September 1999 Revised September 1999 74LVX541 Low Voltage Octal Buffer/Line Driver with 3-STATE Outputs

FAIRCHILD

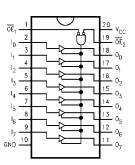
SEMICONDUCTOR TM

74LVX541 Low Voltage Octal Buffer/Line Driver with 3-STATE Outputs

General Description

The LVX541 is an octal non-inverting buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density. The inputs tolerate up to 7V allowing interface of 5V systems to 3V systems.

Features


- Input voltage translation from 5V to 3V
- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance

Ordering Code:

Order Number	Package Number	Package Description
74LVX541M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74LVX541SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVX541MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

IEEE/IEC 0Ē, _____ & I_0 ▷ I_0 ▷ I_1 ○ I_2 ○ I_3 ○ I_4 ○ I_5 ○ I_6 ○ I_7 ○

Pin Descriptions

Pin Names	Descriptions
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output Enable Inputs
I ₀ - I ₇	Inputs
0 ₀ - 0 ₇	3-STATE Outputs

Truth Table

Logic Symbol

	Inputs							
OE ₁	OE ₂	I	Outputs					
L	L	Н	Н					
н	х	Х	Z					
Х	Н	Х	Z					
L	L	L	L					

© 1999 Fairchild Semiconductor Corporation DS500291

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

-0.5V to +7.0V
–20 mA
-0.5V to 7V
–20 mA
+20 mA
–0.5V to $V_{CC}^{} + 0.5V$
±25 mA
±75 mA
$-65^{\circ}C$ to $+150^{\circ}C$
180 mW

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to +3.6V
Input Voltage (VI)	0V to +5.5V
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time ($\Delta t/\Delta V$)	0 ns/V to 100 ns/V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float

DC Electrical Characteristics

Symbol	Parameter	Vcc	$T_A = 25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions			
0,		•00	Min	Тур	Max	Min	Max	Unita	Condit	0113	
VIH	HIGH Level Input	2.0	1.5			1.5					
	Voltage	3.0	2.0			2.0		V			
		3.6	2.4			2.4					
VIL	LOW Level Input	2.0			0.5		0.5				
	Voltage	3.0			0.8		0.8	V			
		3.6			0.8		0.8				
V _{OH}	HIGH Level Output	2.0	1.9	2.0		1.9				$I_{OH} = -50 \ \mu A$	
	Voltage	3.0	2.9	3.0		2.9		V	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -50 \ \mu A$	
		3.0	2.58			2.48				$I_{OH} = -4 \text{ mA}$	
V _{OL}	LOW Level Output	2.0		0.0	0.1		0.1			$I_{OL} = 50 \ \mu A$	
	Voltage	3.0		0.0	0.1		0.1	V	$V_{IN} = V_{IH} \text{ or } V_{IL}$	l _{OL} = 50 μA	
		3.0			0.36		0.44			$I_{OL} = 4 \text{ mA}$	
I _{OZ}	3-STATE Output	3.6			±0.25		±2.5	μA	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or } GND$		
	OFF-State Current	5.0			10.25		12.5	μΛ			
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μΑ	$V_{IN} = 5.5V \text{ or GND}$		
I _{CC}	Quiescent Supply Current	3.6			4.0		40.0	μΑ	$V_{IN} = V_{CC}$ or GN	V _{IN} = V _{CC} or GND	

Noise Characteristics (Note 3)

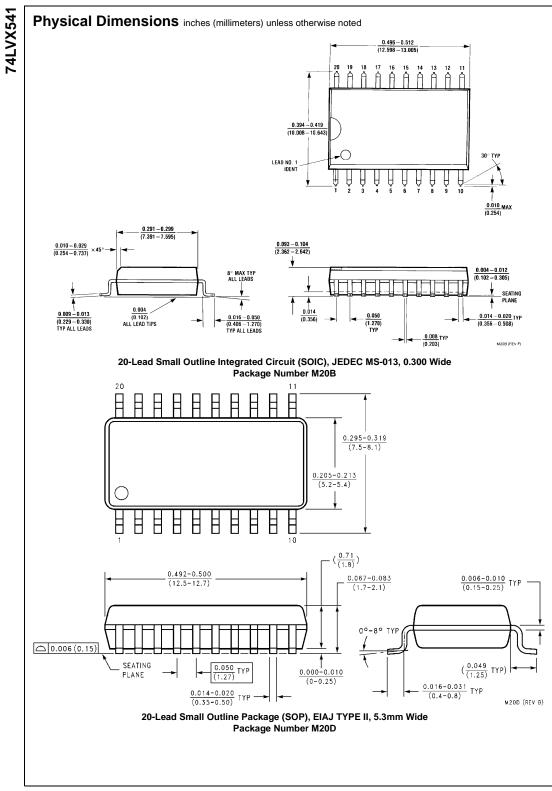
Symbol	Parameter	V _{cc}	T _A =	= 25°C	Units	Conditions	
Cymbol	r alameter	(V)	Тур	Limits	Onito		
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.5	0.8	V	C _L = 50 pF	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.5	-0.8	V	C _L = 50 pF	
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	C _L = 50 pF	
V _{ILD}	Maximum HIGH Level Dynamic Input Voltage	3.3		0.8	V	C _L = 50 pF	

