------| | | REVISION LEVEL
B | SHEET
4 | ### 3. REQUIREMENTS - 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M. - 3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.4 herein. - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1. - 3.2.3 Truth table. The truth table shall be as specified on figure 2. - 3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3. - 3.2.5 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as specified on figure 4. - 3.2.6 Radiation exposure circuit. The radiation exposure circuit shall be as specified when available. - 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I. - 3.5 Marking. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A. - 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A. - 3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein. - 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing. - 3.8 <u>Notification of change for device class M.</u> For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-973. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962- | |---|------------------|---------------------|-------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
B | SHEET | DESC FORM 193A JUL 94 5962-89734 5 - 3.9 <u>Verification and review for device class M.</u> For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. - 3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 37 (see MIL-PRF-38535, appendix A). ### 4. QUALITY ASSURANCE PROVISIONS - 4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A. - 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. ### 4.2.1 Additional criteria for device class M. - a. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015. - (2) $T_A = +125$ °C, minimum. - b. Interim and final electrical test parameters shall be as specified in table II herein. ### 4.2.2 Additional criteria for device classes Q and V. - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883. - b. Interim and final electrical test parameters shall be as specified in table II herein. - Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B. - 4.3 Qualification inspection for device classes Q and V. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89734 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
B | SHEET 6 | | | | TABLE I. <u>Ele</u> | ectrical perform | ance charact | teristics | | · • | <u>.</u> | · | |--|--------------------|---|--------------------------|---------------------------------|-----------|----------------------|-------------|---------------|------| | Test and MIL-STD-883 test method 1/ | Symbol | Test conditions $\underline{2}/$ $-55^{\circ}C \le T_{C} \le +125^{\circ}C$ $+4.5 \ V \le V_{CC} \le +5.5 \ V$ unless otherwise specified | | Device
type
and
Device | Vcc | Group A
subgroups | Limi
Min | ts <u>3</u> / | Unit | | | | arriodo otrior wide | - opcomed | class | | | WIII | IVIAX | | | Positive input
clamp voltage
3022 | V _{IC+} | For input under test, In | = 18 mA | All
V | 4.5 V | 1, 2, 3 | | 5.7 | ٧ | | Negative input
clamp voltage
3022 | V _{IC} - | For input under test, IN | = -18 mA | All
V | 4.5 V | 1, 2, 3 | | -1.2 | ٧ | | High level output voltage | Voh | For all inputs affecting output under test, | юн = -50 дА | All
All | 4.5 V | 1, 2, 3 | 4.4 | | ٧ | | 3006 | 4/ | V _{IN} = 2.0 V or 0.8 V
For all other inputs | | | 5.5 V | | 5.4 | | | | | | V _{IN} = V _{CC} or GND | I _{OH} = -24 mA | | 4.5 V | | 3.7 | | 1 | | | | | | | 5.5 V | | 4.7 | | | | | | | l _{OH} = -50 mA | | 5.5 V | - | 3.85 | | | | Low level output voltage | Vol | For all inputs affecting output under test, | Іон = 50 μΑ | Ali
Ali | 4.5 V | 1, 2, 3 | | 0.1 | ٧ | | 3007 | <u>4</u> / | V _{IN} = 2.0 V or 0.8 V
For all other inputs | | 7 | 5.5 V | | | 0.1 | 1 | | | | V _{IN} = V _{CC} or GND | lo _H = 24 mA | | 4.5 V | | | 0.5 | | | | | | | | 5.5 V | | | 0.5 | | | | | | loн = 50 mA | | 5.5 V | 1 | | 1.65 | | | High level input voltage | ViH | | | All
All | 4.5 V | 1, 2, 3 | 2.0 | | ٧ | | | <u>5</u> / | | | | 5.5 V | | 2.0 | | | | Low level input voltage | VIL | | | All
All | 4.5 V | 1 | | 0.8 | V | | , g _ | <u>5</u> / | | | Α" | 5.5 V | 1 | | 0.8 | 1 | | Input leakage
current high
3010 | lін | V _{IN} = 5.5 V | | All
All | 5.5 V | 1, 2, 3 | | 1.0 | μА | | Input leakage
current low
3009 | l _{IL} | V _{IN} = 0.0 V | | All
All | 5.5 V | 1, 2, 3 | | -1.0 | | | Quiescent supply
current delta,
TTL input levels
3005 | Δlcc
<u>6</u> / | $V_{IL} = 0.0 \text{ V}, V_{IH} = V_{CC} - 100$ | 2.1 V | All
All | 5.5 V | 1, 2, 3 | | 1.6 | mA | | Quiescent supply
current
3005 | lcc | V _{IN} = V _{CC} or GND
lout = 0.0 μA | | All
All | 5.5 V | 1, 2, 3 | | 80 | μА | | See footnotes at en | d of table |).
