4-BIT BINARY FULL ADDER WITH FAST CARRY #### **FEATURES** - High-speed 4-bit binary addition - Cascadable in 4-bit increments - Fast internal look-ahead carry - Output capability: standard - I_{CC} category: MS! ## **GENERAL DESCRIPTION** The 74HC/HCT283 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT283 add two 4-bit binary words (An plus Bn) plus the incoming carry. The binary sum appears on the sum outputs ($\Sigma_{\mbox{\scriptsize 1}}$ to $\Sigma_{\mbox{\scriptsize 4}})$ and the out-going carry (COUT) according to the equation: $$\begin{aligned} &C_{IN} + (A_1 + B_1) + 2(A_2 + B_2) + \\ &+ 4(A_3 + B_3) + 8(A_4 + B_4) = \\ &= \Sigma_1 + 2\Sigma_2 + 4\Sigma_3 + 8\Sigma_4 + 16C_{OUT} \\ &\text{Where (+)} = \text{plus.} \end{aligned}$$ Due to the symmetry of the binary add function, the "283" can be used with either all active HIGH operands (positive logic) or all active LOW operands (negative logic); see function table. In case of all active LOW operands the results Σ_1 to Σ_4 and C_{OUT} should be interpreted also as active LOW. With active HIGH inputs, CIN must be held LOW when no "carry in" is intended. Interchanging inputs of equal weight does not affect the operation, thus CIN, A1, B₁ can be assigned arbitrarily to pins 5, See the "583" for the BCD version. | SYMBOL | PARAMETER | CONDITIONS | TY | | | |---------------|--|---|-----|---|----------------------------------| | | | COMPLICIONS | НС | 16 15
18 21
20 23
23 27
21 25
20 23
20 24 | TINU | | tpHL/
tpLH | propagation delay CIN to Σ_1 CIN to Σ_2 CIN to Σ_3 CIN to Σ_4 An or B_n to Σ_n CIN to COUT A_n or B_n to $COUT$ | C _L = 15 pF
V _{CC} = 5 V | | 21
23
27
25
23 | ns
ns
ns
ns
ns
ns | | CI | input capacitance | | 3,5 | 3.5 | pF | | CPD | power dissipation capacitance per package | notes 1 and 2 | 88 | 92 | ρF | GND = 0 V; $T_{amb} = 25$ °C; $t_r = t_f = 6$ ns #### Notes - 1. CPD is used to determine the dynamic power dissipation (PD in μ W): - $PD = CPD \times VCC^2 \times f_i + \Sigma (CL \times VCC^2 \times f_0)$ where: - fi = input frequency in MHz - CL = output load capacitance in pF f_0 = output frequency in MHz - VCC = supply voltage in V $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$ - 2. For HC the condition is $V_I = GND$ to V_{CC} - For HCT the condition is $V_1 = GND$ to VCC 1.5 V #### **PACKAGE OUTLINES** 16-lead DIL; plastic (SOT38Z). 16-lead mini-pack; plastic (SO16; SOT109A). #### PIN DESCRIPTION | PIN NO. | SYMBOL | NAME AND FUNCTION | | |--------------|----------------------------------|-------------------------|---| | 4, 1, 13, 10 | Σ_1 to Σ_4 | sum outputs | | | 5, 3, 14, 12 | A ₁ to A ₄ | A operand inputs | | | 6, 2, 15, 11 | B ₁ to B ₄ | B operand inputs | | | 7 | CIN | carry input | | | 8 | GND | ground (0 V) | | | 9 | СОПТ | carry output | | | 16 | Vcc | positive supply voltage | İ | ## **FUNCTION TABLE** | PINS | CIN | A ₁ | A ₂ | Аз | A4 | В1 | B ₂ | Вз | B4 | Σ1 | Σ2 | Σ3 | Σ4 | COUT | EXAMPLE | |--------------|-----|----------------|----------------|----|----|----|----------------|----|----|----|----|----|----|------|---------| | logic levels | L | L | Н | L | н | н | L | L | н | н | Ξ | L | L | н | | | active HIGH | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | o | 1 | (a) | | active LOW | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | (b) | (a) for active HIGH, example = (9 + 10 = 19)(b) for active LOW, example = (carry + 6 + 5 = 12) 1001 1010 10011 Example H = HIGH voltage level L = LOW voltage level 564 January 1986 ## DC CHARACTERISTICS FOR 74HC For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications". Output capability: standard ICC category: MSI ## **AC CHARACTERISTICS FOR 74HC** GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$ | SYMBOL | | | | | Tamb | (°C) | | | ļ | T | EST CONDITIONS | | |---------------------------------------|---|------|----------------|-----------------|------------|-----------------|-------------|-----------------|------|-------------------|----------------|--| | | DADAMETED | 74HC | | | | | | | UNIT | | WAVEFORMS | | | | PARAMETER | +25 | | | -40 to +85 | | -40 to +125 | | UNIT | v _Ç c | WAVEFORMS | | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | | ^t PHL/
