
74VCXH16373

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OE}}_{\mathrm{n}}$	Output Enable Input (Active LOW)
LE_{n}	Latch Enable Input
$\mathrm{I}_{0}-\mathrm{I}_{15}$	Bushold Inputs
$\mathrm{O}_{0}-\mathrm{O}_{15}$	Outputs
NC	No Connect

FBGA Pin Assignments

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
\mathbf{A}	O_{0}	NC	$\overline{\mathrm{OE}}_{1}$	LE_{1}	NC	I_{0}
\mathbf{B}	O_{2}	O_{1}	NC	NC	I_{1}	I_{2}
\mathbf{C}	O_{4}	O_{3}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{3}	I_{4}
\mathbf{D}	O_{6}	O_{5}	GND	GND	I_{5}	I_{6}
\mathbf{E}	O_{8}	O_{7}	GND	GND	I_{7}	I_{8}
\mathbf{F}	O_{10}	O_{9}	GND	GND	I_{9}	I_{10}
\mathbf{G}	O_{12}	O_{11}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{11}	I_{12}
\mathbf{H}	O_{14}	O_{13}	NC	NC	I_{13}	I_{14}
\mathbf{J}	O_{15}	NC	$\overline{\mathrm{OE}}_{2}$	LE_{2}	NC	I_{15}

Truth Tables

Inputs			Outputs
LE_{1}	$\overline{\mathrm{OE}}_{1}$	$\mathrm{I}_{\mathbf{0}}-\mathrm{I}_{\mathbf{7}}$	$\mathrm{O}_{0}-\mathrm{O}_{7}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O_{0}

Inputs			Outputs
$\mathrm{LE}_{\mathbf{2}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{8}}-\mathbf{l}_{\mathbf{1 5}}$	$\mathrm{O}_{\mathbf{8}}-\mathrm{O}_{\mathbf{1 5}}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O_{0}

H $=$ HIGH Voltage Level
L LOW Voltage Level
$X=$ Immaterial (HIGH or LOW, control inputs may not float)
= High Impedance
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW of Latch Enable

Functional Description

The 74VCXH16373 contains sixteen edge D-type latches with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16 -bit operation. The following description applies to each byte. When the Latch Enable (LE_{n}) input is HIGH, data on the I_{n} enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time
its I input changes. When $L E_{n}$ is LOW, the latches store information that was present on the I inputs a setup time preceding the HIGH-to-LOW transition on LE_{n}. The 3-STATE outputs are controlled by the Output Enable $\left(\mathrm{OE}_{n}\right)$ input. When OE_{n} is LOW the standard outputs are in the 2-state mode. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 3)	
Supply Voltage (V_{CC})	-0.5 V to +4.6 V
DC Input Voltage (V_{l})	
$\overline{O E}_{n}, L E^{\text {n }}$	-0.5V to 4.6 V
$I_{0}-l_{15}$	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output Voltage (V_{0})	
Outputs 3-STATED	-0.5 V to +4.6 V
Outputs Active (Note 4)	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Diode Current ($1_{1 /}$)	
$\mathrm{V}_{1}<0 \mathrm{~V}$	-50 mA
DC Output Diode Current (lok)	
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-50 mA
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{cc}}$	+50 mA
DC Output Source/Sink Current	
($\mathrm{IOH}^{\prime} \mathrm{l} \mathrm{OL}$)	$\pm 50 \mathrm{~mA}$
DC V_{CC} or GND Current per Supply Pin (Icc or GND)	$\pm 100 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 5)Power Supply

Operating	1.65 V to 3.6 V
Data Retention Only	1.2 V to 3.6 V
Input Voltage	-0.3 V to V_{CC}

Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$
Output in Active States $\quad 0 \mathrm{~V}$ to V_{CC}
Output in "OFF" State 0.0 V to 3.6 V

Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} \quad \pm 24 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V} \quad \pm 18 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to $2.3 \mathrm{~V} \quad \pm 6 \mathrm{~mA}$
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Rate ($\Delta \mathrm{t} / \Delta \mathrm{V}$)
$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
$10 \mathrm{~ns} / \mathrm{V}$
Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the condifions for actual device operation.
Note 4: 10 Absolute Maximum Rating must be observed.
Note 5: Floating or unused inputs must be held HIGH or LOW
DC Electrical Characteristics (2.7V $<\mathrm{V}_{\mathrm{Cc}} \leq \mathbf{3 . 6 V}$)

Symbol	Parameter	Conditions	V_{cc} (V)	Min	Max	Units
$\overline{\mathrm{V}_{\mathrm{H}}}$	HIGH Level Input Voltage		2.7-3.6	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage		2.7-3.6		0.8	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		V
		$\mathrm{l}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	2.4		V
		$\mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.2		V
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.7-3.6		0.2	V
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	V
		$\mathrm{l}^{\mathrm{OL}}=18 \mathrm{~mA}$	3.0		0.4	V
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	V
\bar{I}	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND	2.7-3.6		± 5.0	$\mu \mathrm{A}$
$\mathrm{l}_{(\text {(HOLD })}$	Bushold Input Minimum Drive Hold Current	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	3.0	75		$\mu \mathrm{A}$
		$\mathrm{V}_{1 \mathrm{~N}}=2.0 \mathrm{~V}$	3.0	-75		
$\overline{I_{\text {(OD })}}$	Bushold Input Over-Drive Current to Change State	(Note 6)	3.6	450		$\mu \mathrm{A}$
		(Note 7)	3.6	-450		
$\overline{\mathrm{l}} \mathrm{OZ}$	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.7-3.6		± 10	$\mu \mathrm{A}$
IofF	Power-OFF Leakage Current	$0 \leq\left(\mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
${ }_{\text {cc }}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	2.7-3.6		20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$ (Note 8)	2.7-3.6		± 20	$\mu \mathrm{A}$
$\Delta_{\text {l }}$	Increase in I ${ }_{\text {CC }}$ per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		750	$\mu \mathrm{A}$

Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH.
Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.
Note 8: Outputs disabled or 3-STATE only.

DC Electrical Characteristics (2.3V $\leq \mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$)

Symbol	Parameter	Conditions	V_{cc} (V)	Min	Max	Units
V_{IH}	HIGH Level Input Voltage		2.3-2.7	1.6		V
V_{IL}	LOW Level Input Voltage		2.3-2.7		0.7	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.3-2.7	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$	2.3	2.0		V
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.3	1.8		V
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.3	1.7		V
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{I}^{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.3-2.7		0.2	V
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.3		0.4	V
		$\mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA}$	2.3		0.6	V
I_{1}	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	2.3-2.7		± 5.0	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	2.3-2.7		± 5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(HOLD) }}$	Bushold Input Minimum Drive Hold Current	$\mathrm{V}_{\mathrm{IN}}=0.7 \mathrm{~V}$	2.3	45		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=1.6 \mathrm{~V}$	2.3	-45		
$\overline{I_{\text {(OD) }}}$	Bushold Input Over-Drive Current to Change State	(Note 9)	2.7	300		$\mu \mathrm{A}$
		(Note 10)	2.7	-300		
I_{Oz}	3-STATE Output Leakage	$0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V}$	2.3-2.7		± 10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$				
$\mathrm{I}_{\text {OFF }}$	Power-OFF Leakage Current	$0 \leq\left(\mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	2.3-2.7		20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$ (Note 11)	2.3-2.7		± 20	$\mu \mathrm{A}$

Note 9: An external driver must source at least the specified current to switch from LOW-to-HIGH.
Note 10: An external driver must sink at least the specified current to switch from HIGH-to-LOW.
Note 11: Outputs disabled or 3-STATE only.