Note 3: Input $t_r = t_f = 3$ ns.

Symbol	Parameter	V _{cc}	$T_A = 25^{\circ}C$			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay	2.7		6.1	11.3	1.0	13.5		$C_L = 15 \text{ pF}$
t _{PHL}	Time			8.6	14.9	1.0	17.0	ns	$C_L = 50 \text{ pF}$
		3.3 ± 0.3		4.7	7.0	1.0	8.5	115	C _L = 15 pF
				7.2	10.5	1.0	12.0		$C_L = 50 \text{ pF}$
t _{PZL}	3-STATE Output	2.7		7.1	13.8	1.0	16.5		$C_L = 15 \text{ pF}$
t _{PZH}	Enable Time								$R_L = 1 \ k\Omega$
				9.6	17.3	1.0	20.0		$C_L = 50 \text{ pF}$
								ns	$R_L = 1 \ k\Omega$
		3.3 ± 0.3		6.8	10.5	1.0	12.5	115	$C_L = 15 \text{ pF}$
									$R_L = 1 \ k\Omega$
				9.3	14.0	1.0	16.0		$C_L = 50 \text{ pF}$
									$R_L = 1 \ k\Omega$
t _{PLZ}	3-STATE Output	2.7		11.6	17.9	1.0	20.0	ns	$C_L = 50 \text{ pF}$
t _{PHZ}	Disable Time	3.3 ± 0.3		10.7	15.4	1.0	17.5	115	$R_L = 1 \ k\Omega$
t _{OSLH}	Output to Output	2.7			1.5		1.5	200	C ₁ = 50 pF
t _{OSHL}	Skew (Note 4)	3.3			1.5		1.5	ns	$G_L = 50 \text{ pm}$

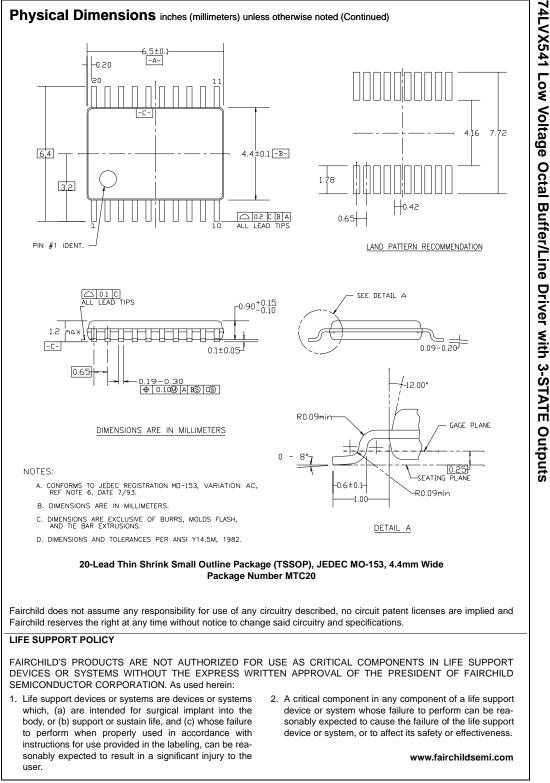
Note 4: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHm} - t_{PLHn}|; t_{OSHL} = |t_{PHLm} - t_{PHLn}|.$

Capacitance


Symbol	Parameter		$\textbf{T}_{\textbf{A}}=+25^{\circ}\textbf{C}$		T _A = -40°	Units	
	Falanetei	Min	Тур	Max	Min	Max	Units
CIN	Input Capacitance		4	10		10	pF
C _{OUT}	Output Capacitance		6				pF
C _{PD}	Power Dissipation Capacitance (Note 5)		19				pF
Nata E. C	is defined as the value of the internal equivalent consistence	which is color	lated from the	on oroting our	ant concurrenti	on without loog	1

Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{IN} + I_{CC}}{8 \text{ (per bit)}}$


www.fairchildsemi.com

3

www.fairchildsemi.com

4

www.fairchildsemi.com