Programmable Micropower Operational Amplifier T-79-08 **NP-22** #### **FEATURES** - Programmable Supply Current..... 500nA to 400μA Dual Supply Operation ±1.5V to ±15V Low Input Offset Voltage 100μV • Low Input Offset Voltage Drift 0.75μV/°C • High Common-Mode input Range V- to V+ (-1.5V) High CMRR and PSRR 115dB High Open-Loop Gain 1800V/mV - ±30V Input Overvoltage Protection - Unity-Gain Stable - LM4250 Pinout and Nulling - Available in Die Form #### **GENERAL DESCRIPTION** The OP-22 is a monolithic micropower operational amplifier designed to provide excellent accuracy in high-gain applications. Offsets are very low which generally eliminates any need for external nulling of Vos. The OP-22 is internally compensated and unity-gain stable. It also features high open-loop gain, CMRR, and PSRR. This assures good gain accuracy and rejection of power supply variations even when used in circuits with high closed-loop gain. The low offsets and high gain accuracy of the OP-22 bring precision performance to the micropower field. The OP-22 is a versatile op amp designed for operation from battery or solar-cell power sources. Supply current is programmable over a range of 500nA to 400µA with a single external resistor. Input voltage range is very wide and extends down to the negative rail, thus the common-mode input voltage range includes ground when operating from a single supply voltage. This ability to provide high DC performance over a wide input range is particularly useful in single-battery applications. In addition, the OP-22 is characterized over a wide supply range of $\pm 1.5 \text{V}$ to $\pm 15 \text{V}$, or $\pm 3 \text{V}$ to $\pm 30 \text{V}$ for single supply. The OP-22 pin-out and offset nulling are identical to the LM4250 and many other micropower operational amplifiers. This functional commonality allows easy upgrading of system performance. By selection of set resistor value, the circuit designer can readily use the OP-22 in place of such amplifiers as the LM108, LM112, LM4250, µA776, and ICL8021 in high-gain, low-frequency applications. #### SIMPLIFIED SCHEMATIC | ABSOLUTE MAXIMUM RATINGS (Note 1) | |---| | Supply Voltage ±18V | | Differential Input Voltage ±30V | | Input Voltage Supply Voltage | | Storage Temperature Range :
J and Z Packages65°C to +150°C | | J and Z Packages65°C to +150°C | | Operating Temperature Range | | OP-22A55°C to +125°C | | OP-22E, OP-22F25°C to +85°C | | OP-22H40°C to +85°C | | Lead Temperature Range (Soldering, 60 sec) +300°C | | Junction Temperature65°C to +150°C | | PACKAGE TYPE | B _{jA} (Note 2) | elc | UNITS | |------------------------|--------------------------|-----|-------| | TO-99 (J) | 150 | 18 | *C/W | | 8-Pin Hermetic DIP (Z) | 148 | 16 | *C/W | | 8-Pin Plastic DIP (P) | 103 | 43 | *C/W | | 8-Pin SO (S) | 158 | 43 | *C/W | #### NOTES: - 1. Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted. - Θ_{[A} is specified for worst case mounting conditions, i.e., Θ_{[A} is specified for device in socket for TO, CerDIP and P-DIP packages; Θ_{[A} is specified for device soldered to printed circuit board for SO package. #### ELECTRICAL CHARACTERISTICS at $V_S = \pm 1.5 V$ to $\pm 15 V$, $1 \mu A \le I_{SET} \le 10 \mu A$, $T_A = +25 ^{\circ} C$, unless otherwise noted. | | | | C | P-22A | /E | (| OP-22F | | C | P-22F | ł | | | |---------------------------------------|------------------|---|--|-------------|-------------|--------------------|-----------|-----------|--------------------|-----------|-----------|-------|------| | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | | Input Offset Voitage | vos | | | 100 | 300 | | 200 | 500 | _ | 400 | 1000 | μ | | | Input Offset Current | los | V _{CM} = 0 | _ | 0.2 | 1 | | 03 | 2 | - | 05 | 3 | n/ | | | Input Bias Current | I _B | J _{SET} = 1μA, V _{CM} = 0
I _{SET} = 10μA, V _{CM} = 0 | = | 2.6
19 | 5
30 | - | 3.0
24 | 7.5
35 | | 4.0
30 | 10
50 | n/ | | | Input Voltage Range | IVR | V+=+5V,
V-=0V.
