| LTR | | DESCRIPT≹ÓN | | | | | | | | DATE (YR-MO-DA) | | | APPROVED | | | | | | | | |---------------------------|--------|-------------|----|-------|--------|--------|---------|-------|------|---|-------|--------------------|----------|------------|-------|------|-----|------|----|--------| REV | SHEET | REV | SHEET | REV | | | | | | | | | | | | | | | | | | | | | | SHEET | 15 | 16 | 17 | 18 | 19 | | | | | | | | | | | | | | | | | REV STATE | 10 | | | RE | | L | | | | | | | | | | | | | | | | OF SHEETS | | | | | | | 1 | 2 | 7 | , | | _ | 7 | | | 10 | 4.0 | 40 | 4- | | | | | | | | EET | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | PMIC N/A | | | | PREPA | ARED B | Y Tho | omas M. | Hess | | DI | EFENS | SE EL | | | | | | ER | | | | STAND | ARDI | ZED | | CHEC | CED BY | Thor | nas M. | Hace | | | | D | AYTO | N, O | ніо | 4544 | 44 | | | | | MIL | | | | CIIEC | CLD BI | mon | ias m. | пеза | | | | | | | | | | | | | | DRA | WIN | G | | APPRO | OVED B | Y Mor | nica L. | Poeli | cina | MICROCIRCUIT, DIGITAL, CMOS, MANCHESTER ENCODER-DECODER, MONOLITHIC SILICON | | | - | | • | | | | | | | THIS DRAWING | IS A | VAILAB | LE | | | | | | | | | | DER, | | | | | | | | | FOR USE BY A
AND AGENO | CIES O | F THE | | DRAW | ING AP | PROVAL | DATE | | | | | | | | | | | | | | | DEPARTMENT | OF D | EFENSĘ | | | 05-21 | | | | | SIZ | F. | CVG | E CO |)E | | E 0 | 62- | 0000 | | | | AMSC N/A | | | | REVIS | SION L | EVEL | | | | 1 1 | | E CODE 7268 | | 5962-90888 | | | 8 | | | | | | | | | | | | | | | SHE | ΕT | | 1 | | OF | 19 | • | | | \Box | | | | | | | | | | | | 5.16 | | | • | | J, | 13 | , | | i | 4. | | DESC FORM 193 | | | | | | | | | | | | | | | • • • | | | | | | REVISIONS #### 1. SCOPE - 1.1 Scope. This drawing forms a part of a one part one part number documentation system (see 6.6 herein). Two product assurance classes consisting of military high reliability (device classes B, Q, and M) and space application (device classes S and V), and a choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). Device class M microcircuits represent non-JAN class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices". When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN. - 1.2 PIN. The PIN shall be as shown in the following example: - 1.2.1 RHA designator. Device classes M, B, and S RHA marked devices shall meet the MIL-M-38510 specified RHA levels and shall be marked with the appropriate RHA designator. Device classes Q and V RHA marked devices shall meet the MIL-I-38535 specified RHA levels and shall be marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. - 1.2.2 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows: | Device type | <u>Generic number</u> | <u>Circuit function</u> | |-------------|-----------------------|----------------------------| | 01 | 6409 | Manchester encoder-decoder | 1.2.3 <u>Device class designator</u>. The device class designator shall be a single letter identifying the product assurance level as follows: Device class Device requirements documentation М Vendor self-certification to the requirements for non-JAN class B microcircuits in accordance with 1.2.1 of MIL-STD-883 B or S Certification and qualification to MIL-M-38510 Q or V 1.2.4 <u>Case outline(s)</u>. The case outline(s) shall be as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | |----------------|------------------------|------------------|------------------------------| | R | GDIP1-T20 or CDIP2-T20 | 20 | Dual-in-line package | | 2 | CQCC1-N20 | 20 | Square leadless chip carrier | Certification and qualification to MIL-I-38535 1.2.5 <u>Lead finish</u>. The lead finish shall be as specified in MIL-M-38510 for classes M, B, and S or MIL-I-38535 for classes Q and V. Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference. | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE
A | | 5962-90888 | |---|-----------|----------------|------------| | DAYTON, OHIO 45444 | | REVISION LEVEL | SHEET 2 | | | DAYTON, OHIO 45444 ESC FORM 193A | | REVISION LEVEL | SHEET 3 | |----|--|------------------------------------|--|------------------------------| | | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE
A | | 5962-90888 | | | / Stresses above the absolute maximum rating may cause per maximum levels may degrade performance and affect reliably. // Values will be added when they become available. | manent damage tility. | to the device. Extended o | peration at the | | sp | (Copies of the specifications, standards, bulletin, and haspecific acquisition functions should be obtained from the cactivity.) | ndbook required
ontracting acti | d by manufacturers in connivity or as directed by th | ection with
e contracting | | | MIL-HDBK-780 - Standardized Military Drawings. | | _ | | | | MILITARY | | | | | | HANDBOOK | | | | | | MIL-BUL-103 - List of Standardized Military Drawing | s (SMD's). | | | | | MILITARY | | | | | | BULLETIN | | | • | | | MIL-STD-480 - Configuration Control-Engineering Cha
MIL-STD-883 - Test Methods and Procedures for Micro
MIL-STD-1835 - Microcircuit Case Outlines. | inges, Deviation
Delectronics. | ns and Waivers. | | | | MILITARY | | | | | | STANDARDS | | | | | | MIL-M-38510 - Microcircuits, General Specification MIL-I-38535 - Integrated Circuits, Manufacturing, G | for.
General Specific | cation for. | | | | MILITARY | | | | | 01 | of Specifications and Standards specified in the solicitation
nerein. SPECIFICATIONS | on, form a part | of this drawing to the ex | ctent specified | | sp | 2.1 <u>Government specifications, standards, bulletin, and h</u>
specifications, standards, bulletin, and handbook of the iss | sue listed in t | hat issue of the Departmen | nt of Defense Index | | | logic tests (MIL-STD-883, test method 5012) | . <u>2</u> / percent | | | | | Fault coverage measurement of manufacturing | | | | | | Input rise and fall times | . 50 ns max | _ 5.5 / | | | | Operating temperature range | . 4.5 V ≤ Vcc : | 5°C
≤ 5.5 V | | | | 1.4 Recommended operating conditions. | | | | | | Case 2 | . 595 mW | 1835 | | | | Lead temperature (soldering 10 sec) | | | | | | Storage temperature range | . +175°C | 0°C | | | | Supply voltage | . GND - 0.5 V | to V _{CC} + 0.5 V | | 1.3 Absolute maximum ratings. 1/ 2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence. #### 3. REQUIREMENTS - 3.1 <u>Item requirements</u>. The individual item requirements for device class M shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein. The individual item requirements for device classes B and S shall be in accordance with MIL-M-38510 and as specified herein. For device classes B and S, a full electrical characterization table for each device type shall be included in this SMD. The individual item requirements for device classes Q and V shall be in accordance with MIL-I-38535, the device manufacturer's Quality Management (QM) plan, and as specified herein. - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 for device classes M, B, and S and MIL-I-38535 for device classes Q and V and herein. - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein. - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1. - 3.2.3 Block diagram. The block diagram shall be as specified on figure 2. - 3.2.4 Radiation exposure circuit. The radiation exposure circuit shall be specified when available. - 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I. - 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. Marking for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein). In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103. Marking for device classes B and S shall be in accordance with MIL-M-38510. Marking for device classes Q and V shall be in accordance with MIL-1-38535. - 3.5.1 <u>Certification/compliance mark</u>. The compliance mark for device class M shall be a "C" as required in MIL-STD-883 (see 3.1 herein). The certification mark for device classes B and S shall be a "J" or "JAN" as required in MIL-M-38510. The certification mark for device classes Q and V shall be a "QML" as required in MIL-I-38535. - 3.6 <u>Certificate of