					 					RE	VIS	ION	s												
LTR							DES	CRIP	TION	1			•	·				DAT	Œ (YI	R-MO-	-DA)	1	PPR	OVE	,
															•						i				
REV		\bot						L						<u> </u>			<u> </u>		L						
SHEET		\perp	_											<u> </u>			<u> </u>								
REV		4	_					_	<u> </u>	_	<u> </u>	L	_	<u> </u>	_	1_		_							
SHEET		┰					L	_	_	<u> </u>	_			$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	<u> </u>	_	_		L	L	_	_			
REV ST		L	RE		 		_		<u> </u>	_		_		_	_	<u> </u>		<u> </u>			_	_			
PMIC N		<u>L</u>	SH	EET	PRE	PARE	3 D _B y	4	5 . Ku	6 2 U	7 Ne	8	9	10	DEF	FENS							NTE	R	- -
THIS DR FOR USE	RAWI AWING II BY ALL I	RY NO S AV DEPA ES OI	AILA RTM TH	BLE IENT E	APE	CKEL POY	BY BAPI	er	Pic MAL D	<u>.e.u</u> h_			1	QUAD	ATI		TS, UT E MOI	DIG	ITAI USI THI(_, H VE-C C SI	OR G/	SPE ATE,	TTL	MOS 	
DEPAR AMSC	TMENT ()F DI	:FEN	iSE	REV	ISION	LEV	EL.					}		SHE						-	-			1

DESC FORM 193 SEP 87

* U.S. GOVERNMENT PRINTING OFFICE: 1987 -- 748-129/60911

1. S	COPE				
with 1.		•	•	microcircuits in accordance conjunction with compliant	
1.2	Part number. Th	ne complete part number s	hall be as shown in the	e following example:	
	5962-89844	01 Device type	Case outline	X 	
	Drawing number	(1.2.1)	(1.2.2)	MIL-M-38510	
1.2.1	Device type.	The device type shall ide	entify the circuit fund	ction as follows:	
	Device type	Generic number	Circu	uit function	
	01	54НСТ86	Quad, 2-input EXCL compatible inputs	LUSIVE-OR gates, TTL	
1.2.2 follows:	Case outline.	The case outline shall I	be as designated in app	pendix C of MIL-M-38510, and	as
Out	tline letter		Case outline		

D-1 (14-lead, .785" x .310" x .200"), dual-in-line package

1.3 Absolute maximum ratings. 1/

Supply voltage range – – – – – – – – – – – – – – – -0.5~V dc to +7.0 V dc DC input voltage range - - - - - - - - - - - - - - - 0.5 V dc to V_{CC} + 0.5 V dc DC output voltage range- - - - - - - --0.5 V dc to V_{CC} + 0.5 V dc DC input diode current - - - - - - - -±20 mA DC output diode current (per pin) - - - -±20 mA DC drain current (per pin) -----±25 mA DC V_{CC} or GND current -----±50 mA Storage temperature range - - - - - - --65°C to +150°C 500 mW 2/ Maximum power dissipation $(P_D) - - - - -$ Lead temperature (soldering, 10 seconds) - -+300°C Thermal resistance, junction-to-case (θ_{JC}) -See MIL-M-38510, appendix C +175°C Junction temperature (T_{j}) - - - - - -

- $\underline{1}/$ Unless otherwise specified, all voltages are referenced to ground.
- $\underline{2}$ / For T_C = +100°C to +125°C, derate linearly at 8 mW/°C.

STANDARDIZED MILITARY DRAWING	SIZE A		5	962-89844	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	•	SHEET 2	-

1.4 Recommended operating conditions.

2. APPLICABLE DOCUMENTS

2.1 Government specification, standard, and bulletin. Unless otherwise specified, the following specification, standard, and bulletin of the issue listed in that issue of the Department of Defense lndex of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510 - Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

BULLETIN

MILITARY

MIL-BUL-103 - List of Standardized Military Drawings (SMD's).

