P3C3148 SUPER FAST 1K x 4 STATIC CMOS RAM (SCRAM)

FEATURES

- High Speed
 - 6/7/8 ns (Address Access)
 - 4/5/6 ns (Chip Select Access)
- Single 3.3V ± 0.2V Power Supply
- Low Power Operation – 473 mW (Maximum)
- Full CMOS, 6T Cell

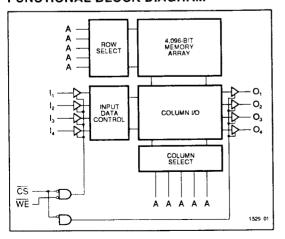
- Separate Data I/O
- Three-State Outputs
- TTL Logic Level Inputs and Outputs
- Produced with PACE III Technology™
- Compact Pinout - 24-Pin 300 mil SOIC

DESCRIPTION

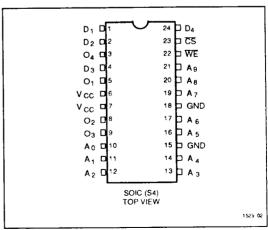
z#

The P3C3148 is a 4,096-bit super fast static RAM organized as 1 K x 4 with separate data I/O and center-pin power and ground. This SCRAM belongs to a new category of static RAMs which offer speeds comparable with ECL and GaAs devices, but dissipate only a fraction of the power. The CMOS memory requires no clocks or refreshing. Inputs and outputs are compatible with TTL logic levels. The RAM operates from a single $3.3V \pm 0.2V$ tolerance power supply.

Cycle times as fast as 6 nanoseconds permit greatly enhanced system operating speeds. The P3C3148 also features a Chip Select control with data access as fast as 4ns. CMOS is used to reduce power dissipation to a low 473 mW (maximum) while cycling at the fastest speed of 6ns per cycle. During the write operation, the data output lines track the input data.


The P3C3148 is manufactured with PACE III Technology which is Performance Advanced CMOS Engineered with two-level metal and epitaxial substrates to use 0.4 micron effective channel lengths giving 250 picosecond loaded internal gate delays. The nominal supply voltage is reduced from the conventional 5.0V to 3.3V, thus reducing output swings dramatically. This, together with the (lower inductance) center power and ground pins, and the extra power and extra ground pins, significantly reduces noise and ground bounce that would otherwise occur for very high speed circuitry.

The P3C3148 is available in a 24-pin 300 mil SOIC package providing excellent board-level densities.


*For a fan-in/fan-out of 4 at 85°C junction temperature and 3.3V supply.

ZJ.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

PERFORMANCE
SEMICONDUCTOR CORPORATION

Means Quality, Service and Speed

MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
V _{cc}	Power Supply Pin with Respect to GND	-0.5 to +5.0	٧
V _{TERM}	Terminal Voltage with Respect to GND (up to 5.0V)	-0.5 to V _{cc} +0.5	٧
T _A	Operating Temperature	-55 to +125	°C

Symbol	Parameter	Value	Unit
TBIAS	Temperature Under Bias	-55 to +125	°C
T _{STG}	Storage Temperature	-65 to +150	°C
P _T	Power Dissipation	1.0	W
I _{OUT}	DC Output Current	50	mA

1529 Tbl 02

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade ⁽²⁾	Ambient Temperature	GND	V _{cc}
Commercial	0°C to +70°C	0V	3.1V to 3.5V

1529 Tbl 03

1529 Tbl 01

DC ELECTRICAL CHARACTERISTICS

Over recommended operating temperature and supply voltage(2)

