						1	REVIS	SIONS										
LTR	DESCRIPTION										DATE	(YR-	(YR-MO-DA) APPROVED)	
											•	DAIE	(YR-P	(O-DA)		APP	ROVE	0
REV					Ī			Γ					<u> </u>	<u> </u>	1	I	I	
SHEET												<u> </u>	-					_
REV													 	-		-	-	_
SHEET																		-
REV STATUS		RE	V						7							 		
OF SHEETS		SH	EET		1	2	3	4	5	6	7	8	9	10	11			
PMIC N/A STANDARD	PMIC N/A PREPARED BY RICK OFFICER DEFENSE ELECTRONICS SUPPL						CENTER											
MICROCIRCUIT DRAWING	r		KED BY															
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE		APPROVED BY MICHAEL FRYE				SIN	IGLE	IRCU SUF THIC	PLY	OPI	ERAT	I, PI	RECI AL A	SIO:	N, IFIE	ER,		
DEPARTMENT OF DEFENS	E E	DRAWING APPROVAL DATE 94-08-29				MONOLITHIC				,			<u>. </u>					
AMSC N/A		REVIS	SION L	EVEL				1			SE CODE 5962-89933 57268			33				
DESC FORM 193								SHE	ET 1				OF 11					

JUL 91

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

5962-E252-94

- 1. SCOPE
- 1.1 <u>Scope</u>. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".
 - 1.2 Part or Identifying Number (PIN). The complete PIN shall be as shown in the following example:

1.2.1 Device type(s). The dev rype(s) shall identify the circuit function as follows:

Device type	<u>Generic number</u>	<u>Circuit function</u>						
01	LT1006	Precision, single supply operational amplifier						
02	LT1006A	Precision, single supply operational amplifier						

1.2.2 <u>Case outline(s)</u>. The case outline(s) shall be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
G	MACY1-X8	8	Can
Ρ	GDIP1-T8 or CDIP2-T8	8	Dual-in-line

- 1.2.3 <u>Lead finish</u>. The lead finish shall be as specified in MIL-STD-883 (see 3.1 herein). Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference.
 - 1.3 Absolute maximum ratings.

Supply voltage (±V _c) ±22 V
Supply voltage (±V _S)
5 V below -V _c
Differential input voltage
Power dissipation (P_D) : $\underline{1}$ /
Case G
Case P
Output short circuit duration Indefinite
Storage temperature range65°C to +150°C
Lead temperature (soldering, 10 seconds) +300°C
Thermal resistance, junction-to-case (Θ_{JC}) See MIL-STD-1835
Thermal resistance, junction-to-ambient (Θ _{IA}):
Case G
Case P

1.4 Recommended operating conditions.

1/ Derate case G for 6.67 mW/°C above $T_A = +25$ °C and case P for 10 mW/°C above $T_A = +25$ °C.

STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-89933
		REVISION LEVEL	SHEET 2

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and bulletin</u>. Unless otherwise specified, the following specification, standards, and bulletin of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-I-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARDS

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.
MIL-STD-1835 - Microcircuit Case Outlines.

BULLETIN

MILITARY

MIL-BUL-103 - List of Standardized Military Drawings (SMD's).

(Copies of the specification, standards, and bulletin required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

3. REQUIREMENTS

- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-I-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-I-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-I-38535 is required to identify when the QML flow option is used.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-STD-883 (see 3.1 herein) and herein.
 - 3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.2 herein.
 - 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full ambient operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-89933
		REVISION LEVEL	SHEET 3

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Conditions 1/ -55°C ≤ T _A ≤ +125°C unless otherwise specified	Group A subgroups	Device type	Lim	its <u>2</u> /	Unit
		unless otherwise specified			Min	Max	
Input offset voltage	v _{os}	v _s = 5 v	4	01		80	μv
				02		50	
			2,3	_01		250	
				<u> </u>		180	
	1	 V _S = ±15 V	4	01		180	
	1			02		100	
	a.		2,3	_01		460	
	F			02		320	
Input offset current I _{OS}	Ios	V _S = 5 V	1	01		0.9	nA
				02		0.5	
			2,3	01		4.0	
				02		2.0	
		v _s = ±15 v	1	21		0.9	
				02		0.5	
			2,3	01		3.0	
		L		02		2.0	
Input bias current	IIB	. V _S = 5 V	1 1	01		25	nA
	10	J		02		15	
			2,3	01	•	40	
			1	02		25	
		v _s = ±15 v	1 1	01		20	
	Ì	3	İ	02		12	
			2,3	01	<u>, , , , , , , , , , , , , , , , , , , </u>	27	
				02		18	