V _S =±15V | 0/3.5
~15/+13.5 | - | - | 0/3.5
-15/+13.5 | - | - | 0/3.5
-15/+13.5 | - | - | • | | | Common-Mode
Rejection Ratio | CMRR
(Note 2: | $V_S = \pm 15V$
-15V $\leq V_{CM} \leq +13.5V$ | 100 | 115 | <u>-</u> | 96 | 106 | | 86 | 96 | _ | d8 | | | Power Supply Rejection Ratio (Note 1) | PSRR
(Note 2) | $V_S = \pm 1.5V$ to $\pm 15V$;
and $V = 0V$.
V + = 3V to $30V$. | - | 1.8 | 6 | - | 6 | 18 | - | 10 | 32 | μ۷Λ | | | Large-Signal | Avo | $V_8 = \pm 15V$,
$I_{SET} = 1 \mu A$,
$R_L = 100 k \Omega$. | 1000 | 1800 | _ | 500 | 900 | - | 250 | 500 | - | V/m\ | | | Voltage Gain | ~vo | | V _S = ±15V,
I _{SET} = 10μA,
R _L = 10kΩ. | 1000 | 1800 | - | 500 | 900 | - | 300 | 500 | - | V/m\ | | Output Voltage | v _o | $V_S = \pm 1.5 V$,
$I_{SET} = 1 \mu A$, $R_L = 100 k \Omega$ &
$I_{SET} = 10 \mu A$, $R_L = 10 k \Omega$. | ±0.8 | ±0.82 | _ | ±0.8 | ±0.82 | _ | ±0.75 | ±0.5 | - | ١ | | | Swing | •• | $V_S = \pm 15V$,
$I_{SET} = 1 \mu A$, $H_L = 100 k \Omega$ &
$I_{SET} = 10 \mu A$, $H_L = 10 k \Omega$. | ±14 | ±14.2 | | ±14 | ±14.2 | _ | ±135 | ±14 | _ | V | | | Closed-Loop
Bandwidth | BW | $A_{VGL} = +1.0,$
$V_S = \pm 15V,$
$I_{SET} = 10\mu A, R_L = 10k\Omega.$ | - | 250 | _ | _ | 250 | - | _ | 250 | _ | kHz | | | Slow Rate | SR | $V_S = \pm 15V$,
$I_{SET} = 10 \mu A$,
$R_L = 10 k \Omega$. | _ | 0.08 | - | - | 0.06 | - | - | 0.08 | - | ۷/μ | | | Supply Current | 1- | $V_8 = \pm 15V$, $I_{SET} = 1\mu A$.
$V_8 = \pm 15V$, $I_{SET} = 10\mu A$. | Ξ | 15
150 | 17
170 | _ | 16
160 | 19
190 | - | 18
180 | 21
210 | , Lug | | | No Load | Isy | $V_S = \pm 1.5 \text{V}, I_{SET} = 1 \mu \text{A}.$
$V_S = \pm 1.5 \text{V}, I_{SET} = 10 \mu \text{A}.$ | = | 10.5
106 | 12 5
125 | = | 14
140 | 18
180 | = | 17
170 | 20
200 | ps/ | | #### NOTE8: - 1. Sample tested for single-supply operation, 100% tested for dual-supply operation. - 2. Measured with VOS unnulled and ISET constant. T-79-08 OP-22 **ELECTRICAL CHARACTERISTICS** at $V_S = \pm 1.5 V$ to $\pm 15 V$, $1 \mu A \le I_{SET} \le 10 \mu A$, $-55 ^{\circ}C \le T_A \le +125 ^{\circ}C$ for OP-22A, $-25 ^{\circ}C \le T_A \le +85 ^{\circ}C$ for OP-22H, unless otherwise noted. 51E | | | | C | P-22A | /E | | OP-22I | • | | P-22h | 1 | _ | |---|-------------------|---|--------------------|------------|-----------|--------------------|-----------|-----------|--------------------|-----------|-----------|-------| | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | Average Input