^t PLH | propagation delay
C _{IN} to Σ ₁ | | 52
19
15 | 160
32
27 | | 200
40
34 | | 240
48
41 | ns | 2.0
4.5
6.0 | Fig. 6 | | | tPHL/
tPLH | propagation delay C_{1N} to Σ_2 | | 58
21
17 | 180
36
31 | | 225
45
38 | | 270
54
46 | ns | 2.0
4.5
6.0 | Fig. 6 | | | tPHL/
tPLH | propagation delay C_{1N} to Σ_3 | | 63
23
18 | 195
39
33 | | 245
49
42 | | 295
59
50 | ns | 2.0
4.5
6.0 | Fig. 6 | | | tPHL/
tPLH | propagation delay C_{1N} to Σ_4 | | 74
27
22 | 230
46
39 | | 290
58
49 | | 345
69
59 | ns | 2.0
4.5
6.0 | Fig. 6 | | | tPHL/
tPLH | propagation delay A_n or B_n to Σ_n | | 69
25
20 | 210
42
36 | | 265
53
45 | | 315
63
54 | ns | 2.0
4.5
6.0 | Fig. 6 | | | tPHL/
tPLH | propagation delay
C _{IN} to C _{OUT} | | 63
23
18 | 195
39
33 | | 245
49
42 | | 295
59
50 | ns | 2.0
4.5
6.0 | Fig. 6 | | | tPHL/
tPLH | propagation delay
A _n or B _n to COUT | | 63
23
18 | 195
39
33 | | 245
49
42 | | 295
59
50 | ns | 2.0
4.5
6.0 | Fig. 6 | | | tTHL/
tTLH | output transition time | | 19
7
6 | 75
15
13 | | 95
19
16 | | 110
22
19 | ns | 2.0
4.5
6.0 | Fig. 6 | | #### DC CHARACTERISTICS FOR 74HCT For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications". Output capability: standard ICC category: MSI ## Note to HCT types The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below. | INPUT | UNIT LOAD
COEFFICIENT | |--|--------------------------| | CIN | 1.50 | | B ₂ , A ₂ , A ₁ | 1.00 | | Βı | 0.40 | | B4, A4,
A3, B3 | 0.50 | ### **AC CHARACTERISTICS FOR 74HCT** $GND = 0 V; t_r = t_f = 6 ns; C_1 = 50 pF$ | | T _{amb} (°C) | | | | | | | | | TEST CONDITIONS | | | |--|--|-------|------|------|------------|------|-------------|------|------|-----------------|-----------|--| | SYMBOL | BARAMETER | 74HCT | | | | | | | | | | | | STIMBUL | PARAMETER | +25 | | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC} | WAVEFORMS | | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | | tPHL/
^t PLH | propagation delay
C _{IN} to Σ ₁ | | 18 | 31 | | 39 | | 47 | ns | 4.5 | Fig. 6 | | | tpHL/
tpLH | propagation delay C_{1N} to Σ_2 | | 25 | 43 | | 54 | | 65 | ns | 4.5 | Fig. 6 | | | tPHL/
tPLH | propagation delay
C _{IN} to Σ ₃ | | 27 | 46 | | 58 | | 69 | ns | 4.5 | Fig. 6 | | | tPHL/
tPLH | propagation delay
C _{IN} to Σ ₄ | | 31 | 53 | | 66 | | 80 | ns | 4.5 | Fig. 6 | | | t _{PHL} /
t _{PLH} | propagation delay A_n or B_n to Σ_n | | 29 | 49 | | 61 | | 74 | ns | 4.5 | Fig. 6 | | | tPHL/
tPLH | propagation delay CIN to COUT | | 27 | 46 | | 58 | | 69 | ns | 4.5 | Fig. 6 | | | tPHL/
tPLH | propagation delay
An or Bn to COUT | | 28 | 48 | | 60 | | 72 | ns | 4.5 | Fig. 6 | | | tTHL/
tTLH | output transition time | | 7 | 15 | | 19 | | 22 | ns | 4.5 | Fig. 6 | | ## AC WAVEFORMS ## Note to AC waveforms (1) HC : V_M = 50%; V_i = GND to V_{CC} . HCT: V_M = 1.3 V; V_i = GND to 3 V. ## APPLICATION INFORMATION ## Note to Figs 7 to 10 Figure 7 shows a 3-bit adder using the "283". Tying the operand inputs of the fourth adder (A_3 , B_3) LOW makes Σ_3 dependent on, and equal to, the carry from the third adder. Based on the same principle, Figure 8 shows a method of dividing the "283" into a 2-bit and 1-bit adder. The third stage adder (A_2 , B_2 , Σ_2) is used simply as means of transfering the carry into the fourth stage (via A_2 and B_2) and transfering the carry from the second stage on Σ_2 . Note that as long as A_2 and B_2 are the same, HIGH or LOW, they do not influence Σ_2 . Similary, when A_2 and B_2 are the same, the carry into the third stage does not influence the carry out of the third stage. Figure 9 shows a method of implementing a 5-input encoder, where the inputs are equally weighted. The outputs Σ_0 , Σ_1 and Σ_2 produce a binary number equal to the number inputs (I_1 to I_5) that are HIGH. Figure 10 shows a method of implementing a 5-input majority gate. When three or more inputs (I_1 to I_5) are HIGH, the output M_5 is HIGH.