). | | I | | l | 1 | 1 | 1 | | MICI | | NDARD
CUIT DRAWING | | SIZE
A | | | | 5962-8 | 9734 | | DEFENSE S | UPPLY | CENTER COLUMB
OHIO 43216-5000 | us | | REVISIO | ON LEVEL
B | SH | HEET 7 | | | | | TABLE I. Electrical performance | <u>∍ characteri</u> | stics - Co | ontinued. | | | | |---|-----------------------------|---|-----------------------|------------|-------------------|------|-----------------|------| | Test and MIL-STD-883 test method 1/ | Symbol | Test conditions $2/$
-55°C \leq T _C \leq +125°C
+4.5 V \leq V _{CC} \leq +5.5 V | Device
type
and | Vcc | Group A subgroups | Limi | nits <u>3</u> / | Unit | | _ | | unless otherwise specified | Device
class | | | Min | Max | | | Input capacitance
3012 | Cin | See 4.4.1c
T _C = +25°C | All
All | GND | 4 | | 10.0 | pF | | Power dissipation capacitance | C _{PD} <u>7</u> / | See 4.4.1c
T _C = +25°C | O1
All | 5.0 V | 4 | | 80 | pF | | | | f = 1 MHz | 02
All | | | | 40 | | | Latch-up
input/output
over-voltage | lcc
(O/V1)
<u>8</u> / | $\begin{array}{l} t_w \geq 100 \; \mu s, \; t_{cool} \geq t_w \\ 5 \; \mu s \leq t_r \leq 5 \; ms \\ 5 \; \mu s \leq t_f \leq 5 \; ms \\ V_{test} = 6.0 \; V, \; V_{CCQ} = 5.5 \; V \\ V_{over} = 10.5 \; V \\ See \; 4.4.1d \end{array}$ | All
V | 5.5 V | 2 | | 200 | mA | | Latch-up
input/output
positive over-
current | (O/I1+) | $t_w \ge 100 \ \mu s, \ t_{cool} \ge t_w$ $5 \ \mu s \le t_r \le 5 \ ms$ $5 \ \mu s \le t_r \le 5 \ ms$ $V_{test} = 6.0 \ V, \ V_{CCQ} = 5.5 \ V$ | All
V | 5.5 V | 2 | | 200 | mA | | Latch-up | 8/
lcc | I_{trigger} = +120 mA
See 4.4.1d
$t_{\text{w}} \ge 100 \ \mu\text{s}, t_{\text{cool}} \ge t_{\text{w}}$ | All | 5.5 V | 2 | | 200 | mA | | input/output
negative over-
current | (O/I1-)
<u>8</u> / | 5 μ s \leq t _r \leq 5 ms
5 μ s \leq t _r \leq 5 ms
V _{test} = 6.0 V, V _{CCQ} = 5.5 V
t _{rigger} = -120 mA
See 4.4.1d | V | | | | | | | Latch-up supply over-voltage | lcc
(O/V2)
<u>8</u> / | tw ≥ 100 μ s, t _{cool} ≥ tw
5 μ s ≤ t _r ≤ 5 ms
5 μ s ≤ t _r ≤ 5 ms
V _{test} = 6.0 V, V _{CCQ} = 5.5 V
V _{over} = 9.0 V
See 4.4.1d | All
V | 5.5 V | 2 | | 100 | mA | | Functional tests
3014 | 9/ | Verify output Vout See 4.4.1b | All
All | 4.5 V | 7, 8 | L | Н | | | | | $V_{IH} = 2.0 \text{ V}, V_{IL} = 0.8 \text{ V}$ | ! | 5.5 V | 7, 8 | L | н | | | Propagation delay time, input to | t _{PLH} | $C_L = 50 \text{ pF}$
$R_L = 500\Omega$ | 01
All | 4.5 V | 9 | 1.0 | 9.0 | ns | | output
3003 | <u>10</u> / | See figure 4 | 02
All | | | 1.0 | 9.0 | | | | | | 01
All | | 10, 11 | 1.0 | 10.0 | | | | | | 02 | 1 | | 1.0 | 10.2 | | See footnotes at end of table. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89734 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | B | 8 | | Test and
MiL-STD-883
test method <u>1</u> / | Symbol | Test conditions $\underline{2}/$
-55°C \leq T _C \leq +125°C
+4.5 V \leq V _{CC} \leq +5.5 V | Device
type
and | V _{CC} | Group A
subgroups | Limi | ts <u>3</u> / | Unit | |---|-------------|--|-----------------------|-----------------|----------------------|------|---------------|------| | | | unless otherwise specified | Device
class | | | Min | Max | 1 | | Propagation delay time, input to | tpHL | $C_L = 50 \text{ pF}$ $R_L = 500\Omega$ | 01
All | | 9 | 1.0 | 8.5 | ns | | output
3003 | <u>10</u> / | See figure 4 | 02
All | | | 1.0 | 8.7 | | | | | | 01
All | | 10, 11 | 1.0 | 9.5 | | | | | | 02
