Inverter 74AHC1GU04 ## **FEATURES** - · Symmetrical output impedance - · High noise immunity - ESD protection: HBM EIA/JESD22-A114-A exceeds 2000 V; MM EIA/JESD22-A115-A exceeds 200 V - Low power dissipation - Balanced propagation delays - Very small 5-pin package - Output capability: standard. #### **DESCRIPTION** The 74AHC1GU04 is a high-speed Si-gate CMOS device. The 74AHC1GU04 provides the inverting single stage function. ## **FUNCTION TABLE** See note 1. | INPUT | OUTPUT | |-------|--------| | inA | outY | | L | Н | | Н | L | #### Note H = HIGH voltage level; L = LOW voltage level. ## **ORDERING INFORMATION** | | PACKAGES | | | | | | | |--------------|----------------------|------|---------|----------|--------|---------|--| | TYPE NUMBER | TEMPERATURE
RANGE | PINS | PACKAGE | MATERIAL | CODE | MARKING | | | 74AHC1GU04GW | –40 to +85 °C | 5 | SC-88A | plastic | SOT353 | AD | | ## **QUICK REFERENCE DATA** GND = 0 V; T_{amb} = 25 °C; t_f = $t_f \le 3.0$ ns. | SYMBOL | PARAMETER | CONDITIONS | TYPICAL | UNIT | |------------------------------------|----------------------------------|---|---------|------| | t _{PHL} /t _{PLH} | propagation delay
inA to outY | $C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$ | 2.6 | ns | | C _I | input capacitance | | 3 | рF | | C _{PD} | power dissipation capacitance | notes 1 and 2 | 14 | pF | #### Notes 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW). $$P_D = C_{PD} \times V_{CC}^2 \times f_i + (C_L \times V_{CC}^2 \times f_o)$$ where: f_i = input frequency in MHz; f_o = output frequency in MHz; C_L = output load capacitance in pF; V_{CC} = supply voltage in V; 2. The condition is $V_I = GND$ to V_{CC} . # **PINNING** | PIN | SYMBOL | DESCRIPTION | |-----|-----------------|-------------------| | 1 | n.c. | not connected | | 2 | inA | data input | | 3 | GND | ground (0 V) | | 4 | outY | data output | | 5 | V _{CC} | DC supply voltage | Inverter 74AHC1GU04 Fig.4 Logic diagram. 1999 May 19 3 Fig.3 IEC logic symbol. Inverter 74AHC1GU04 ## **RECOMMENDED OPERATING CONDITIONS** | SYMBOL | PARAMETER | CONDITIONS | | UNIT | | | |---------------------------------------|-------------------------------------|--|------|------|----------|------| | STWIBUL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNII | | V _{CC} | DC supply voltage | | 2.0 | 5.0 | 5.5 | ٧ | | VI | input voltage | | 0 | _ | 5.5 | V | | Vo | output voltage | | 0 | _ | V_{CC} | ٧ | | T _{amb} | operating ambient temperature range | see DC and AC characteristics per device | -40 | +25 | +85 | °C | | t_r , t_f ($\Delta t/\Delta f$) | input rise and fall times except | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | _ | _ | 100 | ns/V | | | for Schmitt-trigger inputs | V _{CC} = 5 V ±0.5 V | _ | _ | 20 | | ## **LIMITING VALUES** In accordance with the Absolute Maximum Rating System (IEC 134); voltages are referenced to GND (ground = 0 V). | SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT | |------------------|-----------------------------------|---|------|------|------| | V _{CC} | DC supply voltage | | -0.5 | +7.0 | ٧ | | VI | input voltage range | | -0.5 | +7.0 | ٧ | | I _{IK} | DC input diode current | V ₁ < -0.5 | _ | -20 | mA | | I _{OK} | DC output diode current | $V_{\rm O}$ < -0.5 or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V; note 1 | _ | ±20 | mA | | Io | DC output source or sink current | $-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$ | _ | ±25 | mA | | Icc | DC V _{CC} or GND current | | _ | ±75 | mA | | T _{stg} | storage temperature | | -65 | +150 | °C | | P_{D} | power dissipation per package | temperature range: -40 to +85 °C; note 2 | _ | 200 | mW | ## Notes - 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. - 2. Above 55 °C the value of P_D derates linearly with 2.5 mW/K. Inverter 74AHC1GU04 # DC CHARACTERISTICS Over recommended operating