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89933
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 4

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions 1/ -55°C ≤ T _A ≤ +125°C unless otherwise specified	Group A subgroups	Device type	Lim	its <u>2</u> /	Unit
		unless otherwise specified			Min	Max	
Input offset voltage 3/	AV _{OS} / Atemp	 V _S = 5 V T _A = +125°C, -55°C	2,3	01		1.8	μv/°c
		A TES C, SS C		02		1.3	
	i	V _S = ±15 V T _A = +125°c, -55°c		01		2.8	
	^^A	A - 1125 C, 355 C		02	<u> </u>	2.2	
Input voltage range	IVR	V _S = 5 V, T _A = +25°C	1	All	0	3.5	V
		V _S = ±15 V, T _A = +25°C		 	-15	13.5	
Common mode rejection C	 CMRR	V _S = 5 V, V _{CM} = 0 V to 3.5 V	1	01	97		dB
14110				02	100	·	
		V _S = 5 V, V _{CM} = 0.1 to 3.2 V	2,3	01	87		
		V _{CM} = 0.1 to 3.2 V		02	90		
Common mode rejection CMRR $v_S = \pm 15 \text{ V}$, ratio $v_S = \pm 15 \text{ V}$ +.	$V_S = \pm 15 \text{ V},$ $V_{C.1} = -15 \text{ V to } +13.5 \text{ V}$	1	01	97		dB	
14110		V _{C.1} = -15 V to +15.5 V		02	100		
		V _S = ±15 V, V _{CM} = -14.9 V to +13 V	2,3	01	94	·	
	1	V _{CM} = -14.9 V to +13 V		02	97		
Power supply rejection ratio	PSRR	V _{OUT} = 0 V, V+ = +2 V to +18 V,	1	01	103		dB
14110		V+ = +2 V to +18 V, V- = -2 V to -18 V		02	106		
			2,3	01	97		
				02	100		
Output voltage swing	V _{OUTS}	V _S = 5 V, no load, output low, T _A = +25°C	4	ALL		25	mV
		$V_S = 5 \text{ V}$, 600 Ω to GND,	4	All		10	
		output low	5,6	01		18	
				02		15	

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89933
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 5

 $\label{thm:table I.} \textbf{ Electrical performance characteristics - Continued.}$

