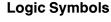


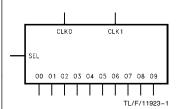
CGS64/74B2529 500 ps 2 to 10 Minimum Skew Clock Driver

CLKO

CLK1

General Description

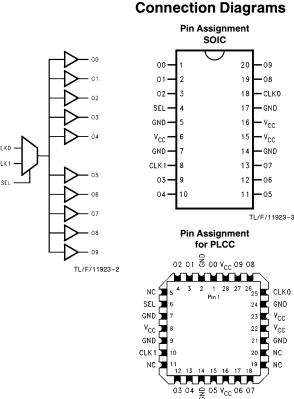

This minimum skew clock driver is designed for Clock Generation and Support (CGS) applications operating from 33 MHz to 80 MHz. The devices guarantee minimum output skew across the outputs of a given device.


Skew parameters are also provided as a means to measure duty cycle requirements as those found in high speed clocking systems. The '2529 is a minimum skew clock driver with two selectable inputs driving ten outputs.

The SEL pin is used to determine which CLKn will have an active effect on the outputs of the circuit. When SEL = 1, the CLK1 input is selected and when SEL = 0, the CLK0 input is selected. The non-selected CLKn input will not have any effect on the logical output level of the circuit. The output pins act as a single entity and will follow the state of the CLK inputs.

Features

- Clock Generation and Support (CGS) devices
- Ideal for high frequency signal generation or clock distribution applications
- CGS74B version features National's Advanced Bipolar FAST® LSI process
- 2-to-10 low skew clock distribution
- 500 ps pin-to-pin output skew (V package)
- Specification for transition skew to meet duty cycle requirements
- \blacksquare 20-center pin V_{CC} and GND configuration or PLCC to minimize high speed switching noise
- Current sourcing 48 mA and current sinking of 64 mA
 - Low dynamic power consumption above 20 MHz
- Guaranteed 4 kV ESD protection


Pin Description

Pin Names	Description
CLK0, CLK1	Clock Input
00-09	Outputs
SEL	Clock Select

Inputs			Outputs
CLK0	CLK1	SEL	00-09
L	Х	L	L
н	X	L	н
Х	L	н	L
Х	н	н	н

ogic Leve H = High Logic Level

X = Immateria

RRD-B30M106/Printed in U. S. A.

http://www.national.com

TL/F/11923-4

۷_{CC}

Vcc

CGS64/74B2529 500 ps 2 to 10 Minimum Skew Clock Driver

September 1995

© 1996 National Semiconductor Corporation TL/F/11923

FAST® is a registered trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	(V _{CC})			7.0V
Input Voltage (\	/1)			7.0V
Operating Tem	perature			
64 Grade			-40°C t	o +85°C
74 Grade			0°C t	o +70°C
Storage Tempe	rature Range		-65°C to	+150°C
Typical θ_{JA}	Airflow	М	v	
	0 LFM	89	64	°C/W
	225 LFM	71	52	°C/W
	500 LFM	63	45	°C/W

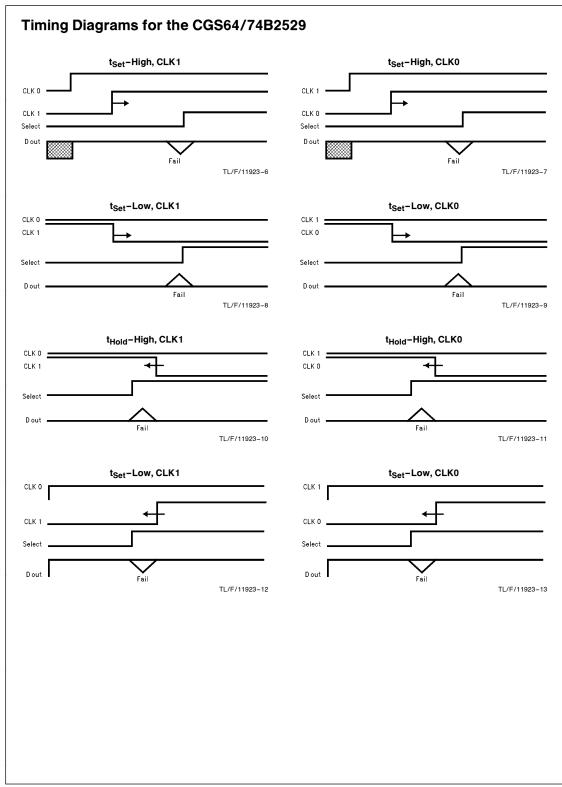
Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Rise and Fall Times (0.8V to 2.0V)	9.6 ns max
Free Air Operating Temperature (T _A)	
64 Grade	-40°C to +85°C
74 Grade	0°C to +70°C
Note: The Absolule Maximum Ratings a yond which the safety of the device ca	

yond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the DC and AC Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The Recommended Operating Conditions will define the conditions for actual device operation.