All | | | 1.0 | 10.3 | 1 | - 1/ For tests not listed in the referenced MIL-STD-883, (e.g\(\)ICC), utilize the general test procedure under the conditions listed herein. All inputs and outputs shall be tested, as applicable, to the tests in table I herein. - 2/ Each input/output, as applicable, shall be tested at the specified temperature, for the specified limits. Output terminals not designated shall be high level logic, low level logic, or open, except for the and ∆lcc tests, the output terminal shall be open. When performing these tests, the current meter shall be placed in the circuit such that all current flows through the meter. Additional detailed information on qualified devices (i.e., pin for pin conditions and testing sequence) is available from the qualifying activity (DSCC-VQ) upon request. - Solution <u>3</u>/ For negative and positive voltage and current values, the sign designates the potential difference in reference to GND and the direction of current flow, respectively; and the absolute value of the magnitude, not the sign, is relative to the minimum and maximum limits, as applicable, listed herein. All devices shall meet or exceed the limits specified in table I, as applicable, at 4.5≤Wcc ≤ 5.5 V. - 4/ The VoH and VoL tests shall be tested at V∞ = 4.5 V. The VoH and VoL tests are guaranteed, if not tested, for V∞ = 5.5 V. Limits shown apply to operation at V∞ = 5.0 V ±0.5 V. Transmission driving tests are performed at V∞ = 5.5 V with a 2 ms duration maximum. Transmission driving tests may be performed using V= V∞ or GND, when VN = V∞ or GND is used, the test is guaranteed for VN = 2.0 V or 0.8 V. - 5/ The V_H and V_{IL} tests are not required and shall be applied as forcing functions for ¼ and V_{OL} tests. - 6/ △lcc (max)/pin≤1.6 mA (preferred method), or△lcc/package≤1.6 mA x the number of input pins/package where△lcc (max)/data pin≤1.6 mA and △lcc (max)/control pin≤3.0 mA (alternate method). - Power dissipation capacitance (Go) determines the no load dynamic power consumption where: PD = (CPD + CL) (Vω x Vω)f + (Iω x Vω) + (n x d x ΔIω x Vω). Is = (CPD + CL) Vωf + Iω + n x d x ΔIω. For both CPD and Is, n is the number of device inputs at TTL levels, f is the frequency of the input signal, d is the duty cycle of the input signal, and Q is the output load capacitance. - 8/ See JEDEC STD. 17 for electrically induced latch-up test methods and procedures. The values listed form Integer, and Vover are to be accurate within±5 percent. - 9/ Tests shall be performed in sequence, attributes data only. Functional tests shall include the truth table and other logic patterns used to fault detection. The test vectors used to verify the truth table shall, at a minimum, test all functions of each input and output. All possible input to output logic patterns per function shall be guaranteed, if not tested, to the truth table in figure 2 herein. Functional tests shall be performed in sequence as approved by the qualifying activity on qualified devices. After incorporating allowable tolerances per MIL-STD-883 V_L = 0.4 V and V_H = 2.4 V. For outputs L≤0.8 V, H≥2.0 V. - $\underline{10}$ / AC limits at $V_{CC} = 5.5$ V are equal to limits at $V_{CC} = 4.5$ V and guaranteed by testing at $V_{CC} = 4.5$ V. Minimum AC limits for $V_{CC} = 5.5$ V are 1.0 ns and guaranteed by guardbanding the $V_{CC} = 4.5$ V minimum limits to 1.5 ns. For propagation delay tests, all paths must be tested. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89734 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | B | 9 | | Device types | 0 | 1 | C | 2 | |-----------------|------|------------|--------|-----| | Case outlines | C, D | 2 | R | 2 | | Terminal number | | Terminal s | symbol | | | | | | | | | 1 | 1A | NC | 1Y | Vcc | | 2 | 1Y | 1A | 2Y | NC | | 3 | 2A | 1Y | 3Y | 3A | | 4 | 2Y | 2A | GND | 2A | | 5 | 3A | NC | GND | 1A | | 6 | 3Y | 2Y | GND | 1Y | | 7 | GND | NC | GND | 2Y | | 8 | 4Y | ЗА | 4Y | 3Y | | 9 | 4A | 3Y | 5Y | GND | | 10 | 5Y | GND | 6Y | GND | | 11 | 5A | NC | 6A | GND | | 12 | 6Y | 6Y | 5A | GND | | 13 | 6A | 6A | 4A | 4Y | | 14 | Vcc | 5Y | NC | 5Y | | 15 | | NC | Vcc | 6Y | | 16 | | 5A | Vcc | 6A | | 17 | | NC | NC | 5A | | 18 | | 4Y | 3A | 4A | | 19 | | 4A | 2A | NC | | 20 | | Vcc | 1A | Vcc | | | | | | | | Pin description | | | | | |-----------------|--------------|--|--|--| | Terminal symbol | Description | | | | | mA (m = 1 to 6) | Data inputs | | | | | mY (m = 1 to 6) | Data outputs | | | | FIGURE 1. <u>Terminal connections</u>. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89734 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | B | 10 | | Inputs | Outputs | |--------|---------| | H | L | | L | Н | H = High voltage level L = Low voltage level FIGURE 2. Truth table. FIGURE 3. Logic diagram. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89734 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | B | 11 | # Device types 01 and 02 INPUT $t_r, t_f = 3.0 \text{ ns}$, UNLESS OTHERWISE SPECIFIED # NOTES: - $C_L=50~pF$ per table I (includes test jig and probe capacitance). $R_L=500\Omega$ or equivalent. FIGURE 4. Switching waveforms and test circuit . | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89734 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | B | 12 | - 4.3.1 <u>Electrostatic discharge sensitivity qualification inspection</u>. Electrostatic discharge sensitivity (ESDS) testing shall be performed in accordance with MIL-STD-883, method 3015. ESDS testing shall be measured only for initial qualification and after process or design changes which may affect ESDS classification. - 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-PRF-38535 permits alternate in-line control testing. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). TABLE II. Electrical test requirements. | Test requirements | Subgroups
(in accordance with
MIL-STD-883,
method 5005, table I) | Subgroups
(in accordance with
MIL-PRF-38535, table III) | | |---|---|---|--| | | Device
class M | Device
class Q | Device
class V | | Interim electrical parameters (see 4.2) | | | 1 | | Final electrical parameters (see 4.2) | <u>1</u> / 1, 2, 3, 7,
8, 9 | 1/ 1, 2, 3, 7,
8, 9, 10, 11 | <u>2</u> / 1, 2, 3, 7,
8, 9, 10, 11 | | Group A test requirements (see 4.4) | 1, 2, 3, 4, 7,
8, 9, 10, 11 | 1, 2, 3, 4, 7,
8, 9, 10, 11 | 1, 2, 3, 4, 7,
8, 9, 10, 11 | | Group C end-point electrical parameters (see 4.4) | 1, 2, 3 | 1, 2, 3 | 1, 2, 3, 7,8,
9, 10, 11 | | Group D end-point electrical parameters (see 4.4) | 1, 2, 3 | 1, 2, 3 | 1, 2, 3 | | Group E end-point electrical parameters (see 4.4) | 1, 7, 9 | 1, 7, 9 | 1, 7, 9 | ^{1/} PDA applies to subgroup 1. ### 4.4.1 Group A inspection. - a. Tests shall be as specified in table II herein. - b. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table in figure 2 herein. The test vectors used to verify the truth table shall, at a minimum, test all functions of each input and output. All possible input to output logic patterns per function shall be guaranteed, if not tested, to the truth table in figure 2, herein. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device; these tests shall have been fault graded in accordance with MIL-STD-883, test method 5012 (see 1.5 herein). - c. C_{IN} and C_{PD} shall be measured only for initial qualification and after process or design changes which may affect capacitance. C_{IN} shall be measured between the designated terminal and GND at a frequency of 1 MHz. For G_N and C_{PD}, test all applicable pins on five devices with zero failures. | STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | SIZE
A | | 5962-89734 | |---|------------------|---------------------|-------------| | | | REVISION LEVEL
B | SHEET
