| | | | | | | | | F | REVISIO | ONS | •••• | | | | | | | | | | |--|--|----------|------------|--------------------|--------------------------|---------------------------------------|-----------------|----------------|--------------|--|--------|---------------------------|-------------|-----------------------|-----------------------------|---------------|----------------------|--------------|----------|------| | LTR | _ | | | | ι | DESCR | IPTION | l | | | | | DA | TE (YF | R-MO-D | A) | | APPR | OVED | | | A | Add I | RHA da | ta. Edi | itorial ch | nanges | throug | hout j | ak | | | | | | 98-0 | 5-06 | | Mo | onica L. | . Poelki | ng | REV | | I | | Γ | | , | | | | | | | | | | | | | | | | | I . | SHEET | | Δ | Δ | Δ | Δ | Δ | Δ | | | | | | - | | | | | | | | | REV
SHEET | A
15 | A
16 | A 17 | A 18 | A
19 | A 20 | A 21 | | | | | | | | | | | | | | | REV | 15 | | | | 19 | | <u> </u> | A | A | A | A | A | A | A | A | A | A | A | A | A | | REV | 15
JS | | | 18 | 19 | | 21 | A 2 | A 3 | A 4 | A 5 | A 6 | A 7 | A 8 | A 9 | A 10 | A 11 | A 12 | A 13 | A 14 | | REV
SHEET
REV STATU
OF SHEETS | 15
JS | | | 18
REV | 19
/
EET | 20
D BY | 21
A | 2 | | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | 13 | - | | REV SHEET REV STATU OF SHEETS PMIC N/A ST | 15
US
S | 16
RD | 17 | 18
REV
SHE | 19 / EET EPARE M CKED | 20
D BY
arcia B | 21
A
1 | 2
ner | | | 5 | 6 | 7 | 8
UPPL | 9
.Y CE | 10 | 11 | 12
UMB | 13 | - | | REV SHEET REV STATU OF SHEETS PMIC N/A ST MICROCIE THIS DRAW | IS S S S S S S S S S S S S S S S S S S | 16 PRAW | 17 | 18 REV SHE PRI | 19 / EET EPARE M CKED Th | 20
D BY
arcia B
BY
omas J | 21 A 1 | 2
ner | | MIG
CM | 5
D | 6
EFEN
CIRC
8-BI | 7 ISE S COL | UPPL
UMBI
S, DI | 9
LY CE
US, O
GITA | inter
ohio | 11
R COL
43216 | 12
UMB | us
D | 14 | | REV SHEET REV STATU OF SHEETS PMIC N/A ST MICROCIF THIS DRAW FOR DEF | IS S S S S S S S S S S S S S S S S S S | DEFEND | ING
BLE | 18 REV SHE PRI CHE | 19 / EET EPARE M CKED Th | 20 BY arcia B BY omas J D BY Michael | 21 A 1 . Kellet | 2
ner
ti | | MIG
CM | D CROO | 6
EFEN
CIRC
8-BI | 7 ISE S COL | UPPL
UMBI
S, DI | 9
LY CE
US, O
GITA | inter
ohio | 11
R COL
43216 | J2
LUMB | us
D | 14 | DSCC FORM 2233 APR 97 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 5962-E135-98 SHEET 1 OF 20 # 1. SCOPE - 1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes B, Q and M), and space application (device classes S and V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN - 1.2 PIN. The PIN is as shown in the following example. - 1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device classes M, B, and S RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. - 1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows: | Device type Generic number | | Circuit function | |----------------------------|-----------|--| | 01 | 54AC520 | 8-Bit magnitude comparator with enable and pull-up resistors | | 02 | 54AC11520 | 8-Bit magnitude comparator with enable and pull-up resistors | 1.2.3 Device class designator. The device class designator is a single letter identifying the product assurance level as follows: | Device class | Device requirements documentation | |--------------|---| | М | Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A | | BorS | Certification and qualification to MIL-PRF-38535, appendix A | | Q or V | Certification and qualification to MIL-PRF-38535 | | | | 1.2.4 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | |----------------|------------------------|------------------|------------------------------| | | | | | | R | GDIP1-T20 or CDIP2-T20 | 20 | Dual-in-line | | S | GDFP2-F20 or CDFP3-F20 | 20 | Flat pack | | 2 | CQCC1-N20 | 20 | Square leadless chip carrier | | | | | • | 1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q, and V or MIL-PRF-38535, appendix A for device classes M, B, and S. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962- 9 0916 | |----------------------------------|------------------|----------------|-------------------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | A | 2 | # 1.3 Absolute maximum ratings. 1/2/3/ Supply voltage range (Vcc)-0.5 V dc to +6.0 V dcDC input voltage range (Vin)-0.5 V dc to Vcc + 0.5 V dcDC output voltage range (Vout)-0.5 V dc to Vcc + 0.5 V dcClamp diode current (I_{IK} , I_{OK}) ± 20 mADC output current (I_{OUT}) ± 50 mADC Vcc or GND current (I_{CC} , I_{GND}) ± 100 mAMaximum power dissipation (P_D)300 mWStorage temperature range (T_{STG}) -65° C to +150°CLead temperature (soldering, 10 seconds) $+300^{\circ}$ CThermal resistance, junction-to-case (Θ_{JC})See MIL-STD-1835Junction temperature (T_J) $+175^{\circ}$ C 4/ # 1.4 Recommended operating conditions. 2/3/5/ | Supply voltage range (Vcc) | 3.0 V dc to +5.5 V dc | |---|-----------------------| | Output voltage range (Vout) | +0.0 V ac to Vcc | | Vcc = 3.0 V | 0.40 \ | | | | | Vcc = 4.5 V | | | Vcc = 5.5 V | 3.85 V dc | | Maximum low level input voltage (VIL): | | | Vcc = 3.0 V | 0.90 V dc | | Vcc = 4.5 V | 1.35 V dc | | Vcc = 5.5 V | 1.65 V dc | | Case operating temperature range (Tc) | | | Input rise or fall rate (tr, tr) maximum: | | | Vcc = 3.6 V and 5.5 V | 0 to 8 neM | #### 1.5 Digital logic testing for device classes Q and V. 6/ Values will be added when they become available # STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 | SIZE
A | | 5962-90916 | |------------------|---------------------|------------| | | REVISION LEVEL
A | SHEET