(Copies of the specification, standard, and bulletin required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 5.2.2 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.3 Loyic diagram. The logic diagram shall be as specified on figure 3.
 - 3.2.4 Case outline. The case outline shall be in accordance with 1.2.2 herein.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 SIZE A 5962-89844 REVISION LEVEL SHEET 3

- 3.3 Electrical performance characteristics. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.
- 3.4 Electrical test requirements. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in MIL-BUL-103 (see 6.6 herein).
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.6 herein). The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.7 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-SID-883 (see 3.1 herein).
- 3.9 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.6 herein).
 - (2) $T_A = +125$ °C, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

STANDARDIZED MILITARY DRAWING	SIZE A		59	62-89844	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	-	SHEET 4	

	Τ	T			Lir	Unit	
Test	Symbol 	Condition Condit	ons +125°C 1/ ise specified	Group A subgroups 	Min		Unit
High level output voltage	V _{OH}	V _{CC} = 4.5 V, V _{IN} = 2.0 V or	1 ₀ = 20 μA	1, 2, 3	4.4		V
	 	0.8 V	I ₀ = 4.0 mA] 	3.7] 	
Low level output voltage	V _{OL}	V _{CC} = 4.5 V, V _{IN} = 2.0 V or	I ₀ = 20 μA	1, 2, 3		0.1	-
		0.8 V	$ I_0 = 4.0 \text{ mA}$]]		0.4]
High level input voltage	VIH	V _{CC} = 4.5 V <u>2</u> /		1, 2, 3	2.0	 	
Low level input voltage	VIL	V _{CC} = 4.5 V <u>2</u> /	V _{CC} = 4.5 V <u>2</u> /			0.8	Γ
Input capacitance	CIN	See 4.3.1c	See 4.3.1c				pF
Quiescent current	ICC	V _{CC} = 5.5 V, V _{IN}	= V _{CC} or GND	1, 2, 3		40	μ A
Input leakage current	IIN	V _{CC} = 5.5 V, V _{IN}	= V _{CC} or GND	1, 2, 3		1+1.0	
Functional tests		 See 4.3.1d		7,8		1	
Additional quiescent supply current	ΔI CC	Any 1 input: V _{IN} = 2.4 V Other inputs: V _{IN} = V _{CC} or GI I _{OUT} = 0.0 A, V _C	ND C = 5.5 V	1, 2, 3] 3.0 	 mA
Propagation delay	t _{PLH} ,	V _{CC} = 4.5 V		9		32	ns
time, An, Bn to Yn	t _{PHL}	CL = 50 pF See figure 4		10, 11	l 	48	! ! *
Output transition time	tπ.H,			9	!	1 15	! !
<u>3</u> /	tTHL			10, 11	İ	22	

 $[\]frac{1}{2}$ For a power supply of 5 V ±10%, the worst case output voltages (V $_{OH}$ and V $_{OL}$) occur for HCT at 4.5 V. Thus, the 4.5 V values should be used when designing with this supply. Worst cases V $_{IH}$ and V $_{IL}$ occur at V $_{CC}$ = 5.5 V and 4.5 V respectively.

 $\overline{3}$ / Transition time (t_{TLH}, t_{THL}), if not tested, shall be guaranteed to the specified limits.

STANDARDIZED MILITARY DRAWING	SIZE A		5	962-89844	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL		SHEET	;

 $^{^{2/}}$ The V $_{IH}$ and V $_{IL}$ tests are not required, and shall be applied as forcing functions for the V $_{OH}$ or V $_{OL}$ tests.

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	 1*, 2, 3, 7, 8,
Group A test requirements (method 5005)	 1, 2, 3, 4, 7,
Groups C and D enu-point electrical parameters (method 5005)	1, 2, 3

* PDA applies to subgroup 1.