13 | ^{2/} PDA applies to subgroups 1 and 7. - d. Latch-up tests are required for device class V. These tests shall be performed only for initial qualification and after process or design changes which may affect the performance of the device. Latch-up tests shall be considered destructive. For latch-up tests, test all applicable pins on five devices with zero failures. - 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein. - 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MILSTD-883: - a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883. - b. $T_A = +125$ °C, minimum. - c. Test duration: 1,000 hours, except as permitted by method 1005 of MILSTD-883. - 4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883. - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein. - 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). - a. End-point electrical parameters shall be as specified in table II herein. - b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T = +25°C ±5°C, after exposure, to the subgroups specified in table II herein. - c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied. - 4.5 Methods of inspection. Methods of inspection shall be specified as follows: - 4.5.1 <u>Voltage and current</u>. Unless otherwise specified, all voltages given are referenced to the microcircuit GND terminal. Currents given are conventional current and positive when flowing into the referenced terminal. - 5. PACKAGING - 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. - 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing. - 6.1.2 <u>Substitutability</u>. Device class Q devices will replace device class M devices. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89734 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | B | 14 | - 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 5692, Engineering Change Proposal. - 6.3 Record of users. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0525. - 6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA , Columbus, Ohio 43216-5000, or telephone (614) 692-0674. - 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331. - 6.6 Sources of supply. - 6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing. - 6.6.2 <u>Approved sources of supply for device class M.</u> Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA. STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 | SIZE
A | | 5962-89734 | |------------------|---------------------|--------------------| | | REVISION LEVEL
B | SHEET
15 | ## STANDARD MICROCIRCUIT DRAWING SOURCE APPROVAL BULLETIN DATE: 97-08-04 Approved sources of supply for SMD 5962-89734 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 during the next revision. MIL-HDBK-103 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103. | Standard
microcircuit drawing
PIN <u>1</u> / | Vendor
CAGE
number | Vendor
similar
PIN <u>2</u> / | |--|--------------------------|-------------------------------------| | 5962-8973401CA | 27014 | 54ACTQ04DMQB | | | 01295 | SNJ54ACT04J | | 5962-8973401DA | 27014 | 54ACTQ04FMQB | | | 01295 | SNJ54ACT04W | | 5962-89734012A | 27014 | 54ACTQ04LMQB | | | 01295 | SNJ54ACT04FK | | 5962-8973402CX | <u>3</u> / | | | 5962-89734022X | <u>3</u> / | | | 5962-8973401VCA | 27014 | 54ACTQ04J-QMLV | | 5962-8973401VDA | 27014 | 54ACTQ04W-QMLV | | 5962-8973401V2A | 27014 | 54ACTQ04E-QMLV | - 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability. - 2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing. - 3/ No longer available from an approved source of supply. Vendor CAGE number Vendor name and address 27014 National Semiconductor 2900 Semiconductor Drive P. O. Box 58090 Santa Clara, CA 95052-8090 Point of contact: 5 Foden Road South Portland, ME 04106 01295 Texas Instruments Incorporated 13500 N. Central Expressway P.O. Box 655303 Dallas, TX 75265 Point of contact: I-20 at FM 1788 Midland, TX 79711-0448 The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin. ■ 9004708 0029987 389 ■