
74VCX00	
Low Voltage Quad 2-Input Na with 3.6V Tolerant Inputs and	
General Description The VCX00 contains four 2-input NAND gates. This prod- uct is designed for low voltage (1.4V to 3.6V) V _{CC} applica- tions with I/O compatibility up to 3.6V. The VCX00 is fabricated with an advanced CMOS technol- ogy to achieve high-speed operation while maintaining low CMOS power dissipation.	Features 1.4V to 3.6V V _{CC} supply operation 3.6V tolerant inputs and outputs t_{PD} 2.8 ns max for 3.0V to 3.6V V _{CC} Power-off high impedance inputs and outputs Static Drive (t_{OH}/t_{OL}) ± 24 mA @ 3.0V V _{CC} Uses patented noise/EMI reduction circuitry Latchup performance exceeds 300 mA ESD performance: Human body model > 2000V Machine model > 250V

	uctor™) tage Quac	I 2-Input N	
uct is designed for tions with I/O com The VCX00 is fab	ains four 2-input NAI or low voltage (1.4V t apatibility up to 3.6V. rricated with an adva gh-speed operation v	ND gates. This prod- o 3.6V) V _{CC} applica- nced CMOS technol- vhile maintaining low	 Features 1.4V to 3.6V V_{CC} supply operation 3.6V tolerant inputs and outputs t_{PD} 2.8 ns max for 3.0V to 3.6V V_{CC} Power-off high impedance inputs and outputs Static Drive (I_{OH}/I_{OL}) ±24 mA @ 3.0V V_{CC} Uses patented noise/EMI reduction circuitry Latchup performance exceeds 300 mA ESD performance: Human body model > 2000V Machine model > 250V
Ordering (Code:		
Order Number	Package Number		Package Description
74VCX00M	M14A	14-Lead Small Outline	Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VCX00MTC	MTC14	14-Lead Thin Shrink S	mall Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Logic Sym		by appending the suffix letter	"X" to the ordering code. Connection Diagram
A, B; A B; B; A; A;		\overline{o}_0 \overline{o}_1 \overline{o}_2 \overline{o}_3	$\begin{array}{c} A_{0} & 1 \\ B_{0} & 2 \\ \overline{O}_{0} & 3 \\ A_{1} & 4 \\ B_{1} & 5 \\ \overline{O}_{1} & \overline{O}_{1} \\ \overline{O}_{1} & \overline{O}_{2} \\ \overline{O}_{1} & 7 \\ \overline{O}_{1} & \overline{O}_{2} \\ \overline{O}_{1} & \overline{O}_{2} \\ \overline{O}_{1} & \overline{O}_{2} \\ \overline{O}_{1} & \overline{O}_{2} \\ \overline{O}_{1} \\ \overline{O}_{2} \\ \overline{O}_{1} & \overline{O}_{2} \\ \overline{O}_{2} \\ \overline{O}_{1} \\ \overline{O}_{2} \\ O$

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
A _n , B _n	Inputs
Ōn	Outputs

74VCX00

Absolute Maximum Ratings(Note 1)

Absolute Maximum Ratings(Note 1)		Recommended Operatin	g
Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions (Note 3)	
DC Input Voltage (VI)	-0.5V to +4.6V	Power Supply	
Output Voltage (V _O)		Operating	1.4V to 3.6V
HIGH or LOW State (Note 2)	–0.5V to V _{CC} + 0.5V	Input Voltage	-0.3V to 3.6V
$V_{CC} = 0V$	-0.5V to +4.6V	Output Voltage (V _O)	
DC Input Diode Current (IIK)		HIGH or LOW State	0V to V _{CC}
V ₁ < 0V	–50 mA	Output Current in I _{OH} /I _{OL}	
DC Output Diode Current (I _{OK})		$V_{CC} = 3.0V$ to 3.6V	±24 mA
V _O < 0V	–50 mA	$V_{CC} = 2.3V$ to 2.7V	±18 mA
$V_{O} > V_{CC}$	+50 mA	V _{CC} = 1.65V to 2.3V	±6 mA
DC Output Source/Sink Current (I _{OL} /I _{OL})	±50 mA	$V_{CC} = 1.4 V$ to 1.6V	±2 mA
DC V _{CC} or Ground Current per	±100 mA	Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Pin (I _{CC} or Ground)		Minimum Input Edge Rate (Δt/ΔV)	
Storage Temperature Range (T _{stg})	$-65^{\circ}C$ to $+150^{\circ}C$	$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V
		Note 1: The Absolute Maximum Ratings are those the safety of the device cannot be guaranteed. The	

the safety of the device cannot be guarantee ed. The device should not be the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Rat-ings. The "Recommended Operating Conditions" table will define the condi-tions for actual device operation. Note 2: I_O Absolute Maximum Rating must be observed.