** Subgroups 10 and 11, if not tested, shall be yuaranteed to the specified limits in table I.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroup 4 (C_{IN} measurements) shall be measured only for the initial test and after process or design changes which may affect capacitance. Capicatance shall be measured between the designated terminal and GND at a frequency of 1 MHz. Test all applicable pins on five devices with zero failures.
- d. Subgroups 7 and 8 tests shall verify the truth table as specified on figure 2.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see $3.6\,$ herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

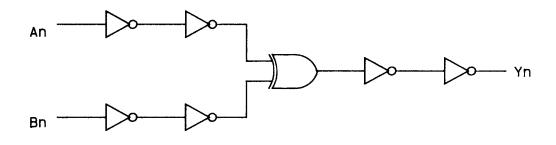
SIZE
A
5962-89844

REVISION LEVEL
SHEET
6

Device type	01
Case outline	С
Terminal number	Terminal symbol
1	A1
2	B1
3	Y1
4	A2
5	B2
6	Y2
7	GND
8	γ3
9	A3
10	В3
11	Y4
12	A4
13	В4
14	Vcc

FIGURE 1. Terminal connections.

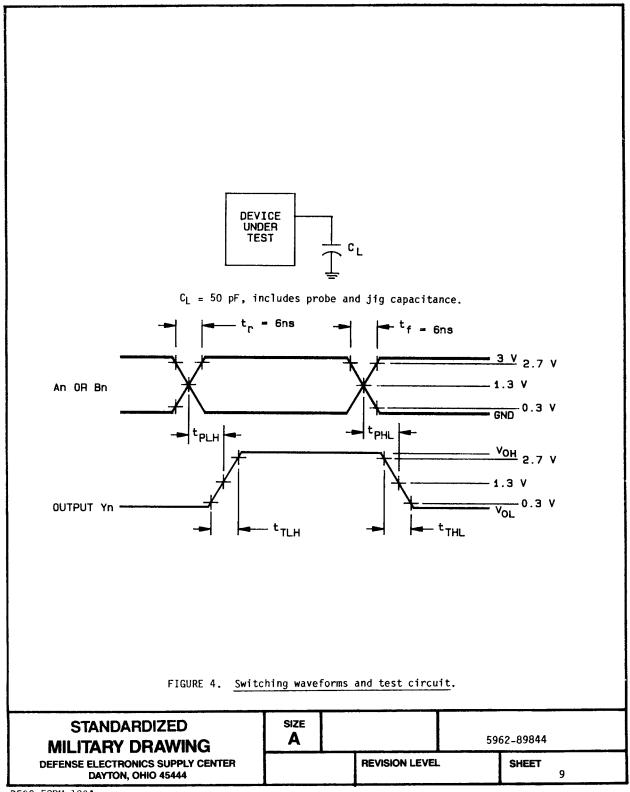
STANDARDIZED MILITARY DRAWING


DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE A		59	62-89844	
	REVISION LEVEL		SHEET	7

I I	nputs	Output
An	Bn	Yn
 L H	 L H	! L H
H I	j H	l L

H = High voltage level L = Low voltage level


FIGURE 2. Truth table.

1 OF 4 GATES

FIGURE 3. Logic diagram.

STANDARDIZED MILITARY DRAWING	SIZE A		59	962-89844	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	-	SHEET 8	

- PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
 - 6. NOTES
- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 Configuration control of SMD's. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-481 using DD Form 1693, Engineering Change Proposal (Short Form).
- 6.4 Record of users. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DESC-ECS, telephone (513) 296-6022.
- 6.5 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone (513) 296-5375.
- 6.6 Approved source of supply. An approved source of supply is listed in MIL-BUL-103. Additional sources will be added to MIL-BUL-103 as they become available. The vendor listed in MIL-BUL-103 has agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-ECS. The approved source of supply listed below is for information purposes only and is current only to the date of the last action of this document.

Military drawing part number	Vendor CAGE number	Vendor similar part number 1/
5962-8984401CX	34371	 CD54HCT86F/3A

1/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number Vendor name and address

34371

Harris Semiconductor PO BOX 883 Melbourne, FL 32901

STANDARDIZED MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON. OHIO 45444

SIZE A		5962-89844		
	REVISION LEVEL		SHEET	10

DESC FORM 193A SEP 87