
74LVT32245•74LVTH32245

Connection Diagram

(Top Thru View)

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OE}}_{\mathrm{n}}$	Output Enable Input (Active LOW)
$\mathrm{T} / \overline{\mathrm{R}}_{\mathrm{n}}$	Transmit/Receive Input
$\mathrm{A}_{0}-\mathrm{A}_{31}$	Side A Inputs/3-STATE Outputs
$\mathrm{B}_{0}-\mathrm{B}_{31}$	Side B Inputs/3-STATE Outputs

FBGA Pin Assignments

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
\mathbf{A}	B_{1}	$\mathrm{~B}_{0}$	$\mathrm{~T} / \overline{\mathrm{R}}_{1}$	$\overline{\mathrm{OE}}_{1}$	$\mathrm{~A}_{0}$	$\mathrm{~A}_{1}$
\mathbf{B}	$\mathrm{~B}_{3}$	$\mathrm{~B}_{2}$	GND	GND	A_{2}	$\mathrm{~A}_{3}$
\mathbf{C}	$\mathrm{~B}_{5}$	$\mathrm{~B}_{4}$	$\mathrm{~V}_{\mathrm{CC} 1}$	$\mathrm{~V}_{\mathrm{CC} 1}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$
\mathbf{D}	$\mathrm{~B}_{7}$	$\mathrm{~B}_{6}$	GND	GND	A_{6}	$\mathrm{~A}_{7}$
\mathbf{E}	$\mathrm{~B}_{9}$	$\mathrm{~B}_{8}$	GND	GND	A_{8}	$\mathrm{~A}_{9}$
\mathbf{F}	$\mathrm{~B}_{11}$	$\mathrm{~B}_{10}$	$\mathrm{~V}_{\mathrm{CC} 1}$	$\mathrm{~V}_{\mathrm{CC} 1}$	$\mathrm{~A}_{10}$	$\mathrm{~A}_{11}$
\mathbf{G}	$\mathrm{~B}_{13}$	$\mathrm{~B}_{12}$	GND	GND	A_{12}	$\mathrm{~A}_{13}$
\mathbf{H}	$\mathrm{~B}_{14}$	$\mathrm{~B}_{15}$	$\mathrm{~T} / \overline{\mathrm{R}}_{2}$	$\overline{\mathrm{OE}}_{2}$	$\mathrm{~A}_{15}$	$\mathrm{~A}_{14}$
\mathbf{J}	$\mathrm{~B}_{17}$	$\mathrm{~B}_{16}$	$\mathrm{~T} / \bar{R}_{3}$	$\overline{\mathrm{OE}}_{3}$	$\mathrm{~A}_{16}$	$\mathrm{~A}_{17}$
\mathbf{K}	$\mathrm{~B}_{19}$	$\mathrm{~B}_{18}$	GND	GND_{2}	$\mathrm{~A}_{18}$	$\mathrm{~A}_{19}$
\mathbf{L}	$\mathrm{~B}_{21}$	$\mathrm{~B}_{20}$	$\mathrm{~V}_{\mathrm{CC} 2}$	$\mathrm{~V}_{\mathrm{CC} 2}$	$\mathrm{~A}_{20}$	$\mathrm{~A}_{21}$
\mathbf{M}	$\mathrm{~B}_{23}$	$\mathrm{~B}_{22}$	GND	GND	A_{22}	$\mathrm{~A}_{23}$
\mathbf{N}	$\mathrm{~B}_{25}$	$\mathrm{~B}_{24}$	GND	GND	A_{24}	$\mathrm{~A}_{25}$
\mathbf{P}	$\mathrm{~B}_{27}$	$\mathrm{~B}_{26}$	$\mathrm{~V}_{\mathrm{CC} 2}$	$\mathrm{~V}_{\mathrm{CC} 2}$	$\mathrm{~A}_{26}$	$\mathrm{~A}_{27}$
\mathbf{R}	$\mathrm{~B}_{29}$	$\mathrm{~B}_{28}$	GND	GND	A_{28}	$\mathrm{~A}_{29}$
\mathbf{T}	$\mathrm{~B}_{30}$	$\mathrm{~B}_{31}$	$\mathrm{~T} / \bar{R}_{4}$	$\overline{\mathrm{OE}}_{4}$	$\mathrm{~A}_{31}$	$\mathrm{~A}_{30}$