Note 3: Floating or unused inputs must be held HIGH or LOW

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage		2.7 - 3.6	2.0		
			2.3 - 2.7	1.6		
			1.65 - 2.3	$0.65 imes V_{CC}$		V
			1.4 - 1.6	$0.65 \times V_{CC}$		
V _{IL}	LOW Level Input Voltage		2.7–3.6		0.8	
			2.3–2.7		0.7	V
			1.65–2.3		$0.35 \times V_{\text{CC}}$	v
			1.4 - 1.6		$0.35 \times V_{\text{CC}}$	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7–3.6	V _{CC} - 0.2		
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2.2		
		$I_{OH} = -100 \ \mu A$	2.3–2.7	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		V
		$I_{OH} = -12 \text{ mA}$	2.3	1.8		v
		$I_{OH} = -18 \text{ mA}$	2.3	1.7		
		$I_{OH} = -100 \ \mu A$	1.65–2.3	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	1.65	1.25		
		$I_{OH} = -100 \ \mu A$	1.4 - 1.6	V _{CC} - 0.2		
		$I_{OH} = -2 \text{ mA}$	1.4	1.05		

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
OL	LOW Level Output Voltage	I _{OL} = 100 μA	2.7–3.6		0.2	
		$I_{OL} = 12 \text{ mA}$	2.7		0.4	
		I _{OL} = 18 mA	3.0		0.4	
		$I_{OL} = 24 \text{ mA}$	3.0		0.55	
		$I_{OL} = 100 \ \mu A$	2.3–2.7		0.2	
		$I_{OL} = 12 \text{ mA}$	2.3		0.4	V
		I _{OL} = 18 mA	2.3		0.6	
		$I_{OL} = 100 \ \mu A$	1.65–2.3		0.2	
		$I_{OL} = 6 \text{ mA}$	1.65		0.3	
		$I_{OL} = 100 \ \mu A$	1.4 - 1.6		0.2	
		$I_{OL} = 2 \text{ mA}$	1.4		0.35	
	Input Leakage Current	$0 \le V_1 \le 3.6V$	1.4–3.6		±5.0	μA
Z	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	1.4–3.6		±10	A
		$V_I = V_{IH} \text{ or } V_{IL}$	1.4-3.0		±10	μA
FFI	Power-OFF Leakage Current	$0 \le (V_I, V_O) \le 3.6V$	0		10	μA
;	Quiescent Supply Current	$V_I = V_{CC}$ or GND	1.4–3.6		20	
		$V_{CC} \leq (V_I, V_O) \leq 3.6V \text{ (Note 4)}$	1.4–3.6		±20	μA
CC	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7-3.6		750	μA

Note 4: Outputs disabled or 3-STATE only.

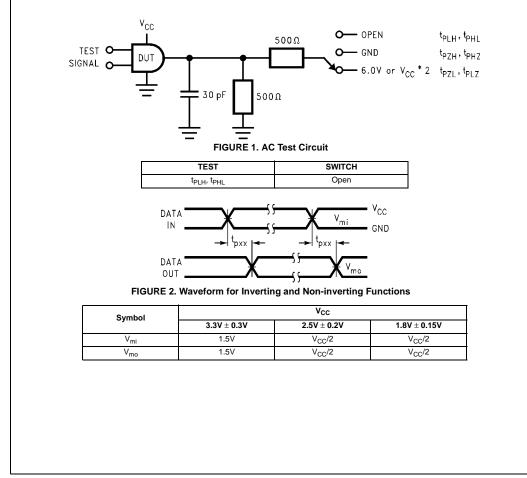
AC Electrical Characteristics (Note 5)

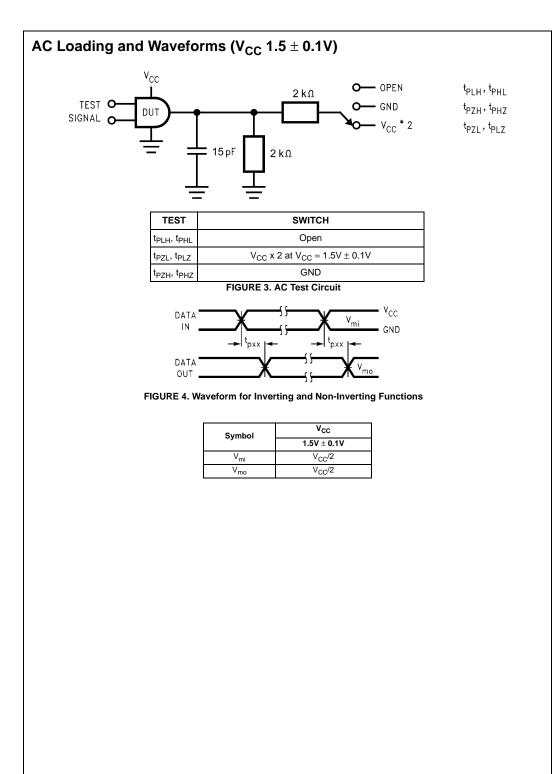
Symbol	Parameter	Conditions		$T_A = -40^{\circ}C$ to $+85^{\circ}C$			
			V _{cc}	Min	Max	Units	Figure
			(V)				Number
t _{PHL} , t _{PLH} Propagation Delay	Propagation Delay	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.6	2.8		
			2.5 ± 0.2	0.8	3.7		Figures 1, 2
		1	1.8 ± 0.15	1.0	7.4	ns	1, 2
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	1.0	14.8		Figures 3, 4
t _{OSHL}	Output to Output Skew	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3		0.5		
t _{OSLH} (Note 6)	(Note 6)		2.5 ± 0.2		0.5	20	
			1.8 ± 0.15		0.75	ns	
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1		1.5		