3 | DSCC FORM 2234 ^{1/} Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. ^{2/} Unless otherwise noted, all voltages are referenced to GND. ^{3/} The limits for the parameters specified herein shall apply over the full specified V_{CC} range and case temperature range of -55°C to +125°C. ^{4/} Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with method 5004 of MIL-STD-883. ^{5/} Operation from 2.0 V dc to 3.0 V dc is provided for compatibility with data retention and battery back-up systems. Data retention implies no input transition and no stored data loss with the following conditions: V_{IH} ≥ 70% V_{CC}, V_{IL} ≤ 30% V_{CC}, V_{OH} ≥ 70% V_{CC} at -20 μA, V_{OL} ≤ 30% V_{CC} at 20 μA. #### 2. APPLICABLE DOCUMENTS 2.1 Government specification, standards, and handbooks. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation. #### SPECIFICATION # **DEPARTMENT OF DEFENSE** MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for. # **STANDARDS** #### DEPARTMENT OF DEFENSE MIL-STD-883 Test Method Standard Microcircuits. MIL-STD-973 Configuration Management. MIL-STD-1835 - Interface Standard For Microcircuit Case Outlines. #### **HANDBOOKS** #### DEPARTMENT OF DEFENSE MIL-HDBK-103 - List of Standard Microcircuit Drawings (SMD's). MIL-HDBK-780 - Standard Microcircuit Drawings. (Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2.2 Non-Government publications. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of the documents which are DOD adopted are those listed in the issue of the DODISS cited in the solicitation. Unless otherwise specified, the issues of documents not listed in the DODISS are the issues of the documents cited in the solicitation. #### **ELECTRONIC INDUSTRIES ASSOCIATION (EIA)** JEDEC Standard No. 17 - A Standardized Description Test Procedure for Characterization of LATCH-UP in CMOS Devices. JEDEC Standard No. 20 - Standardized for Description of 54/74ACXXXX and 54/74ACTXXXX Advanced High-Speed CMOS Devices. (Applications for copies should be addressed to the Electronics Industries Association, 2001 Eye Street, NW, Washington, DC 20006.) (Non-Government standards and other
publications are normally available from the organizations that prepare or distribute the documents. These documents may also be available in or through libraries or other informational services.) 2.3 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. ## 3. REQUIREMENTS 3.1 Item requirements. The individual item requirements for device classes Q, and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device classes M, B, and S shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. | STANDARD | |---------------------------------------| | MICROCIRCUIT DRAWING | | DEFENSE SUPPLY CENTER COLUMBUS | | COLUMBUS, OHIO 43216-5000 | | SIZE
A | | 5962-90916 | |------------------|---------------------|------------| | | REVISION LEVEL
A | SHEET 4 | DSCC FORM 2234 - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q, and V or MIL-PRF-38535, appendix A and herein for device classes M, B, and S. - 3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.4 herein. - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1. - 3.2.3 Truth table. The truth table shall be as specified on figure 2. - 3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3. - 3.2.5 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as specified on figure 4. - 3.2.6 <u>Radiation exposure circuit</u>. The radiation exposure circuit shall be as specified when available. - 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range. Test conditions for these specified characteristics and limits are as specified in table I. For device classes B and S, a pin-for-pin conditions and testing sequence for table I parameters shall be maintained and available upon request from the qualifying activity on qualified devices. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I. - 3.5 Marking. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q, and V shall be in accordance with MIL-PRF-38535. Marking for device classes M, B, and S shall be in accordance with MIL-PRF-38535, appendix A. - 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q, V, B and S shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A. - 3.5.2 <u>Correctness of indexing and marking for device classes B and S</u>. For device classes B and S, all devices shall be subjected to the final electrical tests specified in table II after PIN marking (marked in accordance with MIL-PRF-38535, appendix A) to verify that they are correctly indexed and identified by PIN. Optionally, an approved electrical test may be devised especially for this requirement. - 3.6 <u>Certificate of compliance</u>. For device classes Q, and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device classes M, B and S a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q, and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein. - 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q, and V in MIL-PRF-38535 or for device classes M, B, and S in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing. - 3.8 <u>Notification of change for device classes M, B and S</u>. For device classes M, B and S, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-973. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-90916 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | A | 5 | DSCC FORM 2234 - 3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. - 3.10 <u>Microcircuit group assignment for device classes M, B, and S</u>. Device classes M, B, and S devices covered by this drawing shall be in microcircuit group number 39 (see MIL-PRF-38535, appendix A). - 3.11 <u>Serialization for device class S</u>. All device class S devices shall be serialized in accordance with MIL-PRF-38535, appendix A. - 3.12 Substitution. Substitution data shall be as indicated in the appendix herein. - 4. QUALITY ASSURANCE PROVISIONS - 4.1 <u>Sampling and inspection</u>. For device classes Q, and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device classes M, B, and S, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A. - 4.1.1 <u>Burn-in and life test circuits</u>. For device classes B and S, the burn-in and life test circuits shall be constructed so that the devices are stressed at the maximum operating conditions stated in 4.2.1a(5) or 4.2.1a(6) as applicable, or equivalent, as approved by the qualifying activity. - 4.2 <u>Screening</u>. For device classes Q, and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device classes M, B, and S, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. - 4.2.1 Additional criteria for device classes M, B, and S. - a. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015. - (2) $T_A = +125$ °C, minimum. - (3) Delete the sequence specified in 3.1.10 through 3.1.14 of method 5004 and substitute the first 7 test requirements of table II herein. - (4) For device class M, unless otherwise specified, the requirements for device class B in method 1015 of MIL-STD-883 shall be followed. - (5) Static burn-in, device classes B and S, test condition A, test method 1015 of MIL-STD-883. Test duration for each static test shall be 24 hours minimum for class S devices and in accordance with table I of method 1015 for class B devices. - (a) For static burn-in I, all inputs shall be connected to GND. Outputs may be open or connected to V_{CC}/2 ± 0.5 V. Resistors R1 are optional on both inputs and open outputs, and required on outputs connected to V_{CC}/2 ± 0.5 V. R1 = 220Ω to 47 kΩ. - (b) For static burn-in II, all inputs shall be connected through the R1 resistors to V_{CC}. Outputs may be open or connected to V_{CC}/2 ± 0.5 V. Resistors R1 are optional on open outputs, and required on outputs connected to V_{CC}/2 ± 0.5 V. R1 = 220Ω to 47 kΩ. - (c) $V_{CC} = 5.5 \text{ V} \pm 0.5 \text{ V}$. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-90916 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | A | 6 | - (6) Dynamic burn-in, device classes B and S, test condition D, method 1015 of MIL-STD-883, - (a) Input resistors = 220Ω to $2 k\Omega \pm 20$ percent. - (b) Output resistors = $220\Omega \pm 20$ percent. - (c) $V_{CC} = 5.5 \text{ V} + 0.5 \text{ V}, -0.0 \text{ V}.$ - (d) The $I_A = B$ input pin shall be connected through a resistor in series with GND. The $O_A = B$ output pin shall be connected through a resistor in series with VCC nominal. The An input pins shall be connected to the resistors in parallel to clock pulse 1 (CP1). The Bn input pins shall be connected to the resistors in parallel
to clock pulse 2 (CP2). - (e) CP1, CP2 = 25 kHz to 1 MHz square wave; frequency of CP2 = ½ frequency of CP1; duty cycle = 50 percent ± 15 percent; V_{IH} = 4.5 V to V_{CC}, V_{IL} = 0 V ± 0.5 V; t_r, t_f ≤ 100 ns. - b. Interim and final electrical test parameters shall be as specified in table II herein. - c. For class S devices, post dynamic bum-in, or class B devices, post static burn-in, electrical parameter measurements may, at the manufacturer's option, be performed separately or included in the final electrical parameter requirements. ### 4.2.2 Additional criteria for device classes Q, and V. - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883. - b. Interim and final electrical test parameters shall be as specified in table II herein. - Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B. #### 4.2.3 Percent defective allowable (PDA). - a. The PDA for class S devices shall be 5 percent for static burn-in and 5 percent for dynamic burn-in, based on the exact number of devices submitted to each separate burn-in. - b. Static bum-in I and II failures shall be cumulative for determining the PDA. - c. The PDA for class B devices shall be in accordance with MIL-PRF-38535, appendix A for static burn-in. Dynamic burn-in is not required. - d. The PDA for class M devices shall be in accordance with MIL-PRF-38535 for static burn-in and dynamic burn-in. - e. Those devices whose measured characteristics, after burn-in, exceed the specified delta limits or electrical parameter limits specified in table I, subgroup 1, are defective and shall be removed from the lot. The verified number of failed devices times 100 divided by the total number of devices in the lot initially submitted to burn-in shall be used to determine the percent defective for the lot and the lot shall be accepted or rejected based on the specified PDA. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-90916 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
A | SHEET 7 | DSCC FOHM 2234 | Test and
MIL-STD-883
test method <u>1</u> / | Symbol | Test conditions -55°C ≤ T _C ≤+1 3.0 V ≤ V _{CC} ≤5 unless otherwise s | 25°C
.5 V | Device
type <u>3</u> /
and device
class | Vcc | Group A
subgroups | Limi | ts <u>2</u> / | Uni | |---|--------------------------------|---|--|--|-------|----------------------|------|---------------|----------| | | | | | | | | Min | Мах | <u>.</u> | | High level output
voltage
3006 | V _{OH1} <u>4</u> / | V _{IN} = V _{IH} or V _{IL}
V _{IH} = 2.10 V
V _{IL} = 0.90 V
I _{OH} = -50 μA | V _{IH} = 2.10 V
V _{IL} = 0.90 V | | 3.0 V | 1, 2, 3 | 2.9 | | V | | | V _{OH2}
<u>4</u> / | $V_{IN} = V_{IH} \text{ or } V_{IL} \\ V_{IH} = 3.15 \text{ V} \\ V_{IL} = 1.35 \text{ V} \\ I_{OH} = -50 \mu\text{A}$ | | All
All | 4.5 V | 1, 2, 3 | 4.4 | | | | Vонз | | V _{IN} = V _{IH} or V _{IL}
V _{IH} = 3.85 V
V _{IL} = 1.65 V | | All
All | 5.5 V | 1, 2, 3 | 5.4 | | | | | | юн = -50 µА | M, D, L, R | 01
B, S, Q, V | | 1 | 5.4 | | | | | V _{OH4} | V _{IN} = V _{IH} or V _{IL}
V _{IH} = 2.10 V
V _{IL} = 0.90 V
I _{OH} = -4.0 mA | | All
All | 3.0 V | 1, 2, 3 | 2.4 | | | | | V _{OH5} | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{IH} = 3.15 \text{ V}$ $V_{IL} = 1.35 \text{ V}$ $I_{OH} = -24 \text{ mA}$ | | All
All | 4.5 V | 1, 2, 3 | 3.7 | | | | | | | M, D, L, R | 01
B, S, Q, V | | 1 | 3.7 | | | | | Vоне
<u>4</u> / | V _{IN} = V _{IH} or V _{IL}
V _{IH} = 3.85 V
V _{IL} = 1.65 V
I _{OH} = -24 mA | | All
All | 5.5 V | 1, 2, 3 | 4.7 | | | | | Vон7
<u>5</u> / | V _{IN} = V _{IH} or V _{IL}
V _{IH} = 3.85 V
V _{IL} = 1.65 V
I _{OH} = -50 mA | | All
All | 5.5 V | 1, 2, 3 | 3.85 | | | | | | | M, D, L, R | 01
B, S, Q, V | | 1 | 3.85 | | | STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 SIZE A 5962-90916 REVISION LEVEL A SHEET 8 DSCC FORM 2234 | Test and MIL-STD-883 test method 1/ | Symbol | Test conditions -55°C ≤ T _C ≤ +1. 3.0 V ≤ V _{CC} ≤ 5 unless otherwise s | 25°C