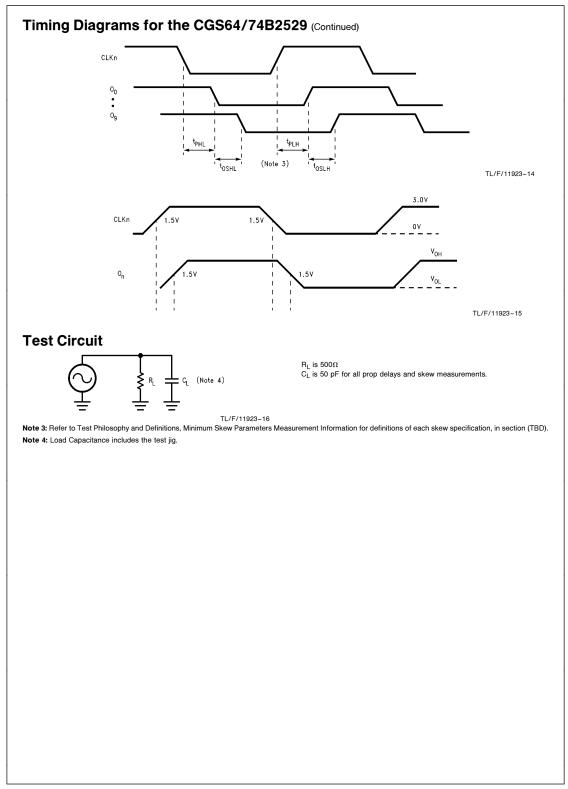
DC Electrical Characteristics

Over recommended operating conditions unless specified otherwise. All typical values are measured at V_{CC} = 5V, T_A = 25°C

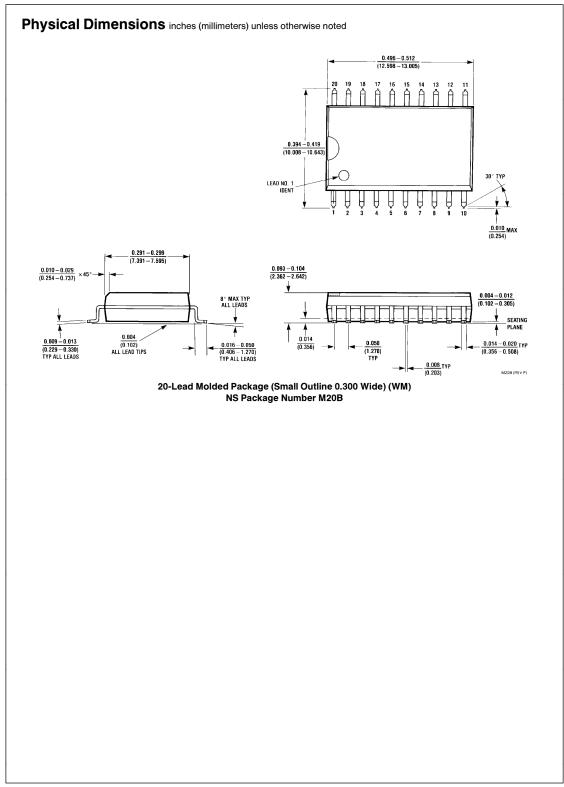

Symbol	Parameter	Cond	litions	Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_{I}$	= -18 mA			-1.2	V
V_{IH}	Minimum Input High Level Voltage			2.0			v
V _{IL}	Maximum Input Low Level Voltage					0.8	v
V _{OH}	High Level Output Voltage	$I_{OH} = -3 \text{ mA},$	$V_{CC} = 4.5V$	2.4			v
		I _{OH} = 48 mA, V	/ _{CC} = 4.5V	2.0			v
V _{OL}	Low Level Output Voltage	$V_{CC} = 4.5V, I_C$	_L = 64 mA		0.35	0.5	V
lj –	Input Current @ Max Input Voltage	$V_{CC} = 5.5V, V_{IH} = 7V$				0.1	mA
IIH	High Level Input Current	$V_{CC} = 5.5V, V_{IH} = 2.7V$				20	μΑ
IIL	Low Level Input Current	$V_{\text{CC}}=5.5\text{V}, V_{\text{IL}}=0.4\text{V}$			-0.5	-0.75	mA
I _O	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-50		- 150	mA
ICC	Supply Current	$V_{CC} = 5.5V$	Outputs High		24	35	mA
	'2529		Outputs Low		45	65	mA
C _{IN}	Input Capacitance	$V_{CC} = 5.5V$			5		pF