Note 5: For $C_L = 50_PF$, add approximately 300 ps to the AC maximum specification.

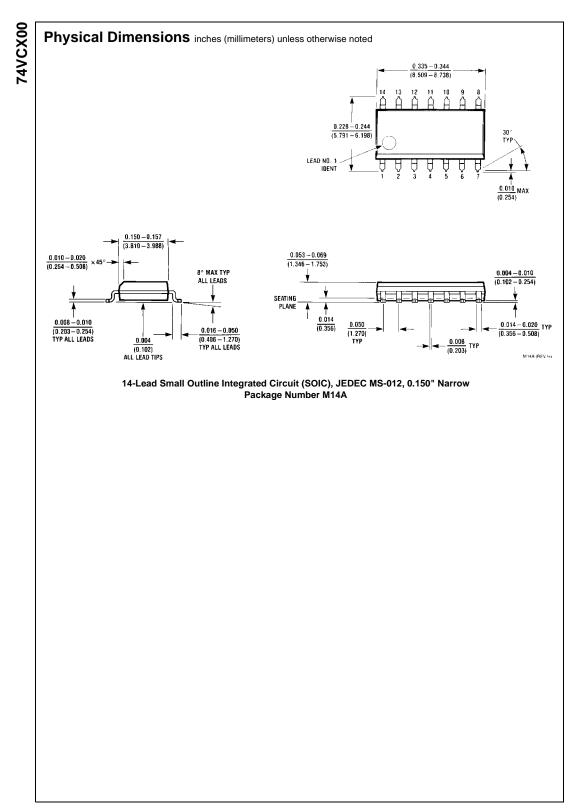
Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

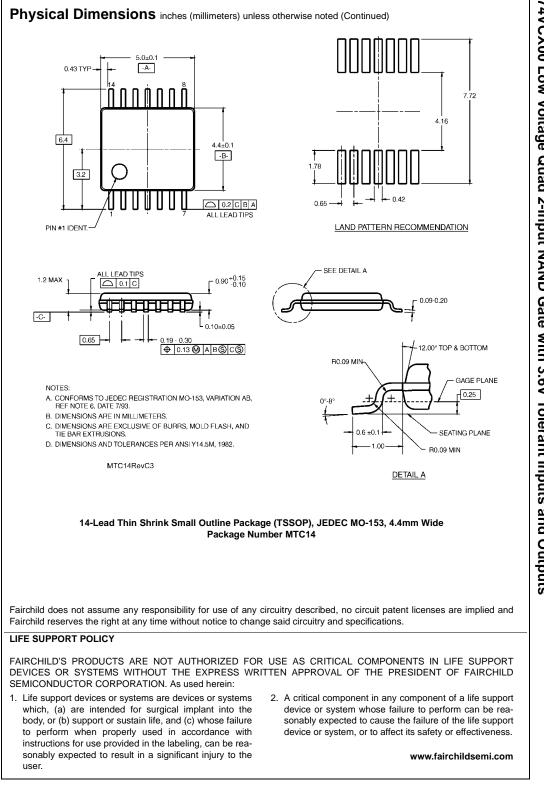
74VCX00


Dynamic Switching Characteristics


-	0				
Symbol	Parameter Conditions	V _{cc}	$T_A = 25^{\circ}C$	Unit	
Gymbol		Conditiona	(V)	Typical	onin
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.25	
			2.5	0.6	V
			3.3	0.8	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.25	
			2.5	-0.6	V
			3.3	-0.8	
V _{OHV}	Quiet Output Dynamic Valley V _{OH}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.5	
			2.5	1.9	V
			3.3	2.2	

Capacitance


Symbol	Parameter	Conditions	T _A = +25°C Typical	Units
C _{IN}	Input Capacitance	$V_I = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	6	pF
C _{OUT}	Output Capacitance	$V_I = 0V$ or V_{CC} , $V_{CC} = 1.8V$, 2.5V or 3.3V	7	pF
C _{PD}	Power Dissipation Capacitance	$V_{\rm I}$ = 0V or V_{CC},f = 10 MHz, V_{CC} = 1.8V, 2.5V or 3.3V	20	pF


AC Loading and Waveforms (V_CC 3.3V \pm 0.3V to 1.8V \pm 0.15V)

74VCX00

7