
								F	REVISI	ONS										
LTR						DESCF	RIPTIO	N				DATE (YR-MO-DA)				APPROVED				
А	In acc	cordanc	e with	N.O.R.	. 5962-	R077-9	96.					96-03-12				M. A. Frye				
В	Make	chang	es to 1	.2.4, 1.3	3, and a	add 1.5	. Redra	awn	ro					99-0	8-04			R. MONNIN		
REV																				
REV SHEET																				
SHEET REV	В	В	В																	
SHEET REV SHEET	15	B 16	B 17																	
SHEET REV SHEET REV STATUS	15			REV			В	В	В	В	В	В	В	В	В	В	В	В	В	В
SHEET REV SHEET REV STATUS OF SHEETS	15			SHE	ET		B 1	B 2	B 3	B 4	B 5	B 6	B 7	B 8	B 9	B 10	B 11	B 12	B 13	B 14
SHEET REV SHEET REV STATUS	15			SHE	PARE	D BY ROONI	1				5	6	7	8	9	10	11		13	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO	NDAF	16		SHE PRE SAN	PAREI NDRA	ROONI	1 EY				5	6	7 SE SI	8 JPPL	9 Y CE	10	11 COL	12 UMBI	13	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DRA THIS DRAWIN FOR U	NDAF OCIRC AWING	16 RD CUIT G VAILAB	17	SHE PREI SAN CHE SAN	PAREINDRA CKED NDRA	BY ROONI	1 1 EY			4 MIC	5 DI	6 EFEN	7 SE SI COLI	8 JPPL UMBL	y CEI JS, O	10 NTER HIO 4	11 R COL 43216	12 UMBI	13 US	14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DRA THIS DRAWIN FOR U	NDAF OCIRCA WING NG IS A' ISE BY A' RTMEN NCIES C	RD CUIT G VAILAR ALL TS DF THE	17	SHE PREI SAN CHE SAN APP MIC	PROVE	BY ROONI ED BY A. FRY	EY EY	2		MIC GM	5 DI	6 EFEN BIRCL MULT	7 SE SI COLI JIT, L	PPL UMBL INEA XER	y CEI JS, O	10 NTER HIO 4	11 R COL 43216	UMBI	13 US	14

SHEET

1 OF 17

1. SCOPE

- 1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.
 - 1.2 PIN. The PIN is as shown in the following example:

- 1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.
 - 1.2.2 Device type(s). The device type(s) identify the circuit function as follows:

Device type	Generic number	Circuit function
01	HS506RH	Radiation hardened single 16-channel MUX/DEMUX
02	HS507RH	Radiation hardened differential 8-channel MUX/DEMUX

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class

Device requirements documentation

M Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A

Q or V Certification and qualification to MIL-PRF-38535

1.2.4 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
X	CDIP1-T28 or CDIP2-T8	28	Dual-in-line

1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95691
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL B	SHEET 2

1.3 Absolute maximum ratings. 1/			
Supply voltage between +V and -VSupply voltage between +V and ground			
Supply voltage between -V and ground			
Digital input voltage range			
+V _{EN} , +V _A		==::=:	
-V _{EN} , -V _A		V _{SUPPLY} – 4 V	
Analog input voltage range			
+V _S			
-V _S		00.12.	
Continuous current, S or D			
Peak current, S or D (pulsed at 1 ms, 10 percent duty cycle m			
Storage temperature range			
Maximum package power dissipation at T _A = 125°C (P _D)			7500
Derating factor			= +/5°C
Lead temperature (soldering, 10 seconds)			
Junction temperature (TJ)			
Thermal resistance, junction-to-case (θ _{JC})			
Thermal resistance, junction-to-ambient (θ_{JA})		60°C/W	
1.4 Recommended operating conditions.			
Operating supply voltage (±V _{SUPPLY})		+15 V	
Analog input voltage (V _S)			
Logic low level (V _{AL})			
Logic high level (V _{AH})			
Maximum RMS current, S or D			
Ambient operating temperature range (T _A)			
Tunblent operating temperature range (TA)		66 6 (6 1 126 6	
1.5 Radiation features.			
Mariana Islanda and Islanda Is	-1	40 14 1- (0)	
Maximum total dose available (dose rate = 50 - 300 rads (Si)/ Dose rate upset (20 ns pulse)			
Latch-up 4/			
24(0) op 3			
2. APPLICABLE DOCUMENTS			
2.1 Government specification, standards, and handbooks. The	following specific	ation, standards, and handl	books form a part of
this drawing to the extent specified herein. Unless otherwise spec of the Department of Defense Index of Specifications and Standar			
SPECIFICATION			
DEPARTMENT OF DEFENSE			
MIL-PRF-38535 - Integrated Circuits, Manufacturing, Ger	eral Specification	for.	
 Stresses above the absolute maximum rating may cause perr maximum levels may degrade performance and affect reliabilities. If device power exceeds package dissipation capacity, provide following rate: 16.7 mW/°C for case outline X. Values to be specified when testing is completed. Guaranteed by process or design, not tested. 	y.		
STANDARD	SIZE		5962-95691
MICROCIRCUIT DRAWING	Α		3302 33031