conditions; voltage are referenced to GND (ground = 0 V). | | | TEST CONDIT | IONS | | | T _{amb} (°C |) | | | |---|---|--|---------------------|------|------|----------------------|-------|--------|------| | SYMBOL | PARAMETER | OTHER | V 00 | | +25 | | -40 t | to +85 | UNIT | | | | OTHER | V _{CC} (V) | MIN. | TYP. | МАХ. | MIN. | MAX. | 1 | | V _{IH} | HIGH-level input | | 2.0 | 1.7 | _ | _ | 1.7 | - | ٧ | | | voltage | | 3.0 | 2.4 | _ | _ | 2.4 | _ | 1 | | | | | 5.5 | 4.4 | _ | _ | 4.4 | _ | 1 | | V_{IL} | LOW-level input voltage | | 2.0 | _ | _ | 0.3 | _ | 0.3 | V | | | | | 3.0 | _ | _ | 0.6 | _ | 0.6 | 1 | | | | | 5.5 | _ | _ | 1.1 | _ | 1.1 | 1 | | V_{OH} | HIGH-level output | $V_I = V_{IH}$ or V_{IL} ; | 2.0 | 1.9 | 2.0 | _ | 1.9 | _ | V | | voltage; all outputs HIGH-level output voltage | $I_{O} = -50 \mu A$ | 3.0 | 2.9 | 3.0 | _ | 2.9 | _ | 1 | | | | | | 4.5 | 4.4 | 4.5 | _ | 4.4 | _ |] | | | $V_I = V_{IH}$ or V_{IL} ;
$I_O = -4.0$ mA | 3.0 | 2.58 | _ | _ | 2.48 | _ | V | | | | $V_I = V_{IH} \text{ or } V_{IL};$
$I_O = -8.0 \text{ mA}$ | 4.5 | 3.94 | _ | _ | 3.8 | _ | | | | V_{OL} | LOW-level output | $V_I = V_{IH}$ or V_{IL} ; | 2.0 | _ | 0 | 0.1 | _ | 0.1 | V | | | voltage; all outputs | $I_{O} = 50 \mu A$ | 3.0 | _ | 0 | 0.1 | _ | 0.1 | 1 | | | | | 4.5 | _ | 0 | 0.1 | _ | 0.1 | 1 | | | LOW-level output voltage | $V_I = V_{IH} \text{ or } V_{IL};$
$I_O = 4 \text{ mA}$ | 3.0 | _ | _ | 0.36 | _ | 0.44 | ٧ | | | $V_I = V_{IH} \text{ or } V_{IL};$
$I_O = 8 \text{ mA}$ | 4.5 | _ | _ | 0.36 | _ | 0.44 | | | | Iį | input leakage current | $V_I = V_{CC}$ or GND | 5.5 | _ | _ | 0.1 | _ | 1.0 | μΑ | | Icc | quiescent supply current | $V_I = V_{CC}$ or GND;
$I_O = 0$ | 5.5 | _ | _ | 1.0 | _ | 10 | μΑ | | Cı | input capacitance | | | _ | 3 | _ | _ | 10 | pF | 1999 May 19 5 Inverter 74AHC1GU04 ## **AC CHARACTERISTICS** ## Type 74AHC1GU04 GND = 0 V; $t_r = t_f \le 3.0$ ns. | | | TEST CO | NDITION | IS | T _{amb} (°C) | | | | | | |------------------------------------|-------------------------------|------------------|------------------------------------|------------|-----------------------|--------------------|------|------------|------|------| | SYMBOL | PARAMETER | WAVEFORMS | (| V (V) | +25 | | | −40 to +85 | | UNIT | | | WAVEFORMS C | 🖳 | C _L V _{CC} (V) | MIN. | TYP. | МАХ. | MIN. | МАХ. | | | | t _{PHL} /t _{PLH} | propagation delay inA to outY | see Figs 5 and 6 | 15 pF | 3.0 to 3.6 | _ | 3.4 ⁽¹⁾ | 7.1 | 1.0 | 8.5 | ns | | t _{PHL} /t _{PLH} | propagation delay inA to outY | see Figs 5 and 6 | 50 pF | 3.0 to 3.6 | _ | 4.9 ⁽¹⁾ | 10.6 | 1.0 | 12.0 | ns | | t _{PHL} /t _{PLH} | propagation delay inA to outY | see Figs 5 and 6 | 15 pF | 4.5 to 5.5 | _ | 2.6 ⁽²⁾ | 5.5 | 1.0 | 6.0 | ns | | t _{PHL} /t _{PLH} | propagation delay inA to outY | see Figs 5 and 6 | 50 pF | 4.5 to 5.5 | _ | 3.6 ⁽²⁾ | 7.0 | 1.0 | 8.0 | ns | ## **Notes** - 1. Typical values at $V_{CC} = 3.3 \text{ V}$. - 2. Typical values at $V_{CC} = 5.0 \text{ V}$. ## **AC WAVEFORMS** 1999 May 19 Inverter 74AHC1GU04 ## TYPICAL TRANSFER CHARACTERISTICS 1999 May 19 7 Inverter 74AHC1GU04 Fig.11 Typical forward transconductance g_{fs} as a function of the supply voltage at $T_{amb} = 25 \, ^{\circ} C$. ## **APPLICATION INFORMATION** Some applications for the HC1GU04 are: - Linear amplifier (see Fig.12) - In crystal oscillator design (see Fig.13). ## Note to the application information. All values given are typical unless otherwise specified. $Z_L > 10 \text{ k}\Omega$; $A_{OL} = 20 \text{ (typical)}$ $$A_{u} = -\frac{A_{OL}}{1 + \frac{R1}{R2}(1 + A_{OL})};$$ $V_{0 \text{ max (p-p)}} \approx V_{CC} - 1.5 \text{ V} \text{ centered at } \frac{1}{2}V_{CC}$ $R1 \ge 3 \text{ k}\Omega$, $R2 \le 1 \text{ M}\Omega$. Typical unity gain bandwidth product is 5 MHz. C1 see Fig.13. A_{OL} = open loop amplification. Fig.12 Used as a linear amplifier. 1999 May 19 Inverter 74AHC1GU04 # External components for resonator (f < 1 MHz) | FREQUENCY
