FAIRCHILD

SEMICONDUCTOR TM

74LCXH32245 Low Voltage 32-Bit Bidirectional Transceiver with 5V Tolerant Inputs and Outputs with Bushold

General Description

The LCXH32245 contains thirty-two non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is designed for low voltage (2.5V or 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment. The device is byte controlled. Each byte has separate control inputs which could be shorted together for full 32-bit operation. The T/\overline{R} inputs determine the direction of data flow through the device. The \overline{OE} inputs disable both the A and B ports by placing them in a high impedance state. The 26Ω series resistor in the A Port output helps reduce output overshoot and undershoot.

The LCXH32245 data inputs include bushold, eliminating the need for external pull-up/down resistors to hold unused inputs.

The LCXH32245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- 2.3V to 3.6V V_{CC} specifications provided
- 4.5 ns t_{PD} max (V_{CC} = 3.3V), 20 μA I_{CC} max
- Power-off high impedance inputs and outputs

April 2002

Revised May 2002

- Equivalent 26Ω series resistor on A Port outputs
- Bushold on inputs eliminates the need for external pull-up/down resistors
- Supports live insertion/withdrawal (Note 1)
- ± 24 mA output drive (V_{CC} = 3.0V)
- Uses patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance: Human body model > 2000V
 - Machine model > 200V
- Packaged in plastic Fine-Pitch Ball Grid Array (FBGA)

Note 1: To ensure the high-impedance state during power-up or down, OE should be tied to VCC through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

© 2002 Fairchild Semiconductor Corporation DS500727

74LCXH32245

Connection Diagram						
	123456					
۷	000000					
в	000000					
O	000000					
Ω	000000					
ш	000000					
ш	000000					
J	000000					
т	000000					
٦	000000					
¥	000000					
_ _	000000					
Σ	000000					
z	000000					
۵.	000000					
ц	000000					
F	000000					

(Top Thru View)

Pin Descriptions

Pin Names	Description
OEn	Output Enable Input (Active LOW)
	Transmit/Receive Input
A ₀ -A ₃₁	Side A Inputs/3-STATE Outputs
B ₀ -B ₃₁	Side B Inputs/3-STATE Outputs

FBGA Pin Assignments

	1	2	3	4	5	6
Α	B ₁	B ₀	T/R ₁	OE ₁	A ₀	A ₁
В	B ₃	B ₂	GND	GND	A ₂	A ₃
С	В ₅	B ₄	V _{CC1}	V _{CC1}	A ₄	A ₅
D	B ₇	B ₆	GND	GND	A ₆	A ₇
Е	B ₉	B ₈	GND	GND	A ₈	A ₉
F	В ₁₁	B ₁₀	V _{CC1}	V _{CC1}	A ₁₀	A ₁₁
G	B ₁₃	B ₁₂	GND	GND	A ₁₂	A ₁₃
н	B ₁₄	B ₁₅	T/R_2	OE ₂	A ₁₅	A ₁₄
J	B ₁₇	B ₁₆	T/R_3	\overline{OE}_3	A ₁₆	A ₁₇
к	B ₁₉	B ₁₈	GND	GND	A ₁₈	A ₁₉
L	B ₂₁	B ₂₀	V _{CC2}	V _{CC2}	A ₂₀	A ₂₁
м	B ₂₃	B ₂₂	GND	GND	A ₂₂	A ₂₃
N	B ₂₅	B ₂₄	GND	GND	A ₂₄	A ₂₅
Р	B ₂₇	B ₂₆	V _{CC2}	V _{CC2}	A ₂₆	A ₂₇
R	B ₂₉	B ₂₈	GND	GND	A ₂₈	A ₂₉
Т	B ₃₀	B ₃₁	T/\overline{R}_4	\overline{OE}_4	A ₃₁	A ₃₀

Truth Tables

Inp	uts	Outents			
OE ₁	T/R ₁	Outputs			
L	L	Bus B_0-B_7 Data to Bus A_0-A_7			
L	Н	Bus $A_0 - A_7$ Data to Bus $B_0 - B_7$			
н	Х	HIGH–Z State on A ₀ –A ₇ ,B ₀ –B ₇			
Inp	uts	Quitauta			
OE ₂	T/R ₂	Outputs			
L	L	Bus B ₈ –B ₁₅ Data to Bus A ₈ –A ₁₅			
L	Н	Bus $A_8 - A_{15}$ Data to Bus $B_8 - B_{15}$			
Н	Х	HIGH–Z State on A ₈ –A ₁₅ ,B ₈ –B ₁₅			
	OE1 L H OE2 L L L L L L L L L L DE2 L L L L	L L L H H X Inputs OE2 T/R2 L L L H			

Inputs		Ortente			
\overline{OE}_3	T/R ₃	Outputs			
L	L	Bus B ₁₆ –B ₂₃ Data to Bus A ₁₆ –A ₂₃			
L	Н	Bus A ₁₆ -A ₂₃ Data to Bus B ₁₆ -B ₂₃			
Н	Х	HIGH–Z State on A ₁₆ –A ₂₃ ,B ₁₆ –B ₂₃			
Inputs		• • •			
OE ₄	T/R ₄	Outputs			
L	L	Bus B_{24} - B_{31} Data to Bus A_{24} - A_{31}			
L	Н	Bus B_{24} - A_{31} Data to Bus B_{24} - B_{31}			