REVISION LEVEL

В

SHEET

3

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-973 - Configuration Management.

MIL-STD-1835 - Interface Standard For Microcircuit Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings (SMD's).

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.
 - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein.
 - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.3 Truth table(s). The truth table(s) shall be as specified on figure 2.
 - 3.2.4 Radiation exposure circuit. The radiation exposure circuit shall be as specified on table III.
- 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table I.
- 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.
- 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95691
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL B	SHEET 4

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Conditions $ -55^{\circ}C \le T_{A} \le +125^{\circ}C \\ -V = -15V, \ +V = +15\ V, \\ V_{EN} = 2.4\ V $	Group A subgroups	Device type	Lir	mits	Unit	
		unless otherwise specified			Min	Max	1	
Input leakage current <u>1</u> /	lін	Measure inputs sequentially, connect all	1,2,3	01,02	-1.0	1.0	μА	
	I _{IL}	unused inputs to GND			-1.0	1.0	1	
	I _{IH} , I _{IL}	M, D <u>2</u> /	1		-1.0	1.0	1	
Leakage current into the source terminal of an	+I _{S(OFF)}	$V_S = +10 \text{ V}, V_{EN} = 0.8 \text{ V},$ all unused inputs = -10 V,	1	01,02	-10	10	nA	
"OFF" switch		V _D = -10 V	2,3		-50	50	1	
		V _{EN} = 0.5 V, M, D <u>2</u> /	1		-50	50	1	
	-I _{S(OFF)}	V_S = -10 V, V_{EN} = 0.8 V, all unused inputs = +10 V,	1		-10	10		
		V _D = +10 V	2,3		-50	50	1	
		V _{EN} = 0.5 V, M, D <u>2</u> /	1		-50	50	1	
Leakage current into the drain terminal of an	+l _{D(OFF)}	$V_D = +10 \text{ V}, V_{EN} = 0.8 \text{ V},$ all unused inputs = -10 V	1	01,02	-10	10	nA	
"OFF" switch			2,3	01	-300	300]	
				02	-200	200	1	
		V _{EN} = 0.5 V, M, D <u>2</u> /	1	01	-300	300	1	
				02	-200	200	1	
	-I _{D(OFF)}	$V_D = -10 \text{ V}, V_{EN} = 0.8 \text{ V},$ all unused inputs = +10 V	1	01,02	-10	10		
			2,3	01	-300	300	1	
				02	-200	200	1	
		V _{EN} = 0.5 V, M, D <u>2</u> /	1	01	-300	300	1	
				02	-200	200	1	

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95691
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	5