Symbol	Conditions $\frac{1}{2}$ -55°C $\leq T_A \leq +125$ °C	Group A subgroups	Device type	- ·		Unit
	unless otherwise specified			Min	Max	
Vouts	V _S = 5 V, I _{SINK} = 1 mA, output low, I _A = +25°C	4	ALL	 	350	mV
	V _S = 5 V, no load, output high, T _A = +25°C	4	 All	4.0		v
	V _S = 5 V, 600 Ω to GND,	4	ALL	3.4		
į	output high	5,6	01	3.1		ļ ļ
			02	3.2		
]	 V _S = ±15 V, R _I = 2 kΩ	4	01	 -12.5	+12.5	
1	<u>.</u>		02	 -13	+13	
		5,6	01	 -11.5	+11.5	
		<u> </u>	02	-12	+12	
Avo	$ V_{S} = 5 V, R_{I} = 10 k\Omega,$	4	 <u>01</u>	0.7		 ν/μν
	V _{OUT} = 0.03 V to 4 V, T _A = +25 °C		 02 	1.0		
	$V_S = 5 V$, $R_L = 2 k\Omega$,	4	 <u>01</u>	0.3		
	V _{OUT} = 0.03 V to 3.5 V	1	02	0.5		
!	 V _S = 5 V, R _I = 2 kΩ,	 5,6	01	0.15		
	V _{OUT} = 0.05 V to 3.5 V		02	0.25		
	$V_{c} = \pm 15 \text{ V}, R_{c} = 600\Omega$	 4	01	0.5		
1	V _{OUT} = ±10 V, T _A = +25°C	<u> </u>	i			
į	V ₂ = ±15 V, R, = 2 kO	4				
į	V _{OUT} = ±10 V		1			
		2,6	<u> </u>	0.25		
		-55°C \leq T _A \leq +125°C unless otherwise specified Vouts V _S = 5 V, IsINK = 1 mA, output low, I _A = +25°C V _S = 5 V, no load, output high, T _A = +25°C V _S = 5 V, 600 Ω to GND, output high V _S = ±15 V, R _L = 2 kΩ V _{OUT} = 0.03 V to 4 V, T _A = +25°C V _S = 5 V, R _L = 2 kΩ, V _{OUT} = 0.03 V to 3.5 V	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vouts Vouts Vs = 5 V, Isink = 1 mA, output low, IA = +25°C Vs = 5 V, no load, output high Vs = 15 V, RL = 2 kΩ, Vs = 5 V, RL = 2 kΩ, Vout = 0.03 V to 4 V, TA = +25°C Vs = 5 V, RL = 2 kΩ, Vout = 0.05 V to 3.5 V Vs = 5 V, RL = 2 kΩ, Vout = 0.05 V to 3.5 V Vs = 5 V, RL = 2 kΩ, Vout = 0.05 V to 3.5 V Vs = ±15 V, RL = 2 kΩ, Vout = 0.05 V to 3.5 V Vs = ±15 V, RL = 2 kΩ, Vout = 0.05 V to 3.5 V Vs = 5 V, RL = 2 kΩ, Vout = 0.05 V to 3.5 V Vs = ±15 V, RL = 2 kΩ, Vout = 0.05 V to 3.5 V Vs = ±15 V, RL = 2 kΩ, Vout = 0.05 V to 3.5 V Vs = ±15 V, RL = 2 kΩ, Vout = 0.05 V to 3.5 V Vs = ±15 V, RL = 600Ω, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±10 V, TA = ±10 V	Vouts Vs = 5 V, Isink = 1 mA, output low, TA = +25°C Vs = 5 V, RL = 2 kΩ Vs = 5 V, RL = 10 kΩ, Vout = 0.03 V to 3.5 V Vs = 5 V, RL = 2 kΩ, Vout = 0.05 V to 3.5 V Vs = ±15 V, RL = 2 kΩ, Vout = 0.05 V to 3.5 V Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = +25°C Vs = ±15 V, RL = 2 kΩ, Vout = 0.05 V to 3.5 V Vs = ±15 V, RL = 600Ω, Vout = 0.05 V to 3.5 V Vs = ±15 V, RL = 600Ω, Vout = 0.05 V to 3.5 V Vs = ±15 V, RL = 2 kΩ, Vout = 0.05 V to 3.5 V Vs = ±15 V, RL = 600Ω, Vout = ±10 V, TA = +25°C Vs = ±15 V, RL = 2 kΩ, Vout = 0.05 V to 3.5 V Vs = ±15 V, RL = 600Ω, Vout = ±10 V, TA = +25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 600Ω, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = 2 kΩ, Vout = ±10 V, TA = ±25°C Vs = ±15 V, RL = ±25°C Us = ±15 V, RL = ±25°C Us = ±10 V, TA = ±25°C Us = ±25°C Us = ±25°C Us =

See fotnotes at end of table.

STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89933
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 6

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test Symbol	Symbol	Conditions 1/ -55°C ≤ T _A ≤ +125°C unless otherwise specified	Group A subgroups	Device type	Limits 2/		Unit
	unitess otherwise specified	† 		Min	Max		
Supply current 4/	Is	V _S = 5 V, R _{SET} = ∞	1	01		570	μA
				02	 	520	}
		v _s = 5 v	2,3	01		680	
			<u> </u>	02	[630	<u> </u>
		V _S = ±15 V	1	01		600	
		 		02	<u> </u> 	540	
			2,3	01		750	
				02		650	
Input noise voltage 3/ e _{ND}	e _{ND}	V _S = ±2.5 V, f _O = 10 Hz, V _{OUT} = 0 V, T _A = +25°C	4	 All 		 32 	 nv./√H:
		V _S = ±2.5 V, f _O = 1 kHz, V _{OUT} = 0 V, T _A = +25°C				25	
Differential mode <u>3</u> / input resistance	RIND	V _S = 5 V, T _A = +25°C	4	_01	100		MΩ
input resistance				02	180		
Slew rate SR	$V_S = 5 \text{ V}, A_V = 1 \text{ V/V},$ measured at 1.5 V to 2.5 V, $R_L = 2 \text{ k}\Omega$	4	All	0.25		V/μs	
		$V_S = \pm 15 \text{ V}, R_{SET} = \infty,$ $A_V = +1 \text{ V/V},$ measured at -2 V to +2 V, $R_L = 2 \text{ k}\Omega$			0.25		
		$V_S = \pm 15 \text{ V},$ $R_{SET} = 390 \Omega \text{ between}$ pin 8 to pin 4, measured at -2 V to +2 V, $R_L = 2 k\Omega, A_V = 1 \text{ V/V}$			1.0		

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89933
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 7

TABLE I. <u>Electrical performance characteristics</u> - Continued.

- 1/ Unless otherwise specified, V_{CM} = 0 V, and V_{OUT} = 1.4 V. With V_S = 5 V, for subgroups 2 and 3, V_{CM} = 0.1 V.
- 2/ The algebraic convention, whereby the most negative value is a minimum and the most positive is a maximum, is used in this table. Negative current shall be defined as conventional current flow out of a device terminal.
- 3/ If not tested, shall be guaranteed to the limits specified in table I herein.
- $\underline{4}$ / Regulator operation does not require an external resistor, in order to program the supply current for low power or high speed operation, connect an external resistor from I_S SET to +V $_S$ or from I_S SET to -V $_S$, respectively. Supply current specification (for R_{SET} = 180 k Ω) do not include current R_{SET} .
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103 (see 6.6 herein).
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.6 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 Notification of change. Notification of change to DESC-EC shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.9 <u>V.rification and review</u>. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) $T_{\Delta} = +125$ °C, manimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-89933
		REVISION LEVEL	SHEET 8

Device types	01 and 02
Case outlines	G and P
Terminal number	Terminal symbol
1	V _{OS} TRIM
2	-INPUT
3	+INPUT
4	-v _s
5	V _{OS} TRIM (See note 1)
6	OUTPUT
7	+v _s
8	I _S SET

NOTE:

1. Optional offset nulling is accomplished with a potential connected between the trim terminals and the wiper to $-V_S$. A 10 k Ω pot (providing a null range of ± 6 mV) is recommended for minimum drift of nulled offset voltage with temperature. For increased trim resolution and accuracy, two fixed resistors can be used in conjunction with a smaller potentiometer.

FIGURE 1. <u>Terminal connections</u>.

STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89933
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 9

TABLE II. <u>Electrical test requirements</u>.

MIL-STD-883 test requirements	Subgroups (in accordance with method 5005, table I)
Interim electrical parameters (method 5004)	1
Final electrical test parameters (method 5004)	1,2,3,4,5,6
Group A test requirements (method 5005)	1*,2,3,4,5,6
Groups C and D end-point electrical parameters (method 5005)	1

^{*} PDA applies to subgroup 1.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 7, 8, 9, 10, and 11 in table I, method 5005 of MIL-STD-883 shall be omitted.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) $T_A = +125$ °C, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-89933	
		REVISION LEVEL	SHEET 10	

5. PACKAGING

- 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-STD-883 (see 3.1 herein).
 - 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proprial
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DESC-EC, Dayton, Ohio 45444-5270, or telephone (513) 296-5377.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-EC.

STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-89933
		REVISION LEVEL	SHEET