.5 V | Device
type <u>3</u> /
and device
class | Vcc | Group A
subgroups | Limi | its <u>2</u> / | Unit | |--|---|--|--------------|--|--------------|----------------------|------|----------------|----------| | | | | | | | | Min | Max | <u> </u> | | Low level output voltage 3007 Vol.1 4/ Vol.2 4/ Vol.3 | 1 | $\begin{aligned} V_{IN} &= V_{IH} \text{ or } V_{IL} \\ V_{IH} &= 2.10 \text{ V} \\ V_{IL} &= 0.90 \text{ V} \\ I_{OL} &= 50 \mu\text{A} \end{aligned}$ | | All
All | 3.0 V | 1, 2, 3 | | 0.1 | ٧ | | | | V _{IN} = V _{IH} or V _{IL}
V _{IH} = 3.15 V
V _{IL} = 1.35 V
I _{OL} = 50 µA | | All
All | 4.5 V | 1, 2, 3 | | 0.1 | | | | Vol3 | V _{IN} = V _{IH} or V _{IL}
V _{IH} = 3.85 V | | All
All | 5.5 V | 1, 2, 3 | | 0.1 | | | | | V _{IL} = 1.65 V
lo _L = 50 μA | M, D, L, R | 01
B, S, Q, V | | 1 | | 0.1 | | | | Vol4 | V _{IN} = V _{IH} or V _{IL} | | 01 | 3.0 V | 1, 3 | | 0.4 | | | | 4/ V _{IH} = 2.10 V
V _{IL} = 0.90 V | | B, S, Q, V | | 2 | | 0.5 | | | | | | $V_{IL} = 0.90 \text{ V}$
$I_{OL} = 12 \text{ mA}$ | | All | | 1 | | 0.4 | | | | | | | М | | 2, 3 | | 0.5 | 1 | | | V _{OL5} | VIN = VIH OF VIL | | 01 | 4.5 V | 1, 3 | | 0.4 | | | | | V _{IH} = 3.15 V
V _{IL} = 1.35 V | | B, S, Q, V | | 2 | | 0.5 | | | | | lo _L = 24 mA | M, D, L, R | 01
B, S, Q, V | | 1 | | 0.4 | | | | | | , | All | | 1 | | 0.4 | 1 | | | | | PM | М | ļ., | 2, 3 | | 0.5 |] | | | VOL6 | VIN = VIH OF VIL | | 01 | 5.5 V | 1, 3 | | 0.4 | | | | <u>4</u> / | V _{IH} = 3.85 V
V _{IL} = 1.65 V | | B, S, Q, V | | 2 | | 0.5 | | | | | lo _L = 24 mA | | All | | 1 | | 0.4 |] | | | | ļ | | М | | 2, 3 | | 0.5 |] | | | V _{OL7} | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$V_{IH} = 3.85 \text{ V}$ | | All
All | 5.5 V | 1, 2, 3 | | 1.65 | | | | <u>5</u> / | V _{IL} = 1.65 V
I _{OL} = 50 mA | M, D, L, R | 01
B, S, Q, V | | 1 | | 1.65 | | | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-90916 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | A | 9 | DSCC FORM 2234 APR 97 | Test and
MIL-STD-883
test method 1/ | Symbol | -55°C ≤T | ditions 2/
c ≤+125°C
/cc ≤+5.5 V | Device
type <u>3</u> /
and device | Vœ | Group A
subgroups | Lin | nits <u>2</u> / | Un | |---|-------------------|--|--|---|-------|----------------------|------|-----------------|-----| | | | 1 | wise specified | class | | | Min | Max | 4 | | Positive input clamp voltage | V _{IC+} | | test, I _{IN} = 1.0 mA | 01
B, S, Q, V | 0.0 V | 1 | 0.4 | 1.5 | 1 | | 3022 | | | M, D, L, R | 01
B, S, Q, V | 0.0 V | 1 | 0.4 | 1.5 | | | Negative input clamp voltage | V _{IC} - | For input under | test, I _{IN} = -1.0 mA | 01
B, S, Q, V | Open | 1 | -0.4 | -1.5 | \ | | 3022 | | | M, D, L, R | 01
B, S, Q, V | Open | 1 | -0.4 | -1.5 | | | Input leakage | l _H | –
I _{A = B} , An = V _{CC} | | 01 | 5.5 V | 1 | | 0.1 | μ | | current high | | | | B, S, Q, V | | 2 | | 1.0 | 4 | | 3010 | | | | All | 5.5 V | 1 | | 0.1 | | | | | | | М | | 2, 3 | | 1.0 | | | | | | M, D, L, R | 01
B, S, Q, V | 5.5 V | 1 | | 0.1 | | | | | Bn = Vcc | | 01
All | 5.5 V | 1, 2, 3 | | 20.0 | | | | | | | 02
M | 5.5 V | 1, 2, 3 | | 10.0 | | | | | | M, D, L, R | 01
B, S, Q, V | 5.5 V | 1 | | 20.0 | | | Input leakage | I _{IL} | | | 01 | 5.5 V | 1 | | -0.1 | Д | | current low | | $I_{A=B}$, An = GND | | B, S, Q, V | | 2 | | -1.0 |] ' | | 3009 | | | | All | 5.5 V | 1 | | -0.1 | | | | | | | М | | 2, 3 | | -1.0 | 7 | | | | | M, D, L, R | 01
B, S, Q, V | 5.5 V | 1 | | -0.1 | | | | | Bn = GND | | 01
All | 5.5 V | 1, 2, 3 | | -1.5 | m | | | | | | 02 | 5.5 V | 1, 3 | | -0.6 | 1 | | | | | | M | | 2 | | -1.0 | | | | | | M, D, L, R | 01
B, S, Q, V | 5.5 V | 1 | | -1.5 | | | Quiescent supply | Іссн | I _{A = B} , An = V _{CC} o | r GND | 01 | 5.5 V | 1 | ĺ | 2.0 | μ | | current high | | Bn = Vcc or ope | | B, S, Q, V | | 2 | | 40.0 | 1 | | 3005 | | | | All | | 1 | | 8.0 | 1 | | | | | | M | | 2,3 | | 160.0 | 4 | | | | | M | | | | | 15.0 | 4 | | | | | D
L, R | 01
B S O V | | 1 | İ | 300.0 | 4 | | | | Bn = GND | L, K | B, S, Q, V
01 | | 1, 2, 3 | | 700.0
12.0 | m | | | | 6/ | | All | | 1, 2, 0 | | 12.0 | "" | | | 1 | = | | 02 | | 1 | | 4.8 | 1 | | | 1 | | | M | ł | 2.3 |
| 8.0 | Η | | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-90916 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | A | 10 | | Test and MIL-STD-883 test method 1/ | Symbol | Test conditions 2/
-55°C ≤ T _C ≤ +125°C
+3.0 V ≤ V _{CC} ≤ +5.5 V | Device
type <u>3</u> /
and device
class | Vcc | Group A
subgroups | Limi | ts 2/ | Unit | |-------------------------------------|------------|--|--|-------|----------------------|------|-------|------| | | | unless otherwise specified | | | | Min | Max | | | Quiescent supply | lccL | I _A = _B = GND | 01 | 5.5 V | 1 | | 2.0 | μА | | current low | | | B, S, Q, V | | 2 | | 40.0 | | | 3005 | ! | An = Bn = Vcc | All | | 1 | | 8.0 | | | | | | М | | 2, 3 | | 160.0 | 1 | | | | M | | | | | 15.0 | | | | | D | 01 | | 1 | | 300.0 | } | | | | L, R | B, S, Q, V | | | | 700.0 | 1 | | Input capacitance | CiN | See 4.4.1c | All | GND | 4 | | 10.0 | pF | | 3012 | | T _C = +25°C | All | | | | | | | Power dissipation | CPD | See 4.4.1c | All | 5.0 V | 4 | | 75.0 | pF | | capacitance | 7/ | Tc = +25°C, f = 1 MHz | All | | | | | | | Latch-up | lcc | tw ≥ 100 μs, t _{cool} ≥ tw | 01 | 5.5 V | 2 | | 200 | mA | | input/output | (00/4) | 5 μs ≤ t₁ ≤ 5 ms | B, S, Q, V | | | | | | | over-voltage | (O/V1) | 5 μs ≤ t₁ ≤ 5 ms
V _{test} = 6.0 V, V _{CCQ} = 5.5 V | | | ' | | | } | | | 8/ | V _{test} = 6.0 V, V _{CCQ} = 5.5 V
