SCAS171B - MARCH 1987 - REVISED SEPTEMBER 1998

- EPIC™ (Enhanced-Performance Implanted CMOS) 1-µm Process
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Flow-Through Architecture Optimizes PCB Layout
- Center-Pin V_{CC} and GND Pin Configurations Minimize High-Speed Switching Noise
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, and Standard Plastic DIPs (NT)

DB, DW, NT, OR PW PACKAGE (TOP VIEW)

1Y1 [1	U	24	10E
1Y2	2		23] 1A1
1Y3 [3		22	1A2
1Y4 [21	1A3
GND [5		20] 1A4
GND[19	V _{CC}
GND [7		18	Vcc
GND [2A1
2Y1			16] 2A2
2Y2[10			2A3
2Y3 [14	2 <u>A4</u>
2Y4 [12		13] 20E

description

The 74AC11244 is an octal buffer or line driver designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as two 4-bit buffers or one 8-bit buffer, with active-low output-enable (\overline{OE}) inputs.

When \overline{OE} is low, the device passes noninverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

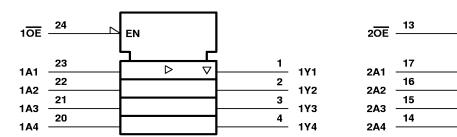
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The 74AC11244 is characterized for operation from -40°C to 85°C.

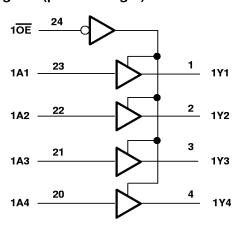
FUNCTION TABLE (each driver)

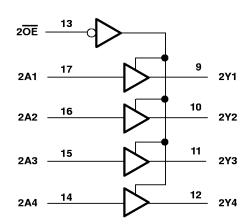
INPL	JTS	OUTPUT
ŌĒ	Α	Υ
L	Н	Н
L	L	L
Н	X	Z

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


EPIC is a trademark of Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


Copyright © 1998, Texas Instruments Incorporated


logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

ΕN

 \triangleright

2Y1

2Y2

2Y3

2Y4

10

11

12

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}		–0.5 V to 7 V
Input voltage range, V _I (see Note 1)		
Output voltage range, VO (see Note 1)		$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)		±20 mA
Output clamp current, IOK (VO < 0 or VO > VCO	c)	±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})		±50 mA
Continuous current through V _{CC} or GND		±200 mA
Package thermal impedance, θ _{JA} (see Note 2):	DB package	104°C/W
	DW package	81°C/W
	PW package	120°C/W
	NT package	67°C/W
Storage temperature range, Teta		–65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT	
Vcc	Supply voltage		3	5	5.5	V	
		V _{CC} = 3 V	2.1				
v_{IH}	High-level input voltage	$V_{CC} = 4.5 \text{ V}$	3.15			V	
		$V_{CC} = 5.5 \text{ V}$	3.85				
		V _{CC} = 3 V			0.9		
VIL	Low-level input voltage	$V_{CC} = 4.5 \text{ V}$			1.35	٧	
		$V_{CC} = 5.5 \text{ V}$			1.65		
VI	Input voltage		0		VCC	V	
VO	Output voltage		0		VCC	٧	
		V _{CC} = 3 V			-4	mA	
ЮН	High-level output current	$V_{CC} = 4.5 \text{ V}$			-24		
	V _{CC} = 5.5 V				-24		
		V _{CC} = 3 V			12		
lOL	Low-level output current	$V_{CC} = 4.5 \text{ V}$			24	mA	
	V _{CC} = 5.5 V				24		
Δt/Δν	Input transition rise or fall rate		0	•	10	ns/V	
TA	Operating free-air temperature		-40		85	°C	

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

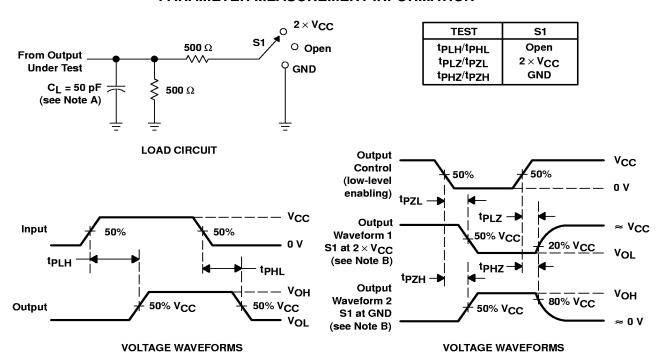
PARAMETER	TEST CONDITIONS	Vac	T,	Δ = 25°C	;	MIN	MAX	UNIT
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	IVIIIN	WAX	UNIT
		3 V	2.9			2.9		
	I _{OH} = -50 μA	4.5 V	4.4			4.4		
		5.5 V	5.4			5.4		
Voн	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		V
		4.5 V	3.94			3.8		
	$I_{OL} = -24 \text{ mA}$	5.5 V	4.94			4.8		
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85		
		3 V			0.1		0.1	
	I _{OL} = 50 μA	4.5 V			0.1		0.1	
		5.5 V			0.1		0.1	
v_{OL}	$I_{OL} = 12 \text{ mA}$	3 V			0.36		0.44	V
	I _{OL} = 24 mA	4.5 V			0.36		0.44	
	IOL = 24 IIIA	5.5 V			0.36		0.44	
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	
lį	V _I = V _{CC} or GND	5.5 V			±0.1		±1	μA
loz	$V_O = V_{CC}$ or GND	5.5 V		•	±0.5		±5	μΑ
lcc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		80	μ A
C _i	V _I = V _{CC} or GND	5 V	_	4				pF
Со	V _O = V _{CC} or GND	5 V		10				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T _A = 25°C			MIN	MAX	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIV	IVIAA	
^t PLH	А	Y	1.5	7.1	9.3	1.5	10.2	ns
^t PHL			1.5	6.3	8.6	1.5	9.5	
^t PZH	ŌĒ	V	1.5	8	10.7	1.5	11.8	ns
tpZL		ī	1.5	7.9	10.6	1.5	11.9	20
^t PHZ	ŌĒ		1.5	5.9	7.9	1.5	8.3	ne
tPLZ		ſ	1.5	7.2	9.4	1.5	9.9	ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)


PARAMETER	FROM	TO (OUTPUT)	T _A = 25°C			MIN	мах	UNIT
PARAMETER	(INPUT)		MIN	TYP	MAX	IVIIIV	IVIAA	CIVII
t _{PLH}	А	Y	1.5	4.9	6.7	1.5	7.3	ns
^t PHL			1.5	4.5	6.4	1.5	6.9	
^t PZH	ŌĒ	V	1.5	5.4	7.7	1.5	8.5	nc
t _{PZL}		'	1.5	5.4	7.6	1.5	8.5	ns
^t PHZ	ŌĒ		1.5	5.2	7	1.5	7.3	ns
t _{PLZ}	OE	1	1.5	5.8	7.8	1.5	8.2	20

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER			TEST CON	TYP	UNIT	
C _{pd} Power dissipation capacitance per buffer/driver	Davier dissination consistence per huffer/deliver	Outputs enabled	C. 50 - 5	£ 4 MII-	27	
	Outputs disabled	C _L = 50 pF,	f = 1 MHz	9	p⊦	

SCAS171B - MARCH 1987 - REVISED SEPTEMBER 1998

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \ \Omega$, $t_f = 3 \ ns$, $t_f = 3 \ ns$.
- $\label{eq:defD} \textbf{D.} \quad \text{The outputs are measured one at a time with one input transition per measurement.}$

Figure 1. Load Circuit and Voltage Waveforms

