

Connection Diagrams
Pin Assignment for Ssop and TSsop

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OE}}_{\mathrm{n}}$	Output Enable Input (Active LOW)
CP_{n}	Clock Pulse Input
$\mathrm{I}_{0}-\mathrm{I}_{15}$	Inputs
$\mathrm{O}_{0}-\mathrm{O}_{15}$	Outputs
NC	No Connect

FBGA Pin Assignments

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
\mathbf{A}	O_{0}	NC	$\overline{\mathrm{OE}}_{1}$	CP_{1}	NC	I_{0}
\mathbf{B}	O_{2}	O_{1}	NC	NC	I_{1}	I_{2}
\mathbf{C}	O_{4}	O_{3}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{3}	I_{4}
\mathbf{D}	O_{6}	O_{5}	GND	GND	I_{5}	I_{6}
\mathbf{E}	O_{8}	O_{7}	GND	GND	I_{7}	I_{8}
\mathbf{F}	O_{10}	O_{9}	GND	GND	I_{9}	I_{10}
\mathbf{G}	O_{12}	O_{11}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{11}	I_{12}
\mathbf{H}	O_{14}	O_{13}	NC	NC	I_{13}	I_{14}
\mathbf{J}	O_{15}	NC	$\overline{\mathrm{OE}}_{2}$	CP_{2}	NC	I_{15}

Truth Tables

Inputs			Outputs
CP_{1}	$\overline{\mathrm{OE}}_{1}$	$\mathrm{I}_{0}-\mathrm{I}_{\mathbf{7}}$	$\mathrm{O}_{\mathbf{0}}-\mathrm{O}_{7}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{0}
X	H	X	Z

Inputs			Outputs
$\mathrm{CP}_{\mathbf{2}}$	$\overline{\mathrm{OE}}_{2}$	$\mathrm{I}_{\mathbf{8}} \mathrm{I}_{\mathbf{1 5}}$	$\mathrm{O}_{\mathbf{8}}-\mathrm{O}_{\mathbf{1 5}}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{0}
X	H	X	Z

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\mathrm{Z}=$ High Impedance
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW of CP

Functional Description

The LCX16374 consists of sixteen edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16 -bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store
the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP_{n}) transition. With the Output Enable $\left(\overline{\mathrm{OE}}_{n}\right)$ LOW, the contents of the flip-flops are available at the outputs. When OE_{n} is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}_{\mathrm{n}}$ input does not affect the state of the flip-flops.

Logic Diagrams

Absolute Maximum Ratings(Note 4)

Symbol	Value	Conditions	Units	
V_{CC}	Supply Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to +7.0	$3-$ STATE	
		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	Output in HIGH or LOW State (Note 5$)$	V
I_{K}	DC Input Diode Current	-50	$\mathrm{~V}_{\mathrm{I}}<\mathrm{GND}$	mA
I_{OK}	DC Output Diode Current	-50	$\mathrm{~V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	ma
I_{O}	DC Output Source/Sink Current	± 50		mA
I_{CC}	DC Supply Current per Supply Pin	± 100		mA
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current per Ground Pin	± 100		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150		

Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation
Note 5: I_{0} Absolute Maximum Rating must be observed
Recommended Operating Conditions (Note 6)

Symbol	Parameter		Min	Max	Units
$\mathrm{V}_{\text {CC }}$	Supply Voltage	Operating Data Retention	$\begin{aligned} & \hline 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage		0	5.5	V
V_{O}	Output Voltage	HIGH or LOW State 3-STATE	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
$\overline{\mathrm{IOH}^{\prime} / \mathrm{l}_{\mathrm{OL}}}$	Output Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}-2.7 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 24 \\ \pm 12 \\ \pm 8 \end{gathered}$	mA
$\mathrm{T}_{\text {A }}$	Free-Air Operating Temperature		-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		0	10	ns/V

DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
V_{IH}	HIGH Level Input Voltage		2.3-2.7	1.7		V
			$2.7-3.6$	2.0		
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage		2.3-2.7		0.7	V
			2.7-3.6		0.8	
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.3-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2.3	1.8		
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	2.4		
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.2		
V_{OL}	LOW Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.3-3.6		0.2	V
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	2.3		0.6	
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	
		$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$	3.0		0.4	
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	
1	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2.3-3.6		± 5.0	$\mu \mathrm{A}$
$\overline{\mathrm{I}} \mathrm{OZ}$	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$2.3-3.6$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0		10	$\mu \mathrm{A}$

DC Electrical Characteristics（coninued）						
smmol	Paeameer	Condioions	$\xrightarrow{\text { voce }}$（1）			
${ }^{100}$	ainsesol Stupy crivem		${ }_{\substack{23-36 \\ 23-36}}$		¢	μ
${ }_{\text {a }}$						

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \hline V_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	170						MHz
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	1.5	6.2	1.5	6.5	1.5	7.4	
$\mathrm{t}_{\text {PLH }}$	CP to O_{n}	1.5	6.2	1.5	6.5	1.5	7.4	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable time	1.5	6.1	1.5	6.3	1.5	7.9	
$t_{\text {PZH }}$		1.5	6.1	1.5	6.3	1.5	7.9	ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.5	6.0	1.5	6.2	1.5	7.2	
$\mathrm{t}_{\text {PHZ }}$		1.5	6.0	1.5	6.2	1.5	7.2	ns
$\mathrm{t}_{\text {S }}$	Setup Time	2.5		2.5		3.0		ns
t_{H}	Hold Time	1.5		1.5		2.0		ns
t_{W}	Pulse Width	3.0		3.0		3.5		ns
toshl	Output to Output Skew（Note 8）		1.0					
$\mathrm{t}_{\mathrm{OSLL}}$			1.0					ns
Note 8：Skew is defined as the absolute value of the differences between the actual propagation delay for any two separate outputs of the same device．The specification applies to any outputs switching in the same direction，either HIGH－to－LOW（toshl）or LOW－to－HIGH（tosLh）．Parameter guaranteed by design．								

Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
			（V）	Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.6 \end{aligned}$	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{gathered} \hline-0.8 \\ 0.6 \end{gathered}$	V

Capacitance

Symbol	Conditions	Typical	Units	
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open， $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

FIGURE 1. AC Test Circuit (C_{L} includes probe and jig capacitance)

Test	Switch
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$, and 2.7 V $\mathrm{~V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

Waveform for Inverting and Non-Inverting Functions

Propagation Delay. Pulse Width and $t_{\text {rec }}$ Waveforms

3-STATE Output Low Enable and Disable Times for Logic

FIGURE 2. Waveforms
(Input Characteristics; $f=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$)

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3} \mathrm{V}$	$\mathbf{2 . 7 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$
V_{mi}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DETAIL E TYP

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

CIMENSIONS ARE IN MILLIMETERS

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6, DATE 7/93.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND

TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

MTD48RevB1

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