Truth Tables

Inputs	Outputs	Inputs		Outputs
$\overline{\mathrm{OE}}_{1} \quad \mathrm{~T} / \overline{\mathrm{R}}_{1}$		$\overline{\mathrm{OE}}_{3}$		
L L	Bus $\mathrm{B}_{0}-\mathrm{B}_{7}$ Data to Bus $\mathrm{A}_{0}-\mathrm{A}_{7}$	L	L	Bus $\mathrm{B}_{16}-\mathrm{B}_{23}$ Data to Bus $\mathrm{A}_{16}-\mathrm{A}_{23}$
L H	Bus $\mathrm{A}_{0}-\mathrm{A}_{7}$ Data to Bus $\mathrm{B}_{0}-\mathrm{B}_{7}$	L	H	Bus $\mathrm{A}_{16}-\mathrm{A}_{23}$ Data to Bus $\mathrm{B}_{16}-\mathrm{B}_{23}$
H X	HIGH-Z State on $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	H	X	HIGH-Z State on $\mathrm{A}_{16}-\mathrm{A}_{23}, \mathrm{~B}_{16}-\mathrm{B}_{23}$
Inputs	Outputs	Inputs		Outputs
$\overline{\mathrm{OE}}_{2} \quad \mathrm{~T} / \overline{\mathbf{R}}_{2}$		$\overline{\mathrm{OE}}_{4}$		
L L	Bus $\mathrm{B}_{8}-\mathrm{B}_{15}$ Data to Bus $\mathrm{A}_{8}-\mathrm{A}_{15}$	L	L	Bus $\mathrm{B}_{24}-\mathrm{B}_{31}$ Data to Bus $\mathrm{A}_{24}-\mathrm{A}_{31}$
L H	Bus $\mathrm{A}_{8}-\mathrm{A}_{15}$ Data to Bus $\mathrm{B}_{8}-\mathrm{B}_{15}$	L	H	Bus $\mathrm{B}_{24}-\mathrm{A}_{31}$ Data to Bus $\mathrm{B}_{24}-\mathrm{B}_{31}$
H X	HIGH-Z State on $\mathrm{A}_{8}-\mathrm{A}_{15}, \mathrm{~B}_{8}-\mathrm{B}_{15}$	H	X	HIGH-Z State on $\mathrm{A}_{24}-\mathrm{A}_{31}, \mathrm{~B}_{24}-\mathrm{B}_{31}$
HIGH Voltage Level OW Voltage Level mmaterial High Impedance				

H LOW Volag Leval

X = Immaterial
Z = High Impedance

Functional Description

The LVT32245 and LVTH32245 contain thirty-two non-inverting bidirectional buffers with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain 16-bit or full 32-bit operation.

Logic Diagrams

$\mathrm{V}_{\mathrm{CC} 1}$ is associated with Bytes 1 and 2.
$\mathrm{V}_{\mathrm{CC} 2}$ is associated with Bytes 3 and 4.
Note: Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 2)				
Symbol	Parameter	Value	Conditions	Units
$\mathrm{V}_{\text {CC }}$	Supply Voltage	-0.5 to +4.6		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{O}	Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 3)	
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current	-50	$V_{1}<$ GND	mA
IOK	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<$ GND	mA
I_{0}	DC Output Current	64	Output at HIGH State, $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
		128	Output at LOW State, $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	
I_{CC}	DC Supply Current per Supply Pin	± 64		mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 128		mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage	2.7	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0	5.5	V
I_{OH}	HIGH-Level Output Current		-32	mA
I_{OL}	LOW-Level Output Current		64	mA
$\mathrm{~T}_{\mathrm{A}}$	Free-Air Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	$\mathrm{~ns} / \mathrm{V}$