V _{over} = 10.5 V | | | | | | | | Latch-up | lcc | tw ≥ 100 μs, t _{cool} ≥ t _w | 01 | 5.5 V | 2 | | 200 | mA | | input/output | 1.00 | 5 µs ≤ t _r ≤ 5 ms | в, s, q, v | 0.5 | - | | 200 | "" | | positive over- | (O/I1+) | 5 µs ≤ t₁ ≤ 5 ms | _, _, _, . | | | | | 1 | | current | ' | V _{test} = 6.0 V, V _{CCQ} = 5.5 V | | | | | | | | | <u>8</u> / | krigger = +120 mA | | | | | | | | Latch-up | lcc | $t_w \ge 100 \ \mu s, t_{cool} \ge t_w$ | 01 | 5.5 V | 2 | | 200 | mA | | input/output | | 5 μs ≤ t _r ≤ 5 ms | B, S, Q, V | Ì | | | | | | negative over- | (O/I1-) | 5 μs ≤ t₁ ≤ 5 ms | | | | | ! | | | current | 0, | $V_{\text{test}} = 6.0 \text{ V}, V_{\text{CCQ}} = 5.5 \text{ V}$ | 1 | | | | | | | Latch-up supply | 8/
lcc | krigger = -120 mA
tw ≥ 100 μs, tcool ≥ tw | 01 | EFY | | | 400 | 4 | | over-voltage | ICC | tw ≥ 100 μs, tcool ≥ tw
5 μs ≤ tr ≤ 5 ms | 01
B, S, Q, V | 5.5 V | 2 | | 100 | mA | | over vertage | (O/V2) | 5 µs ≤ t₁ ≤ 5 ms | D, S, Q, V | | | | | | | | (0,1-, | V _{test} = 6.0 V, V _{CCQ} = 5.5 V | | | | | | | | | <u>8</u> / | V _{over} = 9.0 V | | | | | | | | Functional tests | 9/ | V _{IL} = 0.45 V | All | 3.0 V | 7 | L | н | | | 3014 | | V _{IH} = 2.5 V | All | | | _ | | | | | | Verify output Vouτ, See 4.4.1e | | | | | |] | | | | M, D, L, R | 01
B, S, Q, V | 3.0 V | 7 | L | Н | | | | | V _{IL} = 0.6 V | All | 4.5 V | 7, 8 | L | Н | | | | | V _{IH} = 3.7 V | All | | | | | | | | 1 | Verify output Vout, See 4.4.1e | | | 1 | I | 1 | | | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-90916 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | A | 11 | DSCC FORM 2234 APR 97 | | | Table I. Elect | rical performance | e characteristic | <u>cs</u> - Contin | ued. | | | | |---|--|---|---|---|--------------------|----------------------|-------|--------------|------| | Test and MIL-STD-883 test method 1/ | Symbol | -55°C ≤ T | ditions <u>2/</u>
c ≤+125°C
/cc ≤+5.5 V | Device
type 3/
and
device
class | Vcc | Group A
subgroups | Limit | s <u>2</u> / | Unit | | | | unless other | wise specified | | | | Min | Max | | | Propagation delay time, An or Bn | tpHL1, | C _L = 50 pF
R _L = 500Ω | | 01
B, S, Q, V | 3.0 V | 9, 11 | 1.0 | 12.5 | ns | | to O _{A≖B} | | See figure 4 | | | | 10 | 1.0 | 15.0 | | | 3003 | <u>10/ 11/</u> | | | 01 | | 9 | 1.0 | 12.5 | | | | | | | М | | 10, 11 | 1.0 | 15.0 | | | | | | M, D, L, R | 01
B, S, Q, V | | 9 | 1.0 | 12.5 | - | | | | | | 02 | | 9, 11 | 1.0 | 16.5 | | | | | | | All | | 10 | 1.0 | 20.1 | | | | | | | 01 | 4.5 V | 9, 11 | 1.0 | 9.0 | | | | | | | B, S, Q, V | | 10 | 1.0 | 11.0 | | | | | | | 01 | | 9 | 1.0 | 9.0 | | | | | | | M | | 10, 11 | 1.0 | 11.0 | | | | | | M, D, L, R | 01
B, S, Q, V | | 9 | 1.0 | 9.0 | | | | | | | 02
All | | 9, 11 | 1.0 | 11.1 | | | * | | | | | | 10 | 1.0 | 13.7 | | | Propagation delay time, I _{A=B} to | t _{PHL2} ,
t _{PLH2} | $C_L = 50 \text{ pF}$
$R_L = 500\Omega$ | | 01
B, S, Q, V | 3.0 V | 9, 11 | 1.0 | 9.0 | ns | | $O_{A=B}$ | | See figure 4 | | | | 10 | 1.0 | 10.5 | | | 3003 | <u>10/ 11/</u> | | | 01 | | 9 | 1.0 | 9.0 | | | | | | | М | | 10, 11 | 1.0 | 10.5 | | | | | | M, D, L, R | 01
B, S, Q, V | | 9 | 1.0 | 9.0 | | | | | | | 02 | | 9, 11 | 1.0 | 9.0 | | | | | | | Ali | | 10 | 1.0 | 10.8 | | | | | | | 01
B, S, Q, V | 4.5 V | 9, 11 | 1.0 | 6.5 | | | | | | | | | 10 | 1.0 | 8.0 | | | | | | | 01 | | 9 | 1.0 | 6.5 | | | | | | | M | | 10, 11 | 1.0 | 8.0 | | | | | | M, D, L, R | 01
B, S, Q, V | | 9 | 1.0 | 6.5 | | | | | | | 02
All | | 9, 11 | 1.0 | 7.1 | | | | | | | | | 10 | 1.0 | 8.2 | | STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 SIZE A 5962-90916 REVISION LEVEL A SHEET 12 DSCC FORM 2234 #### Table I. Electrical performance characteristics - Continued. - 1/ For tests not listed in MIL-STD-883 [e.g. ICC(O/V1)], utilize the general test procedure under the conditions listed herein. All inputs and outputs shall be tested, as applicable, to the tests in table 1 herein. - 2/ Each input/output, as applicable shall be tested at the specified temperature for the specified limits. Output terminals not designated shall be high level logic, low level logic, or open, except as follows: - a. V_{IC} (pos) tests, the GND terminal can be open. $T_{C} = +25$ °C. - b. V_{IC} (neg) tests, the V_{CC} terminal shall be open. $T_{C} = +25^{\circ}C$. - c. All ICC tests, the output terminal shall be open. When performing these tests, the current meter shall be placed in the circuit such that all current flows through the meter. Additional detailed information on qualified devices (i.e., pin for pin conditions and testing sequence) is available from the qualifying activity (DSCC-VQC) upon request. For negative and positive voltage and current values: The sign designates the potential difference in reference to GND and the direction of current flow respectively; and the absolute value of the magnitude, not the sign, is relative to the minimum and maximum limits, as applicable, listed herein. - 3/ The word "All" in the device type and device class column, means limits for all device types and classes. - $\underline{4}$ / For device classes B and S, this test is guaranteed, if not tested, to the limits specified in table I. - Transmission driving tests are performed at V_{CC} = 5.5 V dc with a 2 ms duration maximum. This test may be performed using V_{IN} = V_{CC} or GND. When V_{IN} = V_{CC} or GND, the test is guaranteed for V_{IN} = V_{IH} or V_{IL}. For device class M, subgroup 1 testing shall be guaranteed if not tested to the limits specified in table I. For radiation hardness assured devices, subgroup 1 tests shall be performed. - 6/ The Icch limit with Bn = GND shall be guaranteed if not tested to the limits specified in table I. - Power dissipation capacitance (CpD) determines the no load dynamic power consumption, PD = (CpD + CL) (VCC x VCC)f + (ICC x VCC). The dynamic current consumption, IS = (CpD + CL) VCCf + ICC. For both PD and IS: f is the frequency of the input signal. - 8/ See JEDEC Standard No. 17 for electrically induced latch-up test methods and procedures. The values listed for V_{trigger}, l_{trigger}, and V_{over}, are to be accurate within ± 5 percent. - 9/ Tests shall be performed in sequence, attributes data only. Functional tests shall include the truth table and other logic patterns used for fault