DC Electrical Characteristics (1.65V $\leq \mathrm{V}_{\mathbf{C c}}<\mathbf{2 . 3 V}$)

Symbol	Parameter		Conditions	$\begin{gathered} \mathrm{V}_{\mathrm{cc}} \\ (\mathrm{~V}) \end{gathered}$	Min	Max	Units
V_{IH}	HIGH Level Input Voltage			1.65-2.3	$0.65 \times \mathrm{V}_{\text {cC }}$		V
V_{IL}	LOW Level Input Voltage			1.65-2.3		$0.35 \times \mathrm{V}_{\text {CC }}$	V
$\overline{\mathrm{V}_{\mathrm{OH}}}$	HIGH Level Output Voltage		$\mathrm{I}_{\text {OH }}=-100 \mu \mathrm{~A}$	1.65-2.3	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
			$\mathrm{IOH}=-6 \mathrm{~mA}$	1.65	1.25		V
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage		$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	1.65-2.3		0.2	V
			$\mathrm{I}_{\text {OL }}=6 \mathrm{~mA}$	1.65		0.3	V
\cdots	Input Leakage Current	Control Pins	$0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	1.65-2.3		± 5.0	$\mu \mathrm{A}$
		Data Pins	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	1.65-2.3		± 5.0	$\mu \mathrm{A}$
$\overline{\mathrm{I}_{\text {(HOLD) }}}$	Bushold Input Minimum Drive Hold Current		$\mathrm{V}_{\text {IN }}=0.57 \mathrm{~V}$	1.65	25		$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=1.07 \mathrm{~V}$	1.65	-25		
$\overline{I_{\text {(OD) }}}$	Bushold Input Over-Drive Current to Change State		(Note 12)	1.95	200		$\mu \mathrm{A}$
			(Note 13)	1.95	-200		
$\overline{\mathrm{I}} \mathrm{O}$	3-STATE Output Leakage		$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	1.65-2.3		± 10	$\mu \mathrm{A}$
IofF	Power-OFF Leakage Current		$0 \leq\left(\mathrm{V}_{0}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
$\overline{I_{\mathrm{cc}}}$	Quiescent Supply Current		$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	1.65-2.3		20	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {CC }} \leq\left(\mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$ (Note 14)	1.65-2.3		± 20	$\mu \mathrm{A}$

Note 12: An external driver must source at least the specified current to switch from LOW-to-HIGH.
Note 13: An external driver must sink at least the specified current to switch from HIGH-to-LOW.
Note 14: Outputs disabled or 3-STATE only.

AC Electrical Characteristics (Note 15)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {cc }}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		$\mathrm{V}_{\text {cc }}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay I_{n} to O_{n}	0.8	3.0	1.0	3.4	1.5	6.8	ns
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay LE to O_{n}	0.8	3.0	1.0	3.9	1.5	7.8	ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time	0.8	3.5	1.0	4.6	1.5	9.2	ns
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	Output Disable Time	0.8	3.5	1.0	3.8	1.5	6.8	ns
t_{s}	Setup Time	1.5		1.5		2.5		ns
t_{H}	Hold Time	1.0		1.0		1.0		ns
t_{W}	Pulse Width	1.5		1.5		4.0		ns
$\mathrm{t}_{\mathrm{OSHL}}$ tosth	Output to Output Skew (Note 16)		0.5		0.5		0.75	ns

Note 15: For $C_{\mathrm{L}}=50_{\mathrm{p}} \mathrm{F}$, add approximately 300 ps to the AC maximum specification.
Note 16: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$\begin{gathered} \hline \mathrm{V}_{\mathrm{cc}} \\ (\mathrm{~V}) \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \hline \text { Typical } \\ \hline \end{array}$	Units
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	0.25	
			2.5	0.6	v
			3.3	0.8	
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	-0.25	
			2.5	-0.6	v
			3.3	-0.8	
$\mathrm{V}_{\text {OHV }}$	Quiet Output Dynamic Valley V_{OH}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	1.5	
			2.5	1.9	V
			3.3	2.2	

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	7	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$	20	pF

AC Loading and Waveforms

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	GND

FIGURE 1. AC Test Circuit

FIGURE 2. Waveform for Inverting and Non-Inverting Functions

FIGURE 3. 3-STATE Output HIGH Enable and Disable Times for Low Voltage Logic

FIGURE 4. 3-STATE Output LOW Enable and Disable Times for Low Voltage Logic

FIGURE 5. Propagation Delay, Pulse Width and $t_{\text {REC }}$ Waveforms

FIGURE 6. Setup Time, Hold Time and Recovery Time for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