Offset Voltage
Drift (Note 1) | TCV _{OS} | Unnulled | _ | 0.75 | 1.5 | _ | 1.0 | 2.0 | _ | 1.5 | 3.0 | μV/°C | | Input Offset Voltage | Vos | | _ | 175 | 400 | | 350 | 600 | _ | 500 | 1200 | μV | | Input Offset Current | los | V _{CM} = 0 | _ | 0.2 | 1 | _ | 0.3 | 2 | _ | 0.5 | 3 | пA | | Average Input Offset
Current Drift | TCIOS | (Note 1) | _ | 2 | 10 | _ | 3 | 15 | _ | 5 | 25 | pA/°C | | Input Bias Current | IB | $I_{SET} = 1\mu A$, $V_{CM} = 0$
$I_{SET} = 10\mu A$, $V_{CM} = 0$ | _ | 2.8
21 | 5
30 | - | 3.3
27 | 7.5
35 | = | 4.5
34 | 10
50 | nA | | Input Voltage
Range | IVR | V+=+5V, V-=0V
V _S =±15V | 0/3.2
-15/+13.2 | _ | _ | 0/3.2
-15/+13.2 | _ | _ | 0/3.2
-15/+13.2 | = | | v | | Common-Mode
Rejection Ratio | CMRR
(Note 3) | $V_S = \pm 15V$
-15V $\leq V_{CM} \leq +13.2V$
$I_{SET} = 1 \mu A$
$I_{SET} = 10 \mu A$ | 80
90 | 105
115 | _
_ | 80
86 | 99
105 | <u>-</u> | 80
80 | 90
90 | _ | dB | | Power Supply
Rejection Ratio | PSRR
(Note 3) | $V_S = \pm 1.5V \text{ to } \pm 15V \text{ &}$ $V - = 0V$, $V + = 3V \text{ to } 30V \text{ (Note 2)}$ | - | 3.2 | 10 | - | 10 | 32 | _ | 32 | 56 | μV/V | | Large-Signal | Avo | $V_S = \pm 15V$,
$I_{SET} = 1\mu A$, $R_L = 100k\Omega$. | 200 | 400 | _ | 200 | 400 | _ | 100 | 250 | _ | V/mV | | Voltage Gain | | $V_S = \pm 15V$,
$I_{SET} = 10\mu A$, $R_L = 10k\Omega$. | 500 | 1000 | - | 300 | 750 | - | 150 | 300 | _ | V/mV | | Output Voltage | V _O | $V_S = \pm 1.5 V$,
$I_{SET} = 1 \mu A$, $R_L = 100 k Ω$ &
$I_{SET} = 10 \mu A$, $R_L = 10 k Ω$. | ±0.65 | ±0.75 | _ | ±0.65 | ±0.75 | _ | ±0.6 | ±0.7 | - | v | | Swing | •0 | $V_S = \pm 15V$,
$I_{SET} = 1 \mu A$, $R_L = 100 k Ω$ &
$I_{SET} = 10 \mu A$, $R_L = 10 k Ω$. | ±13.6 | ±13.8 | - | ±13.6 | ±13.8 | _ | ±13.0 | ±13.5 | _ | v | | Supply Current | Isy | $V_S = \pm 15V$, $I_{SET} = 1 \mu A$.
$V_S = \pm 15V$, $I_{SET} = 10 \mu A$. | _ | 16
160 | 18
180 | _ | 17
170 | 20
200 | _ | 20
200 | 25
250 | μΑ | | No Load | 181 | $V_S = \pm 1.5V$, $I_{SET} = 1\mu A$.
$V_S = \pm 1.5V$, $I_{SET} = 10\mu A$. | | 12
120 | 14
140 | | 15
150 | 18
180 | _ | 19
190 | 25
250 | μΑ | #### NOTES: - 1. Sample tested. - 2. V_{CM} = 1.5V 3. Measured with $\rm V_{OS}$ unnulled and $\rm I_{SET}$ constant. #### ORDERING INFORMATION † | T. = +25°C | | PACKAGE | <u> </u> | OPERATING | |-----------------------------|------------|-----------------|------------------|----------------------| | V _{os} MAX
(μV) | TO-99 | CERDIP
8-PIN | PLASTIC
8-PIN | TEMPERATURE
RANGE | | 300 | OP22AJ/883 | OP22AZ* | - | MIL | | 300 | _ | OP22EZ | _ | IND | | 500 | _ | OP22FZ | - | IND | | 1000 | _ | OP22HZ | OP22HP | XIND | | 1000 | | ~ | OP22HS | XIND | - For devices processed in total compliance to MIL-STD-883, add/883 after part number. Consult factory for 883 data sheet. - Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages. #### PIN CONNECTIONS ## **DICE CHARACTERISTICS** T-79-08 DIE SIZE 0.070 × 0.050 Inch. 3500 sq. mils (1.78 × 1.27 mm, 2.26 sq. mm) - 1. BALANCE - 2. INVERTING INPUT - 3. NONINVERTING INPUT - 4. V- - 5. BALANCE - 6. OUTPUT - 7. V+ - 8. ISET ### **WAFER TEST LIMITS** at $V_S = \pm 1.5 \text{V}$ to $\pm 15 \text{V}$, $1 \mu \text{A} \le I_{SET} \le 10 \mu \text{A}$, $T_A = 25 ^{\circ} \text{C}$, unless otherwise noted. | PARAMETER | SYMBOL | CONDITIONS | OP-22N
LIMIT | OP-22G
LIMIT | OP-22GR
LIMIT | UNITS | |---------------------------------|----------------|---|--------------------|--------------------|--------------------|----------| | Input Offset Voltage | Vos | | 300 | 500 | 1000 | μV MAX | | Input Offset Current | los | (Note 1) | 1 | 2 | 3 | nA MAX | | Input Bias Current | I _B | $I_{\text{SET}} = 1 \mu \text{A}$
$I_{\text{SET}} = 10 \mu \text{A}$ (Note 1) | 5
30 | 7.5
35 | 10
50 | nA MAX | | Input Voltage Range | IVR | V+=+5V, V-=0V
V _S =±15V | 0/3.5
-15/+13.5 | 0/3 5
-15/+13.5 | 0/3.5
-15/+13.5 | V MIN | | Common-Mode
Rejection Ratio | CMRR | $V_S = \pm 15V, -15V \le V_{CM} \le +13.5V$
(Note 2) | 100 | 95 | 85 | dB MIN | | Power Supply
Rejection Ratio | PSRR | $V_3 = \pm 1.5V \text{ to } \pm 15V$
V = 0V, V = 3V to 30V (Note 2) | 6 | 18 | 32 | μV/V MIN | | Large-Signal | Avo | $V_3 = \pm 15V$,
$i_{SET} = 1 \mu A$, $R_L = 100 k \Omega$. | 1000 | 500 | 250 | V/mV MIN | | Voltage Gain | ^vo | $V_S = \pm 15V$,
$I_{SET} = 10\mu A$, $R_L = 10k(1)$. | 1000 | 500 | 300 | V/mV MIN | | Output Voltage | v _o | $V_8 = \pm 1.5 V,$ $I_{SET} = 1 \mu A, R_L = 100 k \Omega \&$ $I_{SET} = 10 \mu A, R_L = 10 k \Omega.$ | ±08 | ±0.8 | ±0.75 | V MIN | | Swing | *0 | $V_S = \pm 15V$, $I_{SET} = 1\mu A$, $R_L = 100 \text{ M}$ & $I_{SET} = 10\mu A$, $R_L = 10 \text{ K}\Omega$. | ±14 | ±14 | ±13.5 | V MIN | | Supply Current | I | $V_S = \pm 15V$, $I_{SET} = 1\mu A$.
$V_S = \pm 15V$, $I_{SET} = 10\mu A$. | 17
170 | 19
190 | 21
210 | ≱A MAX | | No Load | lsy | $V_S = \pm 1.5 V$, $I_{SET} = 1 \mu A$.
$V_S = \pm 1.5 V$, $I_{SET} = 10 \mu A$. | 12.5
125 | 16
160 | 20
200 | дА МАХ | #### NOTES: Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice for qualification through sample lot assembly and testing. #### TYPICAL ELECTRICAL CHARACTERISTICS at $V_S = \pm 1.5V$ to $\pm 15V$, $1\mu A \le I_{SET} \le 10\mu A$, $T_A = \pm 25^{\circ}$ C, unless otherwise noted. | PARAMETER | SYMBOL | CONDITIONS | OP-22N
TYPICAL | OP-22G
TYPICAL | OP-22GR
TYPICAL | UNITS | |---------------------------------------|--------|---|-------------------|-------------------|--------------------|-------| | Average Input
Offset Voltage Drift | TCVos | Unnulled | 1.0 | 1.5 | 2.5 | μV/*C | | Large-Signal
Voltage Gain | Avo | $V_S = \pm 15V$
$I_{SET} = 1 \mu A$, $R_L = 100 k \Omega$ &
$I_{SET} = 10 \mu A$, $R_L = 10 k \Omega$ | 1800 | 900 | 500 | V/mV | V_{CM} = 0 ^{2.} Measured with Vos unnulled and IseT held constant. #### TYPICAL PERFORMANCE CHARACTERISTICS SUPPLY CURRENT VS SET RESISTOR 1000 T-79-08 **OP-22** #### TYPICAL PERFORMANCE CHARACTERISTICS Continued **POWER SUPPLY REJECTION** vs SET CURRENT COMMON-MODE REJECTION **V8 SET CURRENT** T-79-08 **SLEW RATE VS SET CURRENT** **GAIN-BANDWIDTH PRODUCT** vs SET CURRENT **OPEN-LOOP GAIN** 2 **OP-22** # TYPICAL PERFORMANCE CHARACTERISTICS Continued T-79-08 FREQUENCY RESPONSE vs SET CURRENT **CLOSED-LOOP** FREQUENCY RESPONSE POWER SUPPLY REJECTION **COMMON-MODE REJECTION** PEAK-TO-PEAK **OUTPUT SWING** MAXIMUM OUTPUT CURRENT **vs SET CURRENT AT** **VOLTAGE NOISE** vs FREQUENCY **OP-22** ## TYPICAL PERFORMANCE CHARACTERISTICS Continued 9 25 TEMPERATURE (C) 0 TEMPERATURE (°C) -80 -60 -25 **OFFSET CURRENT** 75 125 #### TYPICAL PERFORMANCE CHARACTERISTICS Continued #### SMALL-SIGNAL TRANSIENT RESPONSE #### SMALL-SIGNAL TRANSIENT RESPONSE (a) #### T-79-08 #### **SMALL-SIGNAL** TRANSIENT RESPONSE #### APPLICATIONS INFORMATION OP-22 series units may be inserted directly into LM4250, μA776 and ICL8021 sockets with or without removal of external nulling components. The value of set resistor for a given supply current varies between types and the manufacturer's data sheets should be consulted for this information. Table 1 compares set resistor values for the OP-22 and the LM4250. (R_{SET} connected to V-). TABLE 1 Supply Current vs. Set Resistor for OP-22 and LM4250 | | lsy= | = 10μA | I _{SY} = | = 30μA | $I_{SY} = 100 \mu A$ | | | |---------|--------|--------|-------------------|----------------|----------------------|--------|--| | VSUPPLY | OP-22 | LM4250 | OP-22 | LM4250 | OP-22 | LM4250 | | | ±1.5V | 2.2ΜΩ | 1.3ΜΩ | 680kΩ | 430kΩ | 220kΩ | 120kΩ | | | ±3.0V | 6.8MΩ | 2.7ΜΩ | 2.2ΜΩ | 910kΩ | 680kΩ | 270kΩ | | | ±5.0V | 13ΜΩ | 4.7ΜΩ | 4.3ΜΩ | 1.5 M Ω | 1.3ΜΩ | 470kΩ | | | ±12V | ЗЗМΩ | 12ΜΩ | 11ΜΩ | 3.9MΩ | 3.3MΩ | 1.2ΜΩ | | | ±15V | 43ΜΩ | 15ΜΩ | 15ΜΩ | 5.1MΩ | 4.3ΜΩ | 1.5ΜΩ | | | ISET | 0.67μΑ | 1.8µA | 2.0μΑ | 6.0µA | 6.7µA | 20μΑ | | # Biasing the OP-22 with a fixed resistor produces a supply current approximately proportional to supply voltage. In applications where a constant drain is required with varying supply, R_{SET} can be replaced by current generators. Two suggested arrangements are shown below: #### **SET-RESISTOR SELECTION** The value of set resistor for selected supply current may be calculated using the "Supply current vs. Set current" curve and the formula: $$R_{SET} = \frac{(V_{SUPPLY} - 2V_{BE})}{I_{SET}}$$ (1) Alternatively, the "Supply Current vs. Set Current" graph may be used in conjunction with the "Set Current vs. Set Resistor" graph. V_{SUPPLY} in formula (1) refers to the total supply voltage with R_{SET} connected between pin 8 and negative supply. R_{SET} may be connected to ground in which case V_{SUPPLY} in (1) is the positive supply. CAUTION: Shorting of pin 8 to negative supply or ground will cause excessive I_{SET} which in turn will cause excessive supply current to flow. I_{SET} should always be limited. # 0P-22 #### OFFSET VOLTAGE ADJUSTMENT The offset voltage can be trimmed to zero using a 100kn potentiometer (see offset nulling circuit). Adjustment range is approximately ±5mV. Resolution of the nulling can be increased by using a smaller pot in conjunction with fixed resistors as shown below. This arrangement has a $\pm 500 \mu V$ adjustment range. Offset nulling of the OP-22 has negligible effect on the value of TCVos. #### **OFFSET NULLING CIRCUIT** #### **BURN-IN CIRCUIT*** *Other circuits may apply at ADI's discretion. # T-79-Ud #### **APPLICATIONS CIRCUITS** A micropower bandgap voltage reference operating at a quiescent current of 15µA may be constructed using an OP-22 and a MAT-01 dual transistor (see Figure 1). The circuit provides a 1.23V reference with better performance than micropower I.C. shunt regulators and has the advantages of being a series regulator. # MICROPOWER 1.23 VOLT BANDGAP REFERENCE #### **GATED MICROPOWER AMPLIFIER** # MICROPOWER INSTRUMENTATION AMPLIFIER — POWER DRAIN ≤ 3mW WITH ±5 VOLT SUPPLIES In Figure 2, the OP-22 is used as a gated amplifier where power consumption and bandwidth are controllable. Rs can be selected for a specific lower-power operation or omitted so the amplifier can be completely shut down. A micropower instrumentation amplifier that consumes less than 3mW with ±5V supplies is shown in Figure 3. Offset voltage drift is less than 0.2 uV/°C and common-mode input range is ±3V with CMRR of over 100dB at 60Hz. Process control systems use two-wire 4-20mA current transmitters when sending analog signals through noisy environments. The "zero" or "offset" current of 4mA may be used to power the transmitter signal conditioning amplifiers and/or excite a d.c. transducer. This allows remote signal conditioning without having a remote power source. Power is provided at the receiving end where the signal current is monitored by a precision 50Ω resistor. The 4-20mA transmitter shown in Figure 4 has high stability, excellent linearity, and generates the 4-20mA current output. A 5V reference is available for powering transducers and micropower amplifiers at a maximum current of 2mA. #### **TWO TERMINAL 4-20mA TRANSMITTER** **OP-22** #### **MICROPOWER 5 VOLT REGULATOR** Figure 5 shows a micropower Wien-bridge oscillator designed for battery-powered instrumentation. Output level is controlled by nonlinear elements D1 and D2. When adjusted for 3V p-p output, the distortion level is below 0.5% at 1kHz. The 5 volt regulator in Figure 6 is intended for instrumentation requiring good power efficiency. Low-power 3-terminal IC regulators typically draw 2mA to 5mA quiescent current compared to only $50\mu A$ with this discrete implementation. Maximum load current is 10mA as shown, and can be increased by changing Q1 to a power transistor and proportionately increasing the set current of A2.