detection. Functional tests shall be performed in sequence as approved by the qualifying activity on qualified devices. H ≥ 2.5 V, L < 2.5 V; high inputs = 3.7 V and low inputs = 0.6 V for V_{CC} = 4.5 V and H ≥ 1.5 V, L < 1.5 V; high inputs = 2.5 V and low inputs = 0.45 V for V_{CC} = 3.0 V. The input voltage levels have the allowable tolerances in accordance with MIL-STD-883 already incorporated. For device classes B and S, functional tests at V_{CC} = 3.0 V are guaranteed, if not tested. - $\underline{10}$ / AC limits at V_{CC} = 5.5 V are equal to the limits at V_{CC} = 4.5 V and guaranteed by testing at V_{CC} = 4.5 V. Minimum ac limits for V_{CC} = 5.5 V are 1.0 ns and guaranteed by guardbanding the V_{CC} = 4.5 V minimum limits to 1.5 ns. For propagation delay tests, all paths must be tested. - $\underline{11}$ / Device classes B and S are tested at Vcc = 3.0 V and Vcc = 4.5 V at Tc = +125° for sample testing and at Vcc = 3.0 V and Vcc = 4.5 V at Tc = +25°C for screening. Other voltages of Vcc and temperatures are guaranteed, if not tested to the limits specified in table I. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-90916 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | A | 13 | DSCC FORM 2234 | Device
type | 01 | 02 | : | | | |--------------------|-----------------------|------------------|------------------|--|--| | Case
outlines | R, S, 2 | R | 2 | | | | Terminal
number |
Terminal symbol | | | | | | 1 | —
l _{A=B} | B1 | В3 | | | | 2 | A0 | A1 | A3 | | | | 3 | В0 | B0 | B2 | | | | 4 | A1 | A0 | _A2 | | | | 5 | B1 | <u>G</u> ND | l _{A=B} | | | | 6 | A2 | O _{A=B} | B1 | | | | 7 | B2 | B7 | A1 | | | | 8 | АЗ | A7 | В0 | | | | 9 | В3 | В6 | A0 | | | | 10 | GND | A6 | GND | | | | 11 | A4 | B5 | O _{A=B} | | | | 12 | В4 | A 5 | B7 | | | | 13 | A 5 | B4 | A7 | | | | 14 | B5 | A4 | B6 | | | | 15 | A6 | Vcc | A6 | | | | 16 | В6 | В3 | B5 | | | | 17 | A7 | AЗ | A 5 | | | | 18 | _B7 | B2 | B4 | | | | 19 | O _{A=B} | _A2 | A4 | | | | 20 | Vcc | I _{A=B} | Vcc | | | FIGURE 1. Terminal connections. | Dev | Device types 01 and 02 | | | | | | | |-----------------------|----------------------------|--------|--|--|--|--|--| | Inp | outs | Output | | | | | | | -
I _{A=B} | _
l _{A=B} А, В | | | | | | | | L | A=B * | L | | | | | | | L | A ∮ B ** | н | | | | | | | н | A = B * | н | | | | | | | Н | A . B ** | н | | | | | | * A0 = B0, A1 = B1, A2 = B2, etc. ** A0 \(\begin{align*} \text{B0, A1 } \deceta \text{B1, A2 } \deceta \text{B2, etc.} \\ H - High level voltage \(L = Low level voltage \) FIGURE 2. Truth Table. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-90916 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | A | 14 | DSCC FORM 2234 ## NOTES: - 1. C_L = 50 pF minimum or equivalent (includes test jig and probe capacitance). - $R_T = 50\Omega$ or equivalent, $R_L = 500\Omega$ or equivalent. 2. - 3. Input signal from pulse generator: VIN = 0.0 V to Vcc; PRR ≤ 10 MHz; tr ≤ 3.0 ns; tr ≤ 3.0 ns; tr and tr shall be measured from 10% of Vcc to 90% of Vcc, and from 90% of Vcc to 10% of Vcc, respectively; duty cycle = 50 percent. - 4. Timing parameters shall be tested at a minimum input frequency of 1 MHz. - 5. The outputs are measured one at a time with one transition per measurement. FIGURE 4. Switching waveforms and test circuit . | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-90916 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | A | 16 | DSCC FORM 2234 # TABLE II. Electrical test requirements. | Test requirements | Subgroups 1/
(in accordance with
MIL-STD-883, method 5005, table I) | | with (in accordance with | | ance with | |--|---|--------------------------------------|--------------------------|---|---------------------------------| | | Device
class M | Device 2/
class B | Device 2/
class S | Device
class Q | Device
class V | | Interim electrical parameters,
method 5004 (see 4.2) | | 1 | 1 | 1 | 1 | | Static burn-in I, method 1015 (see 4.2.1a) | 3/ | Not
required | Required 4/ | Not
required | Required 4/ | | Interim electrical parameters,
method 5004 (see 4.2.1b) | | | 1 5/ | - | 1 5/ | | Static burn-in II,
method 1015 (see 4.2.1a) | 3/ | Required 6/ | Required 4/ | Required 6/ | Required 4/ | | Interim electrical parameters,
method 5004 (see 4.2.1b) | | 1
2/5/ | 1
2/5/ | 1
2/ 5/ | 1
2/5/ | | Dynamic burn-in I,
method 1015 (see 4.2.1a) | 3/ | Not required | Required 4/ | Not
required | Required 4/ | | Interim electrical parameters,
method 5004 (see 4.2.1b) | | | 1 5/ | | 1 5/ | | Final electrical parameters,
method 5004 (see 4.2) | 1,2,3, <u>2</u> /
7,8,9.10,
11 | 1,2, <u>2</u> / <u>6</u> /
3, 7,9 | 1,2,3, 7,9 2/ | 1,2,3, <u>2</u> / <u>6</u> /
7,8,9,10,11 | 1,2,3, <i>2/</i>
7,8,9,10,11 | | Group A test requirements | 1,2,3,4,7, | 1,2,3,4,7, | 1,2,3,4,7, | 1,2,3,4,7, | 1,2,3,4,7, | | method 5005 (see 4.4.1) | 8,9,10,11 | 8,9,10,11 | 8,9,10,11 | 8,9,10,11 | 8,9,10,11 | | Group B end point electrical parameters, method 5005 (see 4.4.2) | | | 1,2,3,7, 5/
8,9,10,11 | | | | Group C end-point electrical parameters, method 5005 (see 4.4.3) | 1,2,3 | 1,2,3 5/ | | 1,2,3 5/ | 1,2,3,7 <u>5</u> /