	TABLE	I. <u>Electrical performar</u>	nce charac	cteristics –	Continued.			
Test	Symbol	Conditions $-55^{\circ}C \le T_A \le +12$ -V = -15V, +V = + $V_{EN} = 2.4 V$		Group subgrou		Lir	nits	Unit
		unless otherwise sp	ecified			Min	Max	1
Leakage current from an "ON" driver into the	+I _{D(ON)}	$V_D = +10 \text{ V}, V_S = +1$ all unused inputs = -	0 V,	1	01,02	-10	10	nA
switch (drain)				2,3	01	-300	300	1
					02	-200	200	1
		M, D	<u>2</u> /	1	01	-300	300	
					02	-200	200	
	-I _{D(ON)}	$V_D = -10 \text{ V}, V_S = -10$ unused inputs = +10		1	01,02	-10	10	
				2,3	01	-300	300	1
					02	-200	200]
		M, D	<u>2</u> /	1	01	-300	300	
					02	-200	200	
Positive supply current	+1	$V_A = 0 \text{ V}, V_{EN} = 2.4 \text{ V}$		1,2,3	01,02		3.0	mA
		M, D		1			3.0	
Negative supply current	-	$V_A = 0 \text{ V}, V_{EN} = 2.4 \text{ V}$		1,2,3	01,02		-1.0	mA
Character and the control of the con	<u> </u>	M, D	' <u>2</u> /	1	01.00		-1.0	
Standby positive supply current	+l _{SBY}	$V_A = 0 \text{ V}, V_{EN} = 0 \text{ V}$. 0/	1,2,3	01,02		3.0	mA
Charadha a santha a sanah	1.	M, D	' <u>2</u> /	1	01.00		3.0	
Standby negative supply current	-I _{SBY}	$V_A = 0 \text{ V}, V_{EN} = 0 \text{ V}$. 2/	1,2,3	01,02		-1.0	mA
Switch "ON" resistance	. D	W _S = 10 V, I _D = -1 m _i		1	01,02		-1.0 300	Ω
Switch ON resistance	+R _{DS1}	V S = 10 V , ID = -1 IIII	^	2,3	01,02		400	
		M, D	2/	1			400	
	-R _{DS1}	V _S = -10 V, I _D = 1 m _P	_	1			300	_
			-	2,3			400	-
		M, D	<u>2</u> /	1			400	-
See footnotes at end of table	<u> </u>	1						<u> </u>
STA MICROCIRO	NDARD CUIT DRAV	VING	SIZ A				596	2-95691
DEFENSE SUPPLY COLUMBUS,				REVISION LEVEL SH			SHEET	- 6

	TABLE	I. <u>Electrical perfor</u>	mance chara	.cteristics – C	Continued.			
Test	Symbol	Condition $-55^{\circ}C \le T_A \le -15V$, $+V$ $V_{EN} = 2$.	+125°C ′ = +15 V,	Group A subgroup:		Lir	mits	Unit
		unless otherwise	e specified			Min	Max	1
Logic level voltage	V _{AL}	<u>3</u> /		1	01,02		0.5	V
				2,3	\neg		0.8	1
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	M, D <u>2</u> /	1			0.8]
	V _{AH}	<u>3</u> /		1,2,3		2.4		1
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	M, D <u>2</u> /	1	\neg	2.4		1
Capacitance: Address	C _A	$V+ = V- = 0 V \underline{4}$ $f = 1 MHz, T_A = -$ see 4.4.1d	·	4	01,02		12	pF
Capacitance: Output switch	Cos	V+ = V- = 0 V <u>4</u> / f = 1 MHz, T _A = -		4	01		90	pF
		see 4.4.1d	120 0,		02		50	-
Capacitance: Input switch	C _{IS}	$V+ = V- = 0 V \underline{4}/6$ $f = 1 MHz, T_A = -6$ see 4.4.1d	·	4	01,02		12	pF
Charge transfer error	V _{CTE}	$V_S = GND, \ \underline{4}/V_{GEN} = 0 \ V \text{ to 5 }^{V}/V_{A} = +25^{\circ}C$	V ,	4	01,02		10	mV
Off isolation	V _{ISO}	$V_{EN} = 0.8 \text{ V}, \ \underline{4}/$ $R_L = 1 \text{ k}\Omega, C_L =$ $V_S = 7 \text{ V}_{rms}, f = 1$ $T_A = +25^{\circ}\text{C}$	•	4	01,02		-50	dB
Functional test	FT	See 4.4.1b, T _A =	: +25°C	7	01,02			
Break-before-make time delay	t _D	$R_L = 200 \Omega, T_A =$ see figure 3	= +25°C,	9	01,02	25		ns
Propagation delay times: Address inputs to I/O	t _A	$R_L = 10 \text{ k}\Omega$, see	figure 3	9	01,02		500	ns
channels times				10,11			1,000	
		I N	M, D <u>2</u> /	9			1,000	1
See footnotes at end of table.								
STAI MICROCIRC	NDARD	WING		ZE A			596	2-95691
DEFENSE SUPPLY COLUMBUS, (CENTER C	OLUMBUS			EVISION LEVE	 L	SHEET	