compliance</u>. For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.7.3 herein). For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.7.2 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device class M, the requirements of MIL-STD-883 (see 3.1 herein), or for device classes Q and V, the requirements of MIL-I-38535 and the requirements herein. - 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device class M in MIL-STD-883 (see 3.1 herein) or device classes B and S in MIL-M-38510 or for device classes Q and V in MIL-I-38535 shall be provided with each lot of microcircuits delivered to this drawing. - 3.8 Notification of change for device class M. For device class M, notification to DESC-EC of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-480. - 3.9 <u>Verification and review for device class M</u>. For device class M, DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. - 3.10 <u>Microcircuit group assignment for device classes M, B, and S</u>. Device classes M, B, and S devices covered by this drawing shall be in microcircuit group number 105 (see MIL-M-38510, appendix E). - 3.11 <u>Serialization for device class S</u>. All device class S devices shall be serialized in accordance with MIL-M-38510. | STANDARDIZED MILITARY DRAWING | SIZE
A | | 5962-90888 | |--|-----------|----------------|------------| | DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | | REVISION LEVEL | SHEET 4 | | Test | Symbol | Conditions $\underline{1}/$ -55°C \leq T _C \leq +125°C | Group A
subgroups | Device
type | L | imits | Unit | |---|-------------------|--|----------------------|----------------|--------------------------|--------------------|--------| | | | unless otherwise specifi | ed | | Min | Max | | | Input high voltage | V _{IH} | V _{CC} = 4.5 V | 1, 2, 3 | Att | .7 v _{cc} | | v | | Input low voltage | v _{IL} | V _{CC} = 4.5 v | 1, 2, 3 | ALL | | .2 V _{CC} | v | | Input high voltage Reset | VIHR | V _{CC} = 5.5 V | 1, 2, 3 | ALL | v _{CC} -
0.5 | | V | | Input low voltage Reset | VILR | V _{CC} = 4.5 V | 1, 2, 3 | All | | GND
+0.5 | V | | Input high voltage Clock | V _{IHC} | v _{cc} = 5.5 v | 1, 2, 3 | ALL | V _{CC}
-0.5 | | ٧ | | Input low voltage Clock | VILC | v _{CC} = 4.5 v | 1, 2, 3 | All | | GND
+0.5 | V | | Input leakage current (except I _X) | I _I | V _{IN} = V _{CC} or GND
V _{CC} = 5.5 V | 1, 2, 3 | ALL | -1.0 | 1.0 | μA | | Input leakage current | II | V _{IN} = V _{CC} or GND
V _{CC} = 5.5 V | 1, 2, 3 | ALL | -20 | 20 | μA | | I/O leakage current | I _O | V _{OUT} = V _{CC} or GND
V _{CC} = 5.5 V | 1, 2, 3 | All | -10 | 10 | μA | | Output high voltage
(All except O _X) | v _{OH} | I _{OH} = -2.0 mA
V _{CC} = 4.5 V
<u>2</u> / | 1, 2, 3 | All | v _{CC}
-0.4 | | ٧ | | Output low voltage
(All except O _X) | V _{OL} | I _{OH} = 2.0 mA
V _{CC} = 4.5 V <u>2</u> / | 1, 2, 3 | All | | 0.4 | ٧ | | Standby power supply
current | ¹ CCSB | V _{OUT} = V _{CC} or GND
V _{CC} = 5.5 V
Outputs open | 1, 2, 3 | All | | 100 | μΑ | | Operating power supply current | ICCOP | f = 16 MHz
V _{IN} = V _{CC} or GD
V _{CC} = 5.5 V, C _L = 50 pF | 1, 2, 3 | All | | 18 | mA | | See footnotes at end of tak | ole. | | | | 1 | 1 | . 7 | | STAND | ARDIZED | <u> </u> | SIZE | | | 506 | 2-9088 | A REVISION LEVEL SHEET 5 TABLE I. <u>Electrical performance characteristics</u>. MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | Test | Symbol | Condition $-55^{\circ}C \le T_{C} \le +$ | 125°C | Group A
subgroups | Device
type | Limits | | Unit | |---|---------------------|---|----------|----------------------|----------------|--------|----------|---------| | | | unless otherwise s | pecified | | | Min | Max | | | Input capacitance | CIN | V _{CC} = Open
f = 1 MHz
See 4.4.1.c
T _A = +25° C | | 4 | ALL | | 10 | pF | | I/O capacitance | c1/0 | | | 4 | All | | 12 | pF | | Functional test | | V _{CC} = 4.5 V
See 4.4.1.b | | 7, 8 | ALL | | | | | Output rise time
(all except clock) | tr | From 1.0 to 3.5 V
C _L = 50 pF <u>3</u> / | | 9, 10, 11 | All | | 50 | ns | | Output fall time
(all except clock) | t _f | From 3.5 to 1.0 V
C _L = 50 pF <u>3</u> / | | 9, 10, 11 | All | | 50 | ns | | Clock output rise time | t _r | From 1.0 to 3.5 V
C _L = 20 pF <u>3</u> / | | 9, 10, 11 | ALL | | 11 | ns | | Clock output fall time | tf | From 3.5 to 1.0 V
C _L = 20 pF <u>3</u> / | | 9, 10, 11 | ALL | | 11 | ns | | ECLK to BZO, BOO | t _{CE3} | See figure 3 <u>4</u> / <u>3</u> /
V _{CC} = 4.5 V | | 9, 10, 11 | ALL | 0.5 | 1.0 | DBP | | CT <u>S l</u> ow to BZO
BOO enables | t _{CE4} | See figure 3 4/ 3/
V _{CC} = 4.5 V | | 9, 10, 11 | All | 0.5 | 1.5 | DBP | | CTS low to ECLK
enabled | t _{CE5} | See figure 3 <u>4</u> / <u>3</u> /
V _{CC} = 4.5 V | | 9, 10, 11 | ALL | 10.5 | 11.5 | DBP | | CTS high to ECLK
disabled | t _{CE6} | See figure 3 <u>4</u> / <u>3</u> /
V _{CC} = 4.5 V | | 9, 10, 11 | ALL | 7 | 1.0 | DBP | | CT <u>S</u> high to BZO
BOO disabled | t _{CE7} | See figure 3 <u>4</u> / <u>3</u> /
V _{CC} = 4.5 V | | 9, 10, 11 | ALL | 1.5 | 2.5 | DBP | | JDI to SDO, NVM | t _{CD1} | See figure 3 4/ 3/
V _{CC} = 4.5 V | | 9, 10, 11 | All | 2.5 | 3.0 | DBP | | See footnotes at end of ta | able. | <u> </u> | <u>l</u> | | 1 | | 1 | 1 | | | ARDIZED
Y DRAWIN | G | SIZE | | | | 59 | 62-9088 | | DEFENSE ELECTROI
DAYTON, | | | | REV | ISION | LEVEL | SHE | ET | | Test | Symbol | Conditio
-55°C ≤ T _C ≤ | +125°C | Group A
subgroups | Device
type | L | imits | Unit | | |---|------------------|---|-----------|----------------------|----------------|--------------------|--------------------|---------|--| | | | unless otherwise | specified | | | Min | Max | | | | RST low <u>to</u> DCLK,
SDO, NVM low | t _{CD3} | See figure 3 <u>4</u> / <u>3</u> /
V _{CC} = 4.5 V | | 9, 10, 11 | ALL | 0.5 | 1.5 | DBP | | | RST high to DCLK,
enabled | t _{CD4} | See figure 3 <u>4</u> / <u>3</u> /
V _{CC} = 4.5 V | | 9, 10, 11 | Ali | 0.5 | 1.5 | DBP | | | UDI to BZO, BOO | t _{R1} | See figure 3 4/ 3/
 V _{CC} = 4.5 V | | 9, 10, 11 | ALL | 0.5 | 1.0 | DBP | | | UDI to SDO, NVM | t _{R3} | See figure 3 <u>4</u> / <u>3</u> /
V _{CC} = 4.5 V | | 9, 10, 11 | All | 2.5 | 3.0 | DBP | | | Clock frequency | fc | See figure 3 <u>4</u> / <u>5</u> /
V _{CC} = 4.5 V | | 9, 10, 11 | All | | 16 | MHz | | | Clock period | tc | See figure 3 <u>4</u> / <u>5</u> /
V _{CC} = 4.5 V | | 9, 10, 11 | ALL | 1/f _C | | s | | | Bipolar pulse width | t ₁ | See figure 3 <u>4</u> / <u>5</u> /
V _{CC} = 4.5 V | | 9, 10, 11 | ALL | t _C +10 | | ns | | | One-zero overlap | t ₃ | See figure 3 <u>4</u> / <u>5</u> /
V _{CC} = 4.5 V | | 9, 10, 11 | ALL | | t _C -10 | ns | | | Clock high time | t _{CH} | See figure 3 <u>4</u> / <u>5</u> /
V _{CC} = 4.5 V
f = 16 MHz | | 9, 10, 11 | ALL | 20 | | ns | | | Clock low time | t _{CL} | See figure 3 <u>4</u> / <u>5</u> /
V _{CC} = 4.5 V
f = 16 MHz | | 9, 10, 11 | All | 20 | | ns | | | Serial data setup time | t _{CE1} | See figure 3 <u>4</u> / <u>5</u> /
V _{CC} = 4.5 V | | 9, 10, 11 | ALL | 120 | | ns | | | erial data hold time | t _{CE2} | See figure 3 <u>4</u> / <u>5</u> /
V _{CC} = 4.5 V | | 9, 10, 11 | ALL | 0 | | ns | | | CLK to SDO, NVM | t _{CD2} | See figure 3 <u>4</u> / <u>5</u> /
V _{CC} = 4.5 v | | 9, 10, 11 | ALL | | 40 | ns | | | See footnotes at end of ta | able. | | | | <u> </u> | | | | | | MILITAR | | | SI ZE | | | | 596 | 2-90888 | | | MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | | | | REV | REVISION LEVEL | | | SHEET | | 7 ## TABLE I. <u>Electrical performance characteristics</u> - Continued. | Test | Symbol | Conditions $1/$ -55°C \leq T _C \leq +125°C | Group A
subgroups | Device
type | Li | mits |
 Unit
 | |-------------|-----------------|---|----------------------|----------------|-----|------|----------------| | | | unless otherwise specified | | | Min | Max | | | ECLK to BZO | t _{R2} | See figure 3 4/ 5/
VCC = 4.5 V | 9, 10, 11 | ALL | | 40 | ns | ^{1/} Unless otherwise specified, all testing to be performed using worst-case test conditions. 2/ Interchanging of force and sense conditions is permitted. | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE
A | | 5962-90888 | |---|-----------|----------------|------------| | DAYTON, OHIO 45444 | | REVISION LEVEL | SHEET
8 | ^{2/} Interchanging of force and3/ Guaranteed but not tested. $[\]frac{4}{4}$ Data Bit Period (DBP), clock rate = 16x, one DBP = 16 clock cycles; clock rate = 32x, one DBP = 32 clock cycles. $\frac{5}{4}$ Unless otherwise specified tested at f = 4.0 MHz, V_{IH} = 70% V_{CC} , V_{IL} = 20% V_{CC} , speed select = 16x, $V_{OH} \ge V_{CC}/2$, $V_{OL} \le V_{CC}/2$, V_{CC} = 4.5 V and 5.5 V, input rise and fall times driven at 1 ns/V. # Case 2 FIGURE 1. <u>Terminal connections</u>. | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE
A | | 5962-90888 | |---|-----------|----------------|------------| | DAYTON, OHIO 45444 | | REVISION LEVEL | SHEET
9 | FIGURE 3. <u>Timing waveforms</u>. | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-90888 | |--|-----------|----------------|-------------| | | | REVISION LEVEL | SHEET
11 | NOTE: Manchester data in is not synchronous with decoder clock. Decoder clock is synchronous with decosed NAZ out of SDO. FIGURE 3. <u>Timing waveforms</u> - Continued. | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-90888 | |---|-----------|----------------|------------| | | | REVISION LEVEL | SHEET | NOTE: Includes stray and jig capacitance, C_L = 50 pF FIGURE 3. Timing waveforms - Continued. | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-90888 | |---|-----------|----------------|------------| | | | REVISION LEVEL | SHEET | #### 4. QUALITY ASSURANCE PROVISIONS - 4.1 <u>Sampling and inspection</u>. For device class M, sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein). For device classes B and S, sampling and inspection procedures shall be in accordance with MIL-M-38510 and method 5005 of MIL-STD-883, except as modified herein. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-I-38535 and the device manufacturer's QM plan. - 4.2 <u>Screening</u>. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. For device classes B and S, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to qualification and quality conformance inspection. For device classes Q and V, screening shall be in accordance with MIL-I-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. - 4.2.1 Additional criteria for device classes M, B, and S. - a. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition A, B, C or D. For device class M, the test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. For device classes B and S, the test circuit shall be submitted to the qualifying activity. For device classes M, B, and S, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015. - (2) $T_{\Delta} = +125$ °C, minimum. - b. Interim and final electrical test parameters shall be as specified in table II herein. ## 4.2.2 Additional criteria for device classes Q and V. - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-I-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-I-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015. - b. Interim and final electrical test parameters shall be as specified in table II herein. - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in appendix B of MIL-I-38535. ## 4.3 Qualification inspection. - 4.3.1 <u>Qualification inspection for device classes B and S</u>. Qualification inspection for device classes B and S shall be in accordance with MIL-M-38510. Inspections to be performed shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.5). - 4.3.2 <u>Qualification inspection for device classes Q and V.</u> Qualification inspection for device classes Q and V shall be in accordance with MIL-I-38535. Inspections to be performed shall be those specified in MIL-I-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.5). - 4.4 <u>Conformance inspection</u>. Quality conformance inspection for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein) and as specified herein. Quality conformance inspection for device classes B and S shall be in accordance with MIL-M-38510 and as specified herein. Inspections to be performed for device classes M, B, and S shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.5). Technology conformance inspection for classes Q and V shall be in accordance with MIL-I-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-I-38535 permits alternate in-line control testing. ### 4.4.1 Group A inspection. a. Tests shall be as specified in table II herein. | STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444 | SIZE