8,9,10,11 | | Group D end-point electrical parameters, method 5005 (see 4.4.4) | 1,2,3 | 1,2,3 | 1,2,3 | 1,2,3 | 1,2,3 | | Group E end-point electrical parameters, method 5005 (see 4.4.5) | 1,7,9 | 1,7,9 | 1,7,9 | 1,7,9 | 1,7,9 | - 1/ Blank spaces indicate tests are not applicable. - 2/ PDA applies to subgroup 1 (see 4.2.3). For device classes S and V, PDA applies to subgroups 1 and 7 (see 4.2.3). - 3/ The burn-in shall meet the requirements of 4.2.1a herein. - 4/ On all class S lots, the device manufacturer shall maintain read-and-record data (as a minimum on disk) for burn-in electrical parameters (group A, subgroup 1), in accordance with test method 5004 of MIL-STD-883. For pre-burn-in and interim electrical parameters the read-and-record requirements are for delta measurements only. - 5/ Delta limits shall be required only on table I, subgroup 1. The delta values shall be computed with reference to the previous interim electrical parameters. The delta limits are specified in table III. - 6/ The device manufacturer may at his option either complete subgroup 1 electrical parameter measurements, including delta measurements, within 96 hours after burn-in completion (removal of bias) or may complete subgroup 1 electrical measurements without delta measurements within 24 hours after burn-in completion (removal of bias). When the manufacturer elects to perform the subgroup 1 electrical parameter measurements without delta measurements, there is no requirement to perform the pre-burn-in electrical tests (first interim electrical parameters test in table II). | STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 | SIZE
A | | 5962-90916 | |--|------------------|---------------------|-------------| | | | REVISION LEVEL
A | SHEET
17 | DSCC FORM 2234 ### TABLE III. Delta limits at +25°C | Parameters 1/ | Device types | Limits | |-----------------|--------------|---------| | Ісс, Іссн, Іссь | All | ±100 nA | 1/ These parameters shall be recorded before and after the required burn-in and life tests to determine delta limits. #### 4.3 Qualification inspection. - 4.3.1 Qualification inspection for device classes B and S. Qualification inspection for device classes B and S shall be in accordance with MIL-PRF-38535, appendix A. Inspections to be performed shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.5). - 4.3.2 Qualification inspection for device classes Q, and V. Qualification inspection for device classes Q, and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.5). - 4.3.3 <u>Electrostatic discharge sensitivity (ESDS) qualification inspection</u>. ESDS testing shall be performed in accordance with MIL-STD-883, method 3015. ESDS testing shall be measured only for initial qualification and after process or design changes which may affect ESDS classification. For device classes B, S, Q, and V only, those device types that pass ESDS testing at 2,000 volts or greater shall be considered as conforming to the requirements of this specification. - 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q, and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-PRF-38535 permits alternate in-line control testing. Technology conformance inspection for device classes M, B, and S shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device classes M, B, and S shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.5). #### 4.4.1 Group A inspection. - a. Tests shall be as specified in table II herein. - b. Latch-up tests shall be performed only for initial qualification and after process or design changes which may affect the performance of the device. Latch-up tests shall be considered destructive. Test all applicable pins on five devices with zero failures. - c. C_{IN} and C_{PD} shall be measured only for initial qualification and after process or design changes which may affect capacitance. C_{IN} shall be measured between the designated terminal and GND at a frequency of 1 MHz. C_{PD} shall be tested in accordance with the latest revision of JEDEC Standard No. 20 and table I herein. For C_{IN} and C_{PD}, test all applicable pins on five devices with zero failures. - d. For device classes B and S, subgroups 9 and 11 tests shall be measured only for initial qualification and after process or design changes which may affect dynamic performance. - e. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table. For device classes B and S, subgroups 7 and 8 tests shall be sufficient to verify the truth table as approved by the qualifying activity. For device classes Q, and V, subgroups 7 and 8 shall include verifying the functionality of the device; these tests shall have been fault graded in accordance with MIL-STD-883, test method 5012 (see 1.5 herein). | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962- 9 0916 | |----------------------------------|------------------|----------------|-------------------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | A | 18 | DSCC FORM 2234 - 4.4.2 <u>Group B inspection.</u> The group B inspection
end-point electrical parameters shall be as specified in table II herein. For device class S steady-state life tests, the test circuit shall be submitted to the qualifying activity. - a. Class S steady-state life (accelerated) shall be conducted using test condition D of method 1005 of MIL-STD-883 and the circuit described in 4.2.1a (6) herein, or equivalent as approved by the qualifying activity. The actual test circuit shall be submitted to the qualifying activity. - b. End-point electrical parameters shall be as specified in table II herein. Delta limits shall apply only to subgroup 5 of group B inspections and shall consist of tests specified in table III herein. - 4.4.3 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein. - 4.4.3.1 Additional criteria for device class M and B. Steady-state life test conditions, method 1005 of MIL-STD-883: - a. Test condition A, B, C or D. For device class M, the test circuit shall maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. For device class B, the test circuit shall be submitted to the qualifying activity. For device classes M and B, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005. - b. $T_A = +125$ °C, minimum. - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. - d. End-point electrical parameters shall be as specified in table II herein. Delta limits shall apply only to subgroup 1 of group C inspection and shall consist of tests specified in table III herein. - For device class M, unless otherwise noted, the requirements for device class B in method 1005 of MIL-STD-883 shall be followed. - 4.4.3.2 Additional criteria for device classes Q, and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB, in accordance with MIL-PRF-38535, and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883. - 4.4.4 <u>Group D inspection</u>. Group D inspection shall be in accordance with table IV of method 5005 of MIL-STD-883. End-point electrical parameters shall be as specified in table II herein. - 4.4.5 Group E inspection. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). - a. End-point electrical parameters shall be as specified in table II herein. - b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. For device classes B and S, subgroups 1 and 2 in table V, method 5005 of MIL-STD-883 shall be tested as appropriate for device construction. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-90916 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | A | 19 | - c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied. - d. RHA tests for device classes M, B and S for levels M, D, L, R, F, G, and H shall be performed through each level to determine at what levels the devices meet the RHA requirements. These RHA tests shall be performed for initial qualification and after design or process changes which may affect the RHA performance of the device. - e. Prior to irradiation, each selected sample shall be assembled in its qualified package. It shall pass the specified group A electrical parameters in table I for subgroups specified in table II herein. - f. For device classes Q, and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device classes M, B, and S, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein. - 4.4.5.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883, method 1019, and as specified herein: Prior to and during total dose irradiation characterization and testing, the devices for characterization shall be biased so that 50 percent are at inputs high and 50 percent are at inputs low, and the devices for testing shall be biased to the worst case condition established during characterization. Devices shall be biased as follows: - 1. Inputs tested high, $V_{CC} = 5.5 \text{ V}$ dc +5%, $R_{CC} = 10\Omega \pm 20\%$, $V_{IN} = 5.0 \text{ V}$ dc +5%, $R_{IN} = 1 \text{ k}\Omega \pm 20\%$, and all outputs are open. - 2. Inputs tested low, $V_{CC} = 5.5 \text{ V}$ dc +5%, $R_{CC} = 10\Omega \pm 20\%$, $V_{IN} = 0.0 \text{ V}$ dc, $R_{IN} = 1 \text{ k}\Omega \pm 20\%$, and all outputs are open. - 4.4.5.1.1 Accelerated aging test. Accelerated aging shall be performed on class M, B, S, Q, and V devices requiring an RHA level greater than 5K rads (Si). The post-anneal end point electrical parameter limits shall be as specified in table I herein and shall be the preirradiation end point electrical parameter limit at 25° C \pm 5°C. Testing shall be performed at initial qualification and after any design or process changes which may effect the RHA response of the device. - 4.5 Methods of inspection. Methods of inspection shall be specified as follows. - 4.5.1 <u>Voltage and current</u>. Unless otherwise specified, all voltages given are referenced to the microcircuit GND terminal. Currents given are conventional current and positive when flowing into the referenced terminal. - 5. PACKAGING - 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. - 5. PACKAGING - 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q, and V or MIL-PRF-38535, appendix A for device classes M, B, and S. - 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing. | STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 | SIZE
A | | 5962-90916 | |--|------------------|---------------------|-----------------| | | | REVISION LEVEL
A | SHEET 20 | - 6.1.2 Substitutability. Device classes B and Q devices will replace device class M devices. - 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal. - 6.3 Record of users. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0525. - 6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0674. - 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331. - 6.6 Sources of supply. - 6.6.1 Sources of supply for device classes Q, and V. Sources of supply for device classes Q, and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing. - 6.6.2 <u>Approved sources of supply for device classes M, B and S</u>. Approved sources of supply for classes M, B and S are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA. STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 SIZE A 5962-90916 REVISION LEVEL A 21 # STANDARD MICROCIRCUIT DRAWING SOURCE APPROVAL BULLETIN DATE: 98-05-06 Approved sources of supply for SMD 5962-90916 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next
dated revision of MIL-HDBK-103 and QML-38535. | Standard
microcircuit drawing
PIN 1/ | Vendor
CAGE
number | Vendor
similar
PIN <i>2/</i> | |--|--------------------------|------------------------------------| | 5962-9091601MRA | 27014 | 54AC520DMQB | | 5962-9091601MSA | 27014 | 54AC520FMQB | | 5962-9091601M2A | 27014 | 54AC520LMQB | | 5962-9091601BRA | 27014 | JM54AC520BRA | | 5962-9091601BSA | 27014 | JM54AC520BSA | | 5962-9091601B2A | 27014 | JM54AC520B2A | | 5962-9091601SRA | 27014 | JM54AC520SRA | | 5962-9091601SSA | 27014 | JM54AC520SSA | | 5962-9091601S2A | 27014 | JM54AC520S2A | | 5962R9091601BRA | 27014 | JM54AC520BRA-RH | | 5962R9091601BSA | 27014 | JM54AC520BSA-RH | | 5962R9091601B2A | 27014 | JM54AC520B2A-RH | | 5962R9091601SRA | 27014 | JM54AC520SRA-RH | | 5962R9091601SSA | 27014 | JM54AC520SSA-RH | | 5962R9091601S2A | 27014 | JM54AC520S2A-RH | | 5962-9091602MRX | <u>3</u> / | SNJ54AC11520J | | 5962-9091602M2X | <u>3</u> / | SNJ54AC11520FK | | | | | 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability. 2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing. 3/ Not available from an approved source of supply Vendor CAGE number Vendor name and address 27014 National Semiconductor 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Point of contact: 5 Foden Road South Portland, ME 04106-1706 The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.