В

COLUMBUS, OHIO 43216-5000

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions $ -55^{\circ}C \le T_{A} \le +125^{\circ}C \\ -V = -15V, \ +V = +15 \ V, \\ V_{EN} = 2.4 \ V $	Group A subgroups	Device type	Li	Limits	
		unless otherwise specified			Min	Max	
Enable to I/O	t _{ON(EN)}	$R_L = 200 \Omega$, see figure 3	9	01,02		500	ns
			10,11			1,000	
		M, D <u>2</u> /	9			1,000	
	t _{OFF(EN)}	$R_L = 200 \Omega$, see figure 3	9			500	
			10,11			1,000	
		M, D <u>2</u> /	9			1,000	

- 1/ Input current of one input mode.
- 2/ Devices supplied to this drawing are only radiation tested for the parameter referencing this footnote. They meet all levels M and D of irradiation, however, this device is only tested at the D level at T_A = +25°C. Pre and Post irradiation values are identical unless otherwise specified in table I
- 3/ Used as forcing function for all DC tests unless otherwise specified.
- 4/ Guaranteed, if not tested, to the limits as specified.
- 3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 <u>Notification of change for device class M.</u> For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-973.
- 3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
- 3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 82 (see MIL-PRF-38535, appendix A).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95691
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL B	SHEET 8

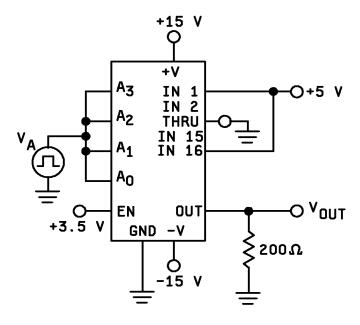
Case outline	X		
Device types	01	02	
Terminal number	Termina	l symbol	
1	V+	V+	
2	NC	OUT B	
3	NC	NC	
4	IN 16	IN 8B	
5	IN 15	IN 7B	
6	IN 14	IN 6B	
7	IN 13	IN 5B	
8	IN 12	IN 4B	
9	IN 11	IN 3B	
10	IN 10	IN 2B	
11	IN 9	IN 1B	
12	GND	GND	
13	NC	NC	
14	АЗ	NC	
15	A2	A 2	
16	A1	A1	
17	A0	A0	
18	ENABLE	ENABLE	
19	IN 1	IN 1A	
20	IN 2	IN 2A	
21	IN 3	IN 3A	
22	IN 4	IN 4A	
23	IN 5	IN 5A	
24	IN 6	IN 6A	
25	IN 7	IN 7A	
26	IN 8	IN 8A	
27	V-	V-	
28	OUT	OUT A	

FIGURE 1. <u>Terminal connections</u>.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95691
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL B	SHEET 9

Device type 01

АЗ	A2	A1	A0	EN	"ON"
					CHANNEL
Х	Х	Х	Х	L	NONE
L	L	L	L	Н	1
L	L	L	Η	Ι	2
L	L	Н	L	Н	3
L	L	Н	Н	Η	4
L	Н	L	L	Н	5
L	Η	L	Н	Ι	6
L	Η	Н	L	Ι	7
L	Н	Н	Н	Н	8
H	L	L	L	Н	9
Н	L	L	Н	Н	10
Η	L	Н	L	Η	11
Н	L	Η	Η	Ι	12
Η	Ι	L	L	Ι	13
Н	Ι	Ĺ	Н	Ι	14
Н	Н	Н	Ĺ	Η	15
Н	Н	Н	Н	Н	16