A | | 5962-90888 | |---|-----------|----------------|-------------| | | | REVISION LEVEL | SHEET
14 | - b. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table. For device classes B and S, subgroups 7 and 8 tests shall be sufficient to verify the truth table as approved by the qualifying activity. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device; these tests shall have been fault graded in accordance with MIL-STD-883, test method 5012 (see 1.5 herein). - c. Subgroups $4(C_{IN})$ and $C_{I/O}$ shall be measured only for the initial test and after process or design changes which may affect capacitance. A minimum sample size of five devices with zero defects shall be required. TABLE II. Electrical test requirements. | Test requirements | | Subgroups
dance with M
d 5005, table | Subgroups
(in accordance with
MIL-I-38535, table III) | | | |---|---------------------------------------|--|---|--------------------------------------|-------------------------------------| | | Device
class
M | Device
class
B | Device
class
S | Device
class
Q | Device
class
V | | Interim electrical parameters (see 4.2) | | | 1, 7, 9 | | 1, 7, 9 | | Final electrical parameters (see 4.2) | 1, 2, 3,
7 <u>1</u> /
8,9,10,11 | 1, 2, 3
7 <u>1</u> /
8,9,10,11 | 1, 2, 3
7 <u>2</u> /
8,9,10,11 | 1, 2, 3
7 <u>1</u> /
8,9,10,11 | 1, 2, 3
7 <u>2/</u>
8,9,10,11 | | Group A test requirements (see 4.4) | 1,2,3,4
7, 8
9,10,11 | | Group B end-point electrical parameters (see 4.4) | | | 1, 7, 9 | | | | Group C end-point electrical parameters (see 4.4) | 1, 7, 9 | 1, 7, 9 | 1, 7, 9 | 1, 7, 9 | 1, 7, 9 | | Group D end-point electrical parameters (see 4.4) | 1, 7, 9 | 1, 7, 9 | 1, 7, 9 | 1, 7, 9 | 1, 7, 9 | | Group E end-point electrical parameters (see 4.4) | | | | | | ^{1/} PDA applies to subgroup 1. - 4.4.2 <u>Group B inspection.</u> The group B inspection end-point electrical parameters shall be as specified in table II herein. For device class S steady-state life tests, the test circuit shall be submitted to the qualifying activity. - 4.4.3 <u>Group C inspection</u>. The group C inspection end-point electrical parameters shall be as specified in table II herein. | STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444 | SIZE
A | | 5962-90888 | |---|-----------|----------------|-------------| | | | REVISION LEVEL | SHEET
15 | ^{2/} PDA applies to subgroups 1 and 7. - 4.4.3.1 Additional criteria for device classes M and B. Steady-state life test conditions, method 1005 of MII-STD-883: - a. Test condition A, B, C, or D. For device class M, the test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. For device class B, the test circuit shall be submitted to the qualifying activity. For device classes M and B, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005. - b. $T_A = +125$ °C, minimum. - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. - 4.4.3.2 <u>Additional criteria for device classes Q and V</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-I-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-I-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005. - 4.4.4 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein. - 4.4.5 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes B, S, Q, and V shall be M, D, R, and H and for device class M shall be M and D. - a. End-point electrical parameters shall be as specified in table II herein. - b. For device classes M, B, and S, the devices shall be subjected to radiation hardness assured tests as specified in MIL-M-38510 for the RHA level being tested. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-I-38535 for the RHA environment and level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein. - c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied. ### 5. PACKAGING 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-M-38510 for device classes M, B, and S and MIL-I-38535 for device classes Q and V. ## 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing. - 6.1.2 <u>Substitutability</u>. Device classes B and Q devices will replace device class M devices. - 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-481 using DD Form 1693, Engineering Change Proposal (Short Form). - 6.3 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and which SMD's are applicable to that system. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047. - 6.4 <u>Comments</u>. Comments on this drawing should be directed to DESC-EC, Dayton, Ohio 45444, or telephone (513) 296-5377. | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-90888 | |--|-----------|----------------|-------------| | | | REVISION LEVEL | SHEET
16 | 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-M-38510 and MIL-STD-1331 and Table III. Table III. Pin descriptions | Symbol | Name | Description | |--------|----------------------------------|---| | BZI | Bipolar Zero Input | Used in conjunction with pin 2, bipolar one input (BOI), to input Manchester encoder data to the decoder. BZI and BOI are logical complements. When using pin 3, unipolar data input (UDI) for data input BZI must be held high. | | BOI | Bipolar One Input | Used in conjunction with pin 1, Bipolar Zero Input (BZI) to input Manchester encoded data to the decoder, BOI and BZI are logical complements. When using pin 3, Unipolar Data Inputs (UDI) for data input BOI must be held low. | | UDI | Unipolar Data Input | An alternate to bipolar input (BZI,BOI), Unipolar Data Input (UDI) is use to input Manchester encoded data to the decoder. When using pin 1, (BZI) and pin 2 (BOI) for data input, UDI must be held low. | | SD/CDS | Serial Data/Command
Data Sync | In the converter mode, SD/CDS is an input used to receive serial NRZ data NRZ data is accepted synchronously on the falling edge of encoder clock output (ECLK). In the repeater mode, SD/CDS is an output indicating the status of last valid sync pattern received. A high indicates a command sync and a low indicates a data sync pattern. | | SDO | Serial Data Out | The decoded serial NRZ data is transmitted out <u>sy</u> nchronously with the decoder clock (DCLK). SDO is forced low when RST is low. | | SRST | Serial Reset | In the converter mode, SRST follows RST. In the repeater mode when RST goes low, SRST goes low and remains low after RS goes high. SRST goes high only when RST is high, The reset bit is zero and a valid synchronization sequence is received. | | NVM | Nonvalid Manchester | A low on NVM indicates that the decoder has received invalid Manchester data and present data on Serial Data Out (SDO) is invalid. A high indicates that the sync_pulse and data were valid_and SDO is valid. NVM is set low by a low on RST and remains low after RST goes high until valisync pulse followed by two valid Manchester bits is received. | | RST | Reset | In the converter mode, a low on RST forces SDO, DCLK, NVM and SRST low. high on RST enables SDO and DCLK, and forces SRST high. NVM remains low after RST goes high until a valid sync pulse followed by two Manchester bits are received, after which it goes high. In the repeater mode, RST has the same effect on SDO, DCLK and NVM as in the converter mode. When RST goes low, SRST goes low and remains low after RST goes high, SRST goes high only when RST is high, the reset bit is zero and a valid synchronization sequence is received. | | DCLK | Decoder Clock | The decoder clock is a 1x clock recovered from BZI and BOI to synchronously output received NRZ data (SDO). | | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE | | 5962-90888 | |---|------|----------------|------------| | DAYTON, OHIO 45444 | | REVISION LEVEL | SHEET 17 | Table III. Pin