(kHz) | R1 (MΩ) | R2 (k Ω) | C1 (pF) | C2 (pF) | |--------------------|---------|-----------------|---------|---------| | 10 to 15.9 | 22 | 220 | 56 | 20 | | 16 to 24.9 | 22 | 220 | 56 | 10 | | 25 to 54.9 | 22 | 100 | 56 | 10 | | 55 to 129.9 | 22 | 100 | 47 | 5 | | 130 to 199.9 | 22 | 47 | 47 | 5 | | 200 to 349.9 | 22 | 47 | 47 | 5 | | 350 to 600 | 22 | 47 | 47 | 5 | ## Where: All values given are typical and must be used as an initial set-up. # **Optimum value for R2** | FREQUENCY
(kHz) | R2 (k Ω) | OPTIMUM FOR | | | | |--------------------|--|--|--|--|--| | | 2.0 | minimum required I _{CC} | | | | | 3 | 8.0 | minimum influence due to change in V _{CC} | | | | | 6 | 1.0 | minimum required I _{CC} | | | | | ь | 4.7 | minimum influence by V_{CC} | | | | | 10 | 0.5 | minimum required I _{CC} | | | | | 10 | 2.0 | minimum influence by V_{CC} | | | | | 14 | 0.5 | minimum required I _{CC} | | | | | 14 | 1.0 | minimum influence by V _{CC} | | | | | >14 | replace R2 by C3 with a typical value of 35 pF | | | | | Inverter 74AHC1GU04 ## **PACKAGE OUTLINE** # Plastic surface mounted package; 5 leads SOT353 1999 May 19 Inverter 74AHC1GU04 #### **SOLDERING** ## Introduction to soldering surface mount packages This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011). There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used. ## Reflow soldering Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method. Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C. ## Wave soldering Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems. To overcome these problems the double-wave soldering method was specifically developed. If wave soldering is used the following conditions must be observed for optimal results: - Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave. - For packages with leads on two sides and a pitch (e): - larger than or equal to 1.27 mm, the footprint longitudinal axis is **preferred** to be parallel to the transport direction of the printed-circuit board; - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves at the downstream end. For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. ## Manual soldering Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C. Inverter 74AHC1GU04 #### Suitability of surface mount IC packages for wave and reflow soldering methods | PACKAGE | SOLDERING METHOD | | | | | |-------------------------------|-----------------------------------|-----------------------|--|--|--| | PACKAGE | WAVE | REFLOW ⁽¹⁾ | | | | | BGA, SQFP | not suitable | suitable | | | | | HLQFP, HSQFP, HSOP, SMS | not suitable ⁽²⁾ | suitable | | | | | PLCC ⁽³⁾ , SO, SOJ | suitable | suitable | | | | | LQFP, QFP, TQFP | not recommended ⁽³⁾⁽⁴⁾ | suitable | | | | | SSOP, TSSOP, VSO | not recommended ⁽⁵⁾ | suitable | | | | #### **Notes** - 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods". - 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version). - 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners. - 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm. - 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm. ## **DEFINITIONS** | Data sheet status | | | | | |---|---|--|--|--| | Objective specification | This data sheet contains target or goal specifications for product development. | | | | | Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. | | | | | Product specification | This data sheet contains final product specifications. | | | | | Limiting values | | | | | | more of the limiting values not the device at these or at a | Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. | | | | | Application information | | | | | | Where application information is given, it is advisory and does not form part of the specification. | | | | | #### LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. 1999 May 19