Device type 02

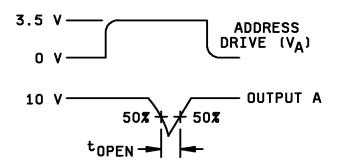

A2	A1	AO	EN	"ON"
				CHANNEL
Х	Х	Х	L	NONE
L	L	L	Ι	1
L	L	Τ	Ι	2
L	Н	L	Н	3
L	Η	Н	Н	4
Н	L	L	Н	5
Н	L	Н	Η	6
Н	Н	Ĺ	Н	7
Н	Н	Н	Н	8

FIGURE 2. Truth table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95691
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	10

BREAK-BEFORE-MAKE DELAY (t_{OPEN})

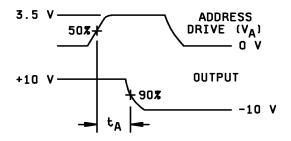
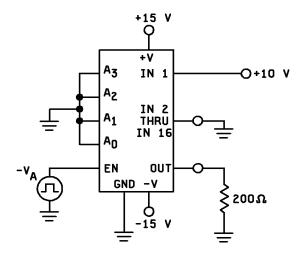

NOTE: This diagram is for device type 01. Use similar applicable connections for device type 02.

FIGURE 3. Timing diagrams.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95691
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	11

ACCESS TIME vs. LOGIC LEVEL(HIGH)



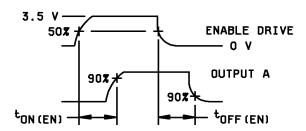

NOTE: This diagram is for device type 01. Use similar applicable connections for device type 02.

FIGURE 3. <u>Timing diagrams</u> – Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95691
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	12

ENABLE DELAY ton(en) toff(en)

NOTE: This diagram is for device type 01. Use similar applicable connections for device type 02.

FIGURE 3. <u>Timing diagrams</u> – Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95691
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	13

4. QUALITY ASSURANCE PROVISIONS

- 4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.
- 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

4.2.1 Additional criteria for device class M.

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
 - (2) $T_A = +125$ °C, minimum.
- b. Interim and final electrical test parameters shall be as specified in table IIA herein.

4.2.2 Additional criteria for device classes Q and V.

- a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table IIA herein.
- Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B or as modified in the device manufacturer's quality management (QM) plan.
- 4.3 Qualification inspection for device classes Q and V. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).
- 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 or as specified in QM plan including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-PRF-38535 permits alternate in-line control testing. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4.1 Group A inspection.

- a. Tests shall be as specified in table IIA herein.
- b. For device class M, subgroup 7 tests shall be sufficient to verify the truth table. For device classes Q and V, subgroup 7 shall include verifying the functionality of the device.
- c. Subgroups 5, 6, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
- d. Subgroup 4 (C_A, C_{OS}, and C_{IS} measurements) should be measured only for initial qualification and after any process or design changes which may affect input or output capacitance.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95691
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	14

TABLE IIA. Electrical test requirements.

Test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)	Subgr (in accord MIL-PRF-38	ance with
	Device class M	Device class Q	Device class V
Interim electrical parameters (see 4.2)	1,9	1,9	1,9
Final electrical parameters (see 4.2)	1,2,3,9,10,11 <u>1</u> /	1,2,3,9, <u>1</u> / 10,11	1,2,3, <u>1</u> / <u>2</u> / 9,10,11, Δ
Group A test requirements (see 4.4)	1,2,3,4,7,9, <u>3</u> / 10,11	1,2,3,4,7,9, <u>3</u> / 10,11	1,2,3,4,7, <u>3</u> / 9,10,11
Group C end-point electrical parameters (see 4.4)	1,2,3,9	1,2,3,9	1,2,3,9 <u>2</u> /
Group D end-point electrical parameters (see 4.4)	1,9	1,9	1,9
Group E end-point electrical parameters (see 4.4)	1,9	1,9	1,9

- $\underline{1}/$ PDA applies to subgroup 1. For class V to subgroups 1, 9, and $\Delta.$
- 2/ Delta limits (see table IIB) shall be required and the delta values shall be computed with reference to the zero hour electrical parameters (see table I).
- 3/ Subgroup 4, if not tested, shall be guaranteed to the limits specified in table I.

TABLE IIB. Burn-in delta parameters and group C delta parameters (+25°C).