descriptions. - Continued | Symbol | Name | Description | |-----------------|---------------------|--| | GND | Ground | Ground | | co | Clock Output | Buffered output of clock input ${\rm I}_\chi$, may be used as clock signal for other peripherals. | | IX | Clock Input | I_χ is the input for an external clock or, if the internal oscillator is used, I_χ and O_χ are used for the connection of the crystal. | | o _X | Clock Drive | If the internal oscillator is used, 0_χ and I_χ are used for the connection of the crystal. | | MS | Mode Select | MS must be held low for operation in the converter mode, and high for operation in the repeater mode. | | CTS | Clear to Send | In the converter mode, a high disables the encoder, forcing outputs BOO, BZO high and ECLK low. A high to low transition of CTS initiates transmission of a command sync pulse. A low on CTS enables BOO, BZO and ECLK. In the repeater mode, the function of CTS is identical to that of the converter mode with the exception that a transition of CTS does not initiate a synchronization sequence. | | ECLK | Encoder Clock | In the converter mode, ECLK is a 1% clock output used to receive serial NRZ data to SD/CDS. In the repeater mode, ECLK is a 2% clock which is recovered from BZI and BOI data by the digital phase locked loop. | | SS | Speed Select | A logic high on SS sets the data rate at 1/32 times the clock frequency while a low sets the data rate at 1/16 times the clock frequency. | | BZO | Bipolar Zero Output | BZO and its logical complement BOO are the Manchester data outputs of the encoder. The inactive state for these outputs is in the high state. | | BOO | Bipolar One Out | See BZO | | v _{cc} | Supply Voltage | V_{CC} is the +5 V power supply pin. A 0.1 μ F decoupling capacitor from V_{CC} (pin 20) to GND (pin 10) is recommended. | | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-90888 | |---|-----------|----------------|-------------| | | | REVISION LEVEL | SHEET
18 | 6.6 One part - one part number system. The one part - one part number system described below has been developed to allow for transitions between identical generic devices covered by the four major microcircuit requirements documents (MIL-M-38510, MIL-H-38534, MIL-I-38535, and 1.2.1 of MIL-STD-883) without the necessity for the generation of unique PIN's. The four military requirements documents represent different class levels, and previously when a device manufacturer upgraded military product from one class level to another, the benefits of the upgraded product were unavailable to the Original Equipment Manufacturer (OEM), that was contractually locked into the original unique PIN. By establishing a one part number system covering all four documents, the OEM can acquire to the highest class level available for a given generic device to meet system needs without modifying the original contract parts selection criteria. | Military documentation format | Example PIN
under new system | Manufacturing source listing | Document
<u>listing</u> | |---|---------------------------------|------------------------------|----------------------------| | New MIL-M-38510 Military Detail
Specifications (in the SMD format) | 5962-XXXXXZZ(B or \$)YY | QPL-38510
(Part 1 or 2) | MIL-BUL-103 | | New MIL-H-38534 Standardized Military
Drawings | 5962-XXXXXZZ(H or K)YY | QML-38534 | MIL-BUL-103 | | New MIL-I-38535 Standardized Military
Drawings | 5962-XXXXXZZ(Q or V)YY | QML -38535 | MIL-BUL-103 | | New 1.2.1 of MIL-STD-883 Standardized
Military Drawings | 5962-XXXXXZZ(M)YY | MIL-BUL-103 | MIL-BUL-103 | ## 6.7 Sources of supply. - 6.7.1 <u>Sources of supply for device classes B and S</u>. Sources of supply for device classes B and S are listed in QPL-38510. - 6.7.2 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DESC-EC and have agreed to this drawing. - 6.7.3 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-EC. | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-90888 | |--|-----------|----------------|-------------| | | | REVISION LEVEL | SHEET
19 |