L H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance

74LCXH32245

Absolute Maximum Ratings(Note 4)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +7.0		V
VI	T/R, OE	-0.5 to +7.0		V
	I/O Ports	–0.5 to $V_{CC}^{} + 0.5$		v
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 5)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
Ι _{ΟΚ}	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	ША
I _O	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current per Supply Pin	±100		mA
I _{GND}	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions (Note 6)

Symbol	Parameter		Min	Max	Units	
V _{CC}	Supply Voltage	Operating	2.0	3.6	V	
		Data Retention	1.5	3.6	v	
VI	Input Voltage		0	V _{CC}	V	
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V	
		3-STATE	0	5.5	v	
I _{OH} /I _{OL}	Output Current – B Outputs	$V_{CC} = 3.0V - 3.6V$		±24		
		$V_{CC}=2.7V-3.0V$		±12		
		$V_{CC}=2.3V-2.7V$		±8	mA	
	Output Current in I _{OH} /I _{OL} – A Outputs	$V_{CC} = 3.0V - 3.6V$		±12	1117	
		$V_{CC}=2.7V-3.0V$		±8		
		$V_{CC}=2.3V-2.7V$		±4		
T _A	Free-Air Operating Temperature		-40	85	°C	
$\Delta t / \Delta V$	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V	

Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 5: I_O Absolute Maximum Rating must be observed.

Note 6: Floating or unused control inputs must be HIGH or LOW.

Note: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
		Conditions	(V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 - 3.6	2.0		v
VIL	LOW Level Input Voltage		2.3 – 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -8 \text{ mA}$	2.3	1.8		
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		V
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.4		

Symbol	Parameter	Conditions	V _{cc}	T _A = -40°	C to +85°C	Units	
Symbol	Farameter	Conditions	(V)	Min	Max	Units	
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2		
		I _{OL} = 8 mA	2.3		0.6		
		I _{OL} = 12 mA	2.7		0.4	V	
		I _{OL} = 16 mA	3.0		0.4		
		I _{OL} = 24 mA	2.7		0.6		
l _l	Input Leakage Current	$0 \le V_l \le 5.5V$	2.3 - 3.6	±5.0	±5.0	μΑ	
I _{I(HOLD)}	Bushold Input Minimum	$V_{IN} = 0.7V$	2.3	45			
	Drive Hold Current	V _{IN} = 1.7V		-45			
		$V_{IN} = 0.8V$	3.0	75			
		$V_{IN} = 2.0V$	3.0	-75			
I _{I(OD)}	Bushold Input Over-Drive		2.7	300			
	Current to Change State		2.1	-300		μA	
			3.6	450		μΑ	
			3.0	-450			
I _{OZ}	3-STATE I/O Leakage	$0 \le V_O \le 5.5V$	2.3 - 3.6		±5.0	•	
		$V_I = V_{IH}$ or V_{IL}	2.3 - 3.0		10.0	μA	
I _{OFF}	Power-Off Leakage Current	$V_{I} \text{ or } V_{O} = 5.5 V$	0		10	μΑ	
I _{CC}	Quiescent Supply Current	V _I = V _{CC} or GND	2.3–3.6		20	μA	
		$3.6V \le V_I, V_O \le 5.5V$ (Note 7)	2.3–3.6		±20	μA	
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3-3.6		500	μA	

AC Electrical Characteristics

		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$						
Symbol	Parameter	V _{CC} = 3.3	$3V \pm 0.3V$	V _{CC} =	= 2.7V	V _{CC} = 2.	$5V \pm 0.2V$	Units
Symbol	Farameter	C _L = 50 pF		$C_L = 50 \text{ pF}$		C _L = 30 pF		Units
		Min	Max	Min	Max	Min	Max	1
t _{PHL}	Propagation Delay	1.0	4.5	1.0	5.2	1.0	5.4	
t _{PLH}	A _n to B _n or B _n to A _n	1.0	4.5	1.0	5.2	1.0	5.4	ns
t _{PZL}	Output Enable Time	1.0	6.5	1.0	7.2	1.0	8.5	nc
t _{PZH}		1.0	6.5	1.0	7.2	1.0	8.5	ns
t _{PLZ}	Output Disable Time	1.0	6.4	1.0	6.9	1.0	7.7	
t _{PHZ}		1.0	6.4	1.0	6.9	1.0	7.7	ns

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V_{CC} $T_A = 25^{\circ}C$		Units
	i didilleter	Conditions	(V)	Typical	Onita
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	0.6	v
V _{OLV}	Quiet Output Dynamic Valley VOL	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	-0.6	v

Capacitance

Symbol	Parameter	Conditions	Typical	Units
CIN	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , $f = 10$ MHz	20	pF

74LCXH32245

