REVISIONS DATE **APPROVED** DESCRIPTION LTR DEVICE OI INACTIVE FOR NEW DESIGN AS OF 22 SEP 1978. Delete vendors, CAGE 07263, CAGE 27014, and CAGE 18324. 9 Nov USE M38510/31503B--. 1987 RPEvery Add logic diagram. Table I, I_{IL2}, Add 'CLOCK' to "LOAD ENABLE T." F_{MAX} (C_L = 50 pF, 10 and 11) change from 20 ns to 15 ns. Editorial changes throughout. Revise to military format. **CURRENT CAGE CODE 67268** REV PAGE С С CC REV C С **REV STATUS** 9 10 OF PAGES 8 **PAGES** 1 **MILITARY DRAWING Defense Electronics** This drawing is available for use by **Supply Center** Dayton, Ohio BY all Departments and Agencies of the Department of Defense TITLE: MICROCIRCUIT, DIGITAL BIPOLAR, LOW POWER SCHOTTKY TTL, DECADE COUNTER, **Original date** of drawing: MONOLITHIC SILICON CODE IDENT. NO. DWG NO. SIZE 26 April 77 77009 14933 Α 11 REV OF AMSC N/A C PAGE 5962-E285

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DESC FORM 193

MAY 86

1	SCO	P

1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices". 1.1 Scope. This drawing describes the requirements for class B microcircuits in accordance with

1.2 Part number. The complete part number shall be as shown in the following example:

1.2.1 Device type. The device type shall identify the circuit function as follows:

Device type	Generic number	CIPCUIT
01	54LS160	Synchronous 4-bit decade counter

1.2.2 <u>Case outlines</u>. The case outlines shall be as designated in MIL-M-38510, appendix C and as follows:

Outline letter Case outline D-2 (16-lead, $1/4^{\rm w}$ x $7/8^{\rm w}$), dual-in line package F-5 (16-lead, $1/4^{\rm w}$ x $3/8^{\rm w}$), flat-package

1.3 Absolute maximum ratings.

```
-0.5 V dc to 7.0 V dc
                                                                  -1.5 V dc at -18 mA to 5.5 V dc -65°C to +150°C
                                                                   176 mW
Lead temperature (soldering, 10 seconds) ------
                                                                  +300°C
Thermal resistance, junction-to-case (\theta_{JC}):
    Cases E and F - - - - - - - - See MIL Junction temperature (T_J) - - - - - - - - - + 175 °C
                                                                  See MIL-M-38510, appendix C
```

1.4 Recommended operating conditions.

4.5 V dc minimum to 5.5 V dc maximum

1/ Must withstand the added P_D due to short circuit test (e.g., I_{OS}).

MILITARY DRAWING	SIZE A			DWG NO	77009		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV	С		PAGE	2	

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.3 Logic diagram. The logic diagram shall be as specified on figure 3.
 - 3.2.4 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.

MILITARY DRAWING	SIZE A			DWG NO	77009	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV	С		PAGE	3

	TABLE I	. Elect	rical per	formance characte				
Test	Symbol	-5	Condit 5°C < T _C	< +125°C	Group A subgroups	Lim Min	its	Unit
High-level output voltage	I V _{OH}	1Vcc = 4		Tse specified = -0.4 mA = 0.7 V	1, 2, 3	2.5	Max	٧
Low-level output voltage	V _{OL}	V _{CC} = 4 V _{IH} = 2	1.5 V; I _{OL} 2.0 V; V _{IL}	= 4.0 mA = 0.7 V	1, 2, 3	i 1 1	0.4	٧
Input clamp voltage	VIC	V _{CC} = 42	1.5 V; I _{IN} 25°C	= -18 mA	1		-1.5	٧
High-level input current	I IH1	ACC = {	5.5 V 2.7 V	Data, clear, Enable P	1, 2, 3	 	20	μΑ
	I _{IH2}	- 		Load, clock, Enable T	1, 2, 3		40	μ Α
	I IH3	ACC =	5.5 V 5.5 V	Data, clear, Enable P	1, 2, 3		100	 μ Α
	I _{IH4}	- [Load, clock, Enable T	1, 2, 3		200	 μ Α
Low-level input current	IILI			Data, clear, Enable P	1, 2, 3	† 	-400	μ Α
	I _{IL2}	- 		 Load, clock, Enable T	1, 2, 3		 -800	 μ Α
Short-circuit output current	108	V _{CC} =	5.5 V, V ₀	UT = 0.0 V <u>1</u> /	1, 2, 3	-6	-130	l mA
High-level supply current	ICCH	V _{CC} =	5.5 V		1, 2, 3		31	mA
Low-level supply current	ICCL				1, 2, 3		32	mA
Functional tests		See 4.	3.1c		7			
See footnotes at end of	table.							
			SIZE		DWG NO).		
MILITARY D			А	I	1	7700)9	
DEFENSE ELECTRONICS DAYTON, (S SUPPLY CE DHIO	NTER		REV	·	PAGE	Ξ 4	

unless otherwise specified Min Max	MHz MHz MHz MHz MHz MHz MHz 38 ns 53 ns 53 ns 43 ns 60 ns 43 ns 56 ns	25 15 20	9 10,11 9 10,11 9	wise specified C _L = 15 pF ±10% C _L = 50 pF ±10% C _L = 15 pF ±10%	unless other V _{CC} = 5.0 V; R _L = 2 kΩ ±5%	 	
$R_L = 2 \text{ kn} \pm 5\%$ $R_L = 2 \text{ kn} \pm 5\%$ $C_L = 50 \text{ pF} \pm 10\%$ $C_L = 15 \text{ pF} \pm 10\%$ $C_L = 15 \text{ pF} \pm 10\%$ $C_L = 50 \text{ pF} \pm 10\%$ $C_L = 15 \text{ pF} \pm 10\%$ $C_L = 15 \text{ pF} \pm 10\%$ $C_L = 15 \text{ pF} \pm 10\%$ $C_L = 50 \text{ pF} \pm 10\%$	MHz	15 20	9 10,11 9 10,11 9 10,11	C _L = 50 pF ±10% C _L = 15 pF ±10%	R _L ੱ≖ 2 kΩ ± 5%	f _{MAX}	aximum clock frequency
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MHz MHz	20	9 10,11	C _L = 50 pF ±10% C _L = 15 pF ±10%	R _L ੱ≖ 2 kΩ ± 5%	I MAX	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MHz 38 ns 53 ns 43 ns 60 ns 35 ns 49 ns 56 ns 56 ns		10,11 9 10,11	C _L = 15 pF ±10%	<u>2</u> /	1	arrimani oroca rroquency
ropagation delay time, clear to Q	38 ns 53 ns 43 ns 60 ns 35 ns 49 ns 40 ns 56 ns	15	9 10,11	C _L = 15 pF ±10%			
Clear to Q CL = 50 pF $\pm 10\%$ 9 43 r 10,11 60	53 ns 43 ns 60 ns 35 ns 49 ns 56 ns 56 ns		10,11				
Clear to Q CL = 50 pF $\pm 10\%$ 9 43 r 10,11 60	53 ns 43 ns 60 ns 35 ns 49 ns 56 ns 56 ns		10,11			1+	
ropagation delay time, clock to carry	60 ns 35 ns 49 ns 40 ns 56 ns					CPHLI	clear to Q
ropagation delay time, clock to carry	60 ns 35 ns 49 ns 40 ns 56 ns			10 - 50 nF ±10%		1	
clock to carry	49 ns 40 ns 56 ns			0		¦	
clock to carry	49 ns 40 ns 56 ns		i 9	IC - 15 pF ±10%		1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	56 ns	}				I CPLH2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1		1 9				
C _L = 50 pF ±10% 9 40 r 10,11 56 r	35 ns		10,11			<u> </u>	
		ľ	9	$ C_1 = 15 \text{ pF} \pm 10\%$		tou a	
ropagation delay time, tp _{LH3} C _L = 15 pF ±10% 9 24 r clock (load input high) to 0	49 ns		10,11			OPAL Z	
ropagation delay time, tp _{LH3} C _L = 15 pF ±10% 9 24 r clock (load input high) to 0	40 ns	i	¦ 9	$ C_1 = 50 \text{ pF } \pm 10\%$			
ropagation delay time, cp_H3 clock (load input 10,11 34 r	56 ns		10,11			<u>i</u>	
clock (load input 10,11 34 r		i	9	$ C_1 = 15 \text{ pF} \pm 10\%$		to us	Propagation delay time.
high) to Q	34 ns		10,11	<u> </u>		PLNS	clock (load input
$C_1 = 50 \text{ pf} \pm 10\% + 9 + 1 + 129 + 129 + $	29 ns	İ	9	$C_{l} = 50 \text{ pF} \pm 10\%$		 	high) to Q
10,11 41 1	41 ns	<u> </u>	10,11	<u> </u>		ļ	
		<u>i</u>		C _j = 15 pF ±10%		l Itomia	
10,11 38	38 ns	<u> </u>	10,11			i i i i i i i i i i i i i i i i i i i	
		<u>i </u>		C _L = 50 pF ±10%		1	
10,11 45	45 ns	<u> </u>	10,11	\ <u></u>		1	
	1 1	i		IC = 15 nF ±10%		I Ito HA	Propagation delay time.
clock (load input		<u> </u>		10 - 10 p0~		1	clock (load input
$C_1 = 50 \text{ pF} \pm 10\% + 9 + 1 + 30 + 1$	25 ns 35 ns		10,11			· ·	low) to U
10,11 42	35 ns		T 9				
$ t_{\text{PH}} _{4}$ $ C_{\text{I}} = 15 \text{ pF} \pm 10\%$ $ 9$ $ 29$	35 ns						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35 ns 30 ns 42 ns 29 ns		9 10,11	C _L = 50 pF ±10%		tphi 4	
10,22	35 ns 30 ns 42 ns		9 10,11			tpHL4	
C ₁ = 50 pF ±10% 9 34	35 ns 30 ns 42 ns		9 10,11	C _L = 50 pF ±10%		t _{PHL4}	,
low) to Q $ \begin{vmatrix} C_L = 50 \text{ pF } \pm 10\% & 9 & 30 \\ \hline & 10,11 & 42 \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & &$		 	1 10,11	10 p. 200			low) to 0