Symbol	Parameter		V _C	$V_{CC} = 4.5V \text{ to } 5.5V$ $C_L = 50 \text{ pF}$ $R_L = 500\Omega$		
		Min	Тур	Max		
f _{MAX}	Frequency Maximum			80		MHz
t _{PLH}	Low-to-High Propagation Delay CLK0,1	to O _n M	3.0	5.5	7.0	
	Low-to-High Propagation Delay CLK0,1	to O _n V	2.5	5.5	6.0	ns
t _{PHL}	High-to-Low Propagation Delay CLK0,1	High-to-Low Propagation Delay CLK0,1 to On M		5.5	7.0	
	High-to-Low Propagation Delay CLK0,1	to O _n V	2.5	5.5	6.0	ns
0	Demonstern	Dealasas		; = 4.5V to { C _L = 50 pF		
Symbol	Parameter	Package		$C_L = 50 pF$ $R_L = 500\Omega$		Units
Symbol	Parameter	Package		C _L = 50 pF		Units
Symbol	Parameter Maximum Skew Common Edge Output-to-Output Variation (Note 1)	Package M V		$C_L = 50 pF$ $R_L = 500\Omega$	1	Units
	Maximum Skew Common Edge	M		$C_L = 50 pF$ $R_L = 500\Omega$	Max 500	-
toshl	Maximum Skew Common Edge Output-to-Output Variation (Note 1) Maximum Skew Common Edge	M V M		$C_L = 50 pF$ $R_L = 500\Omega$	Max 500 500 500	ps
toshl toslh	Maximum Skew Common Edge Output-to-Output Variation (Note 1) Maximum Skew Common Edge Output-to-Output Variation (Note 1) Maximum Skew Pin	M V M V M		$C_L = 50 pF$ $R_L = 500\Omega$	Max 500 500 500 500 750	ps ps
toshl toslh tps tset	Maximum Skew Common Edge Output-to-Output Variation (Note 1) Maximum Skew Common Edge Output-to-Output Variation (Note 1) Maximum Skew Pin (Signal) Transition Variation (Note 1) Setup Time High Select to CLK0 or 1	M V M V M V	Min —	$C_L = 50 pF$ $R_L = 500\Omega$	Max 500 500 500 500 750	ps ps ps
tOSHL tOSLH tPS tSet (Note 2) tHold	Maximum Skew Common Edge Output-to-Output Variation (Note 1) Maximum Skew Common Edge Output-to-Output Variation (Note 1) Maximum Skew Pin (Signal) Transition Variation (Note 1) Setup Time High Select to CLK0 or 1 Setup Time High Select to CLK0 or 1 Hold Time High Sel to CLK0 Hold Time High Sel to CLK1 Hold Time Low Sel to CLK0	M V M V M V	Min -2.0 -2.0 5.0 5.0 8.0	$C_L = 50 pF$ $R_L = 500\Omega$	Max 500 500 500 500 750	ps ps ns

Note 1: t_{OSHL} and t_{OSLH} are characterized and guaranteed by design @1 MHz.

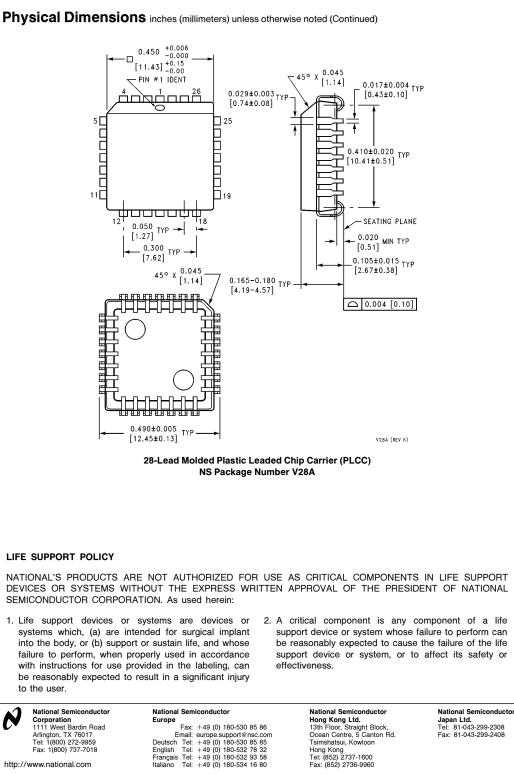

Note 2: A negative setup time indicates that the correct logic levels may be initiated sometimes after the active transition of the timing pulse.

http://www.national.com


http://www.national.com

4




http://www.national.com

Family Contact NSG Family Clock Generation and Support Operating Temperature Range 74 74 Commercial 54 Military/Aerospace Technology B B Biplolar	CMarketing for specifi	- Packaging WM = JEDEC SOIC V = PCC DWF = Die Wafer Form - Device Type 2528 2529

http://www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications