

Connection Diagram

(Top Thru View)

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OE}}_{n}$	Output Enable Input (Active LOW)
T / \bar{R}_{n}	Transmit/Receive Input
$\mathrm{A}_{0}-\mathrm{A}_{31}$	Side A Inputs/3-STATE Outputs
$\mathrm{B}_{0}-\mathrm{B}_{31}$	Side B Inputs/3-STATE Outputs

FBGA Pin Assignments

	1	2	3	4	5	6
A	B_{1}	B_{0}	$\mathrm{T} / \overline{\mathrm{R}}_{1}$	$\overline{\mathrm{OE}}_{1}$	A_{0}	A_{1}
B	B_{3}	B_{2}	GND	GND	A_{2}	A_{3}
C	B_{5}	B_{4}	$\mathrm{V}_{\mathrm{CC} 1}$	$\mathrm{V}_{\mathrm{CC1}}$	A_{4}	A_{5}
D	B_{7}	B_{6}	GND	GND	A_{6}	A_{7}
E	B_{9}	B_{8}	GND	GND	A_{8}	A_{9}
F	B_{11}	B_{10}	$\mathrm{V}_{\mathrm{CC} 1}$	$\mathrm{V}_{\mathrm{CC} 1}$	A_{10}	A_{11}
G	B_{13}	B_{12}	GND	GND	A_{12}	A_{13}
H	B_{14}	B_{15}	T / \bar{R}_{2}	$\overline{\mathrm{OE}}_{2}$	A_{15}	A_{14}
J	B_{17}	B_{16}	T / \bar{R}_{3}	$\overline{\mathrm{OE}}_{3}$	A_{16}	A_{17}
K	B_{19}	B_{18}	GND	GND	A_{18}	A_{19}
L	B_{21}	B_{20}	$\mathrm{V}_{\text {CC2 }}$	$\mathrm{V}_{\mathrm{CC} 2}$	A_{20}	A_{21}
M	B_{23}	B_{22}	GND	GND	A_{22}	A_{23}
N	B_{25}	B_{24}	GND	GND	A_{24}	A_{25}
P	B_{27}	B_{26}	$\mathrm{V}_{\text {CC2 }}$	$\mathrm{V}_{\mathrm{CC} 2}$	A_{26}	A_{27}
R	B_{29}	B_{28}	GND	GND	A_{28}	A_{29}
T	B_{30}	B_{31}	$\mathrm{T} / \overline{\mathrm{R}}_{4}$	$\overline{\mathrm{OE}}_{4}$	A_{31}	A_{30}

Truth Tables

Inputs		Outputs
$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\mathbf{T} / \overline{\mathbf{R}}_{\mathbf{1}}$	
L	L	Bus $\mathrm{B}_{0}-\mathrm{B}_{7}$ Data to Bus $\mathrm{A}_{0}-\mathrm{A}_{7}$
L	H	Bus $\mathrm{A}_{0}-\mathrm{A}_{7}$ Data to Bus $\mathrm{B}_{0}-\mathrm{B}_{7}$
H	X	HIGH-Z State on $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$

Inputs		Outputs
$\overline{\mathrm{OE}}_{3}$	$\mathbf{T} / \overline{\mathbf{R}}_{3}$	
L	L	Bus $\mathrm{B}_{16}-\mathrm{B}_{23}$ Data to Bus $\mathrm{A}_{16}-\mathrm{A}_{23}$
L	H	Bus $\mathrm{A}_{16}-\mathrm{A}_{23}$ Data to Bus $\mathrm{B}_{16}-\mathrm{B}_{23}$
H	X	$\mathrm{HIGH}-\mathrm{Z}$ State on $\mathrm{A}_{16}-\mathrm{A}_{23}, \mathrm{~B}_{16}-\mathrm{B}_{23}$

Inputs		Outputs
OE_{2}	T/ \bar{R}_{2}	
L	L	Bus $\mathrm{B}_{8}-\mathrm{B}_{15}$ Data to Bus $\mathrm{A}_{8}-\mathrm{A}_{15}$
L	H	Bus $\mathrm{A}_{8}-\mathrm{A}_{15}$ Data to Bus $\mathrm{B}_{8}-\mathrm{B}_{15}$
H	X	HIGH-Z State on $\mathrm{A}_{8}-\mathrm{A}_{15}, \mathrm{~B}_{8}-\mathrm{B}_{15}$

Inputs		Outputs
$\overline{\mathrm{OE}}_{\mathbf{4}}$	$\mathrm{T} / \overline{\mathbf{R}}_{\mathbf{4}}$	
L	L	Bus $\mathrm{B}_{24}-\mathrm{B}_{31}$ Data to Bus $\mathrm{A}_{24}-\mathrm{A}_{31}$
L	H	Bus $\mathrm{B}_{24}-\mathrm{A}_{31}$ Data to Bus $\mathrm{B}_{24}-\mathrm{B}_{31}$
H	X	HIGH -Z State on $\mathrm{A}_{24}-\mathrm{A}_{31}, \mathrm{~B}_{24}-\mathrm{B}_{31}$

$\mathrm{L}=$ LOW Voltage Level
X = Immaterial
Z = High Impedance

Absolute Maximum Ratings(Note 4)				
Symbol	Parameter	Value	Conditions	Units
V_{CC}	Supply Voltage	-0.5 to +7.0		V
V_{1}	T/R, $\overline{\mathrm{OE}}$ I/O Ports	$\begin{gathered} -0.5 \text { to }+7.0 \\ -0.5 \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \end{gathered}$		V
V_{O}	DC Output Voltage	-0.5 to $\mathrm{V}_{\text {CC }}+0.5$	Output in HIGH or LOW State (Note 5)	V
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current	-50	$V_{1}<$ GND	mA
I_{OK}	DC Output Diode Current	$\begin{aligned} & -50 \\ & +50 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}<\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \end{aligned}$	mA
I_{0}	DC Output Source/Sink Current	± 50		mA
$\mathrm{I}_{\text {CC }}$	DC Supply Current per Supply Pin	± 100		mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 100		mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 6)

Symbol	Parameter		Min	Max	Units
$\mathrm{V}_{\text {CC }}$	Supply Voltage	Operating Data Retention	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage		0	V_{CC}	V
V_{O}	Output Voltage	HIGH or LOW State 3-STATE	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
$\overline{\mathrm{IOH}^{\prime} / \mathrm{loL}}$	Output Current - B Outputs Output Current in $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$ - A Outputs	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}-2.7 \mathrm{~V} \\ & \hline \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}-2.7 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 24 \\ \pm 12 \\ \pm 8 \\ \hline \pm 12 \\ \pm 8 \\ \pm 4 \end{gathered}$	mA
T_{A}	Free-Air Operating Temperature		-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		0	10	ns/V

Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated
at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 5: I_{O} Absolute Maximum Rating must be observed.
Note 6: Floating or unused control inputs must be HIGH or LOW.
Note: An external driver must source at least the specified current to switch from LOW-to-HIGH.
Note: An external driver must sink at least the specified current to switch from HIGH-to-LOW.
DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
V_{IH}	HIGH Level Input Voltage		2.3-2.7	1.7		V
			2.7-3.6	2.0		
V_{IL}	LOW Level Input Voltage		2.3-2.7		0.7	V
			2.7-3.6		0.8	
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.3-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2.3	1.8		
		$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		
		$\mathrm{l}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	2.4		
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.4		

DC Electrical Characteristics（coninues）						
smmol	Pamaner	Conatu	$\stackrel{\text { Vec }}{\substack{\text { vec } \\ \text { w }}}$			Units
vor			${ }_{\substack{23-36 \\ 28}}$		－${ }^{0 .}$	

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V} \\ & \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ \hline \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	1.0	4.5	1.0	5.2	1.0	5.4	
$\mathrm{t}_{\text {PLH }}$	A_{n} to B_{n} or B_{n} to A_{n}	1.0	4.5	1.0	5.2	1.0	5.4	ns
tpzL	Output Enable Time	1.0	6.5	1.0	7.2	1.0	8.5	
$t_{\text {pzH }}$		1.0	6.5	1.0	7.2	1.0	8.5	ns
$t_{\text {PLZ }}$	Output Disable Time	1.0	6.4	1.0	6.9	1.0	7.7	
$\mathrm{t}_{\text {PHZ }}$		1.0	6.4	1.0	6.9	1.0	7.7	ns

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
			（V）	Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.6 \end{aligned}$	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & -0.8 \\ & -0.6 \end{aligned}$	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open， $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{/ / \mathrm{O}}$	Input／Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

FIGURE 1. AC Test Circuit (C_{L} includes probe and jig capacitance)

Test	Switch
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$, and 2.7 V $\mathrm{~V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

Waveform for Inverting and Non-Inverting Functions

Propagation Delay. Pulse Width and $t_{\text {rec }}$ Waveforms

3-STATE Output Low Enable and Disable Times for Logic

FIGURE 2. Waveforms
(Input Characteristics; $\mathbf{f = 1 M H z ,} \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{3 n s}$)

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 7 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$
V_{mi}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

74LCXH32245 Low Voltage 32-Bit Bidirectional Transceiver with 5V Tolerant Inputs and Outputs with Bushold
Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994
BGA96ArevE
96-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA96A
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