TAI	BLE I. E	lectrical perfor	mance characteristi	<u>cs</u> - Continue	ed.		
Test Symbol		Cond	itions C < +125°C	Group A subgroups	Lin	its	Unit
1636		unless othe	rwise specified		Min	Max	<u> </u>
Propagation delay time,	 tplH5	 Vcc = 5.0 V:	 C _L = 15 pF ±10%	9	! !	23	ns
Enable T to carry	PENS	$V_{CC} = 5.0 \text{ V};$ $ R_L = 2 \text{ k}\Omega \pm 5\%$		10,11		32	ns
	1	2/	 C _L = 50 pF ±10%	 9	 	28	ns
	<u> </u>	<u>.</u> į	<u> </u>	10,11	Ţ <u>.</u>	39	ns
	l tp _{HL5}	1	 C _L = 15 pF ±10%	9		23	ns
	1	1	<u> </u>	10,11		32	ns
	1	1	 C _L = 50 pF ±10%	9	! !	28	ns
	1	ļ	1	10,11	Ţ	39	ns

Not more than one output should be shorted at a time, and the duration of the short circuit condition should not exceed 1 second.

2/ Propagation delay time testing and maximum clock frequency testing may be performed using either $C_L = 15 \, \text{pF}$ or $C_L = 50 \, \text{pF}$. However, the manufacturer must certify and guarantee that the microcircuits meet the switching test limits specified for a 50 pF load.

MILITARY DRAWING	SIZE A		DWG NO	77009	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV C		PAGE	6

- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section $\frac{4 \text{ of MIL-M-38510}}{4 \text{ of MIL-M-38510}}$ to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test (method 1015 of MIL-STD-883).
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125$ °C, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-SID-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, 6, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 7 tests shall verify the truth table.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125$ °C, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.

	SIZE	 		DWG NO		
MILITARY DRAWING	SIZE				77009	
DEFENSE ELECTRONICS SUPPLY CENTER		I		l	7.003	
DAYTON, OHIO		REV	С		PAGE	7

FIGURE 1. Terminal connections (top view).

Enable T	Enable P 	Action on the rising clock edge (,\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
X	i x	Reset (clear)
l L X	X	Load (Data _n - Q _n)
l l H	Н	Count (Increment)
l L	X	No change (hold)
) X	 L	No change (hold)
	T X X X X X X X X X	X X H H

H = High voltage level
L = Low voltage level
X = Don't care

FIGURE 2. Truth table.

MILITARY DRAWING	SIZE A			DWG NO	770 770	09
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV	С		PAGE	8

Powered by ICminer.com Electronic-Library Service CopyRight 2003

FEB 86

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 3, 9
Group A test requirements (method 5005)	1, 2, 3, 7, 9 10, 11**
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3

* PDA applies to subgroup 1.
 ** Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.

6.2 Replaceability. Replaceability is determined as follows:

- a. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- b. When a QPL source is established, the part numbered device specified in this drawing will be replaced by the microcircuit identified as part number M38510/315038--.
- Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE		DWG NC	77009
		REV C		PAGE 10

6.4 Approved sources of supply. Approved sources of supply are listed herein. Additional sources will be added as they become available. The vendors listed herein have agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar part number <u>1</u> /	Replacement military specification part number
7700901EX <u>2</u> /	04713 01295	54LS16OA/BEAJC SNJ54LS16OAJ	M38510/31503BEX
7700901FX <u>2</u> /	04713	54LS16OA/BFAJC SNJ54LS16OAW	M38510/31503BFX

- 1/ CAUTION: Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements to this drawing.
- 2/ Inactive for new design. Use QPL-38510 product.

Vendor CAGE number	Vendor name and address
04713	Motorola, Incorporated 7402 South Price Road Tempe, AZ 85283
01295	Texas Instruments, Incorporated P.O. Box 6448 Midland, TX 79701

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO

SIZE
A

T7009

REV
C

PAGE
11