Parameters	Symbol	Delta limits
Leakage current into the source terminal of an "OFF" switch	l _{S(OFF)}	±10 nA
Leakage current into the drain terminal of an "OFF" switch	I _{D(OFF)}	±10 nA
Leakage current from an "ON" driver into the switch	I _{D(ON)}	±10 nA
Switch on resistance	R _{DS}	±50 Ω
Positive supply current	l+	±300 μA
Negative supply current	 -	±100 μA
Positive standby supply current	+I _{SBY}	±300 μA
Negative standby supply current	-I _{SBY}	±100 μA
Input leakage current	I _{IL} , I _{IH}	±100 nA

TABLE III. <u>Irradiation test connections</u>. $(T_A = +25^{\circ}C \pm 5^{\circ}C, +V_{SUPPLY} = +15 \text{ V}, -V_{SUPPLY} = -15 \text{ V})$

Test	Open	Ground	V _{SUPPLY}	+1 V	+5 V
Radiation	3	2,12,18, <u>1</u> /	1,27 <u>2</u> /	4,5,6,7,8,9,10,11,	13,14,15,16,17
exposure		28		19,20,21,22,23,	
				24,25,26	

- $\underline{1}/$ Pins 2 and 28 each have a series resistor (Rs) = 10 k Ω ± 5 %, to Ground. $\underline{2}/$ Pin 1 to +Vs and pin 27 to -Vs.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95691
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	15

- 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.
- 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:
 - a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - b. $T_A = +125$ °C, minimum.
 - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
- 4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.
- 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes M, Q, and V shall be as specified in MIL-PRF-38535. End-point electrical parameters shall be as specified in table IIA herein.
- 4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019, condition A and as specified herein.
- 4.4.4.1.1 <u>Accelerated aging test</u>. Accelerated aging tests shall be performed on all devices requiring a RHA level greater than 5k rads(Si). The post-anneal end-point electrical parameter limits shall be as specified in table I herein and shall be the pre-irradiation end-point electrical parameter limit at 25°C ±5°C. Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device.
- 4.4.4.2 <u>Dose rate induced latchup testing</u>. Dose rate induced latchup testing shall be performed in accordance with test method 1020 of MIL-STD-883 and as specified herein (see 1.5). Tests shall be performed on devices, SEC, or approved test structures at technology qualification and after any design or process changes which may effect the RHA capability of the process.
- 4.4.4.3 <u>Dose rate upset testing</u>. Dose rate upset testing shall be performed in accordance with test method 1023 of MIL-STD-883 and herein (see 1.5).
 - a. Transient dose rate upset testing shall be performed at initial qualification and after any design or process changes which may effect the RHA performance of the devices. Test 10 devices with 0 defects unless otherwise specified.
 - b. Transient dose rate testing for class Q and V devices shall be performed as specified by a TRB approved radiation hardness assurance plan and MIL-PRF-38535
- 4.4.4.4 <u>Dose rate burnout</u>. When required by the customer, test shall be performed on devices, SEC, or approved test structures at technology qualifications and after any design or process changes which may effect the RHA capability of the process. Dose rate burnout shall be performed in accordance with test method 1023 of MIL-STD-883 and as specified herein.
 - 5. PACKAGING
- 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-95691
		REVISION LEVEL B	SHEET 16

6. NOTES

- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.
 - 6.1.2 <u>Substitutability</u>. Device class Q devices will replace device class M devices.
- 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.
- 6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0525.
- 6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0674.
- 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.
 - 6.6 Sources of supply.
- 6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.
- 6.6.2 <u>Approved sources of supply for device class M.</u> Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-95691
		REVISION LEVEL B	SHEET 17

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 99-08-04

Approved sources of supply for SMD 5962-95691 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962D9569101VXA	34371	HS1-506RH-8
5962D9569101VXC	34371	HS1B-506RH-8
5962D9569102VXA	34371	HS1-507RH-8
5962D9569102VXC	34371	HS1B-507RH-8

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed, contact the vendor to determine its availability.
- 2/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE Vendor name and address

34371 Harris Semiconductor P.O. Box 883

Melbourne, FL 32902-0883

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.