Note 2: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions
beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.
Note 3: I_{O} Absolute Maximum Ratings must be observed.
DC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Max		
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage	2.7		-1.2	V	$\mathrm{I}_{1}=-18 \mathrm{~mA}$
V_{IH}	Input HIGH Voltage	2.7-3.6	2.0		V	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \leq 0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	2.7-3.6		0.8	V	
V_{OH}	Output HIGH Voltage	2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
		2.7	2.4			$\mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}$
		3.0	2.0			$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$
$\overline{\mathrm{V}}$	Output LOW Voltage	2.7		0.2	V	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$
		2.7		0.5		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$
		3.0		0.4		$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$
		3.0		0.5		$\mathrm{l}_{\mathrm{OL}}=32 \mathrm{~mA}$
		3.0		0.55		$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$
$I_{\text {(HOLD) }}$ (Note 4)	Bushold Input Minimum Drive	3.0	75		$\mu \mathrm{A}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$
			-75			$\mathrm{V}_{1}=2.0 \mathrm{~V}$
$I_{\text {(} O D \text {) }}$ (Note 4)	Bushold Input Over-Drive Current to Change State	3.0	500		$\mu \mathrm{A}$	(Note 5)
			-500			(Note 6)
I	Input Current	3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$
	Control Pins	3.6		± 1		$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}
		3.6		-5		$\mathrm{V}_{1}=0 \mathrm{~V}$
				1		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$
lofF	Power Off Leakage Current	0		± 100	$\mu \mathrm{A}$	$\mathrm{OV} \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$
$\mathrm{I}_{\text {PU/PD }}$	Power Up/Down 3-STATE Output Current	0-1.5		± 100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
IozL	3-STATE Output Leakage Current	3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$
IOZL (Note 4)	3-STATE Output Leakage Current	3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$
${ }^{\text {I OZH }}$	3-STATE Output Leakage Current	3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}$

DC Electrical Characteristics (Continued)

Symbol	Parameter		V_{cc} (V)	$\mathrm{T}_{\text {A }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
			Min	Max				
$\overline{\text { lozH (Note 4) }}$	3-STATE Output Leakag	Current		3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.6 \mathrm{~V}$
${ }_{\text {OzH }}{ }^{\text {a }}$	3-STATE Output Leakag	Current	3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	
${ }^{\text {CCH }}$	Power Supply Current	$\mathrm{V}_{\mathrm{CC} 1}$ or $\mathrm{V}_{\mathrm{CC} 2}$	3.6		0.19	mA	Outputs HIGH	
${ }_{\text {ICLL }}$	Power Supply Current	$\mathrm{V}_{\mathrm{CC} 1}$ or $\mathrm{V}_{\mathrm{CC} 2}$	3.6		5.0	mA	Outputs LOW	
$\mathrm{I}_{\text {čz }}$	Power Supply Current	$\mathrm{V}_{\mathrm{CC} 1}$ or $\mathrm{V}_{\mathrm{CC} 2}$	3.6		0.19	mA	Outputs Disabled	
ICCZ^{+}	Power Supply Current	$\mathrm{V}_{\mathrm{CC} 1}$ or $\mathrm{V}_{\mathrm{CC} 2}$	3.6		0.19	mA	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V},$ Outputs Disabled	
$\Delta{ }^{\text {cc }}$	Increase in Power Supp (Note 7)	$\begin{aligned} & \text { Current } \\ & \mathrm{V}_{\mathrm{CC} 1} \text { or } \mathrm{V}_{\mathrm{CC} 2} \end{aligned}$	3.6		0.2	mA	One Input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ Other Inputs at V_{CC} or GND	

Note 5: An external driver must source at least the specified current to switch from LOW-to-HIGH.
Note 6: An external driver must sink at least the specified current to switch from HIGH-to-LOW.
Note 7: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND
Dynamic Switching Characteristics (Note 8)

Symbol	Parameter	V_{CC}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			Units	Conditions$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$
		(V)	Min	Typ	Max		
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	3.3		0.8		V	(Note 9)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	3.3		-0.8		V	(Note 9)

Note 8: Characterized in SSOP package. Guaranteed parameter, but not tested.
Note 9: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . Output under test held LOW.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$				Units
		$\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
		Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	$\begin{aligned} & 1.5 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.9 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 1.5 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 6.9 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & \hline 2.3 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 5.4 \end{aligned}$	ns

Capacitance (Note 10)

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	pF	

Note 10: Capacitance is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012.

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA96ArevE
96-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA96A

Preliminary

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