C	Doromotor	T1 O	P30		
Symbol	Parameter	Test Conditions	Min	Max	Unit
V _{IH}	Input High Voltage		2.2	V _{cc} +0.5 ⁽³⁾	٧
V _{IL}	Input Low Voltage		-0.5 ⁽³⁾	0.8	٧
V _{cD}	Input Clamp Diode Voltage	V _{cc} = Min., I _{IN} = -18 mA		-1.2	٧
V _{OL}	Output Low Voltage (TTL Load)	t_{ot} = +8 mA, V_{cc} = Min.		0.4	٧
V _{olc}	Output Low Voltage (CMOS Load)	$I_{OLC} = +100 \mu\text{A}, V_{CC} = \text{Min}.$		0.2	٧
V _{OH}	Output High Voltage (TTL Load)	I _{OH} =4 mA, V _{CC} = Min.	2.4		V
V _{ohc}	Output High Voltage (CMOS Load)	$I_{OHC} = -100 \mu A, V_{CC} = Min.$	V _{cc} -0.2		٧
I _{LI}	Input Leakage Current	V _{cc} = Max., V _{IN} = GND to V _{cc}	-10	+10	μА
I _{LO}	Output Leakage Current	$V_{cc} = Max.$, $\overline{CS} = V_{H}$, $V_{OUT} = GND$ to V_{cc}	-50	+50	μА

POWER DISSIPATION CHARACTERISTICS

Symbol	Parameter	Test Condition	-6	-7	-8	Unit
l _{cc}	Dynamic Operating Current	$V_{cc} = Max.$, $f = Max.$, Outputs Open, $V_{iN} \le V_{iL}$ or $V_{iN} \ge V_{iH}$	135	120	110	mA

1529 Tbl 05

1529 Tbl 04

CAPACITANCES(4)

 $(V_{cc} = 3.3V, T_A = 25^{\circ}C, f = 1.0MHz)$

Symbol	Parameter	Conditions	Тур.	Unit
CIN	Input Capacitance	V _{IN} = 0V	5	рF

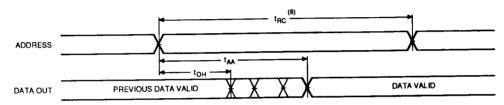
1529 Tbl 06

Symbol	Parameter	Conditions	Тур.	Unit
C _{out}	Output Capacitance	V _{OUT} = 0V	7	pF

1529 Tbl 07

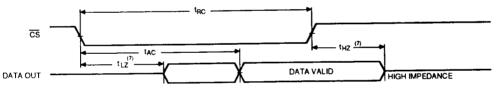
Notes:

- Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to MAXIMUM rating conditions for extended periods may affect reliability.
- Extended temperature operation guaranteed with 400 linear feet per minute of air flow.
- Transient inputs with V_L and I_L not more negative than -3.0V and -100mA, respectively, are permissible for pulse widths up to 20ns. Input voltages exceeding V_{cc} + 0.5 will cause extremely large currents to flow into the input pins.
- 4. This parameter is sampled and not 100% tested.


AC CHARACTERISTICS—READ CYCLE

Over recommended operating temperature and supply voltage(2)

		-	-6 -7		7	-8			
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit	
t _{BC}	Read Cycle Time	6		7		8		ns	
t _{AA}	Address Access Time		6		7		8	ns	
t _{AC}	Chip Enable Access Time		4		5		6	ns	
t _{on}	Output Hold from Address Change	1		1		1	<u> </u>	ns	
t _{LZ}	Chip Enable to Output in Low Z	1		1		1		ns	
t _{HZ}	Chip Disable to Output in High Z		4		5		6	ns	


1529 Tbl 08

TIMING WAVEFORM OF READ CYCLE NO. 1 (5)

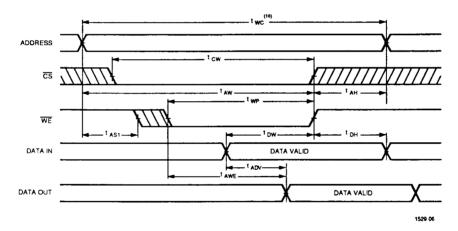
1529 04

TIMING WAVEFORM OF READ CYCLE NO. 2 (6)

1529 05

Notes:

- 5. CS is LOW and WE is HIGH for READ cycle.
- WE is HIGH, and address must be valid prior to or coincident with CS transition LOW.
- Transition is measured ±200mV from steady state voltage prior to change with specified loading in Figure 1. This parameter is sampled and not 100% tested.
- Read Cycle Time is measured from the last valid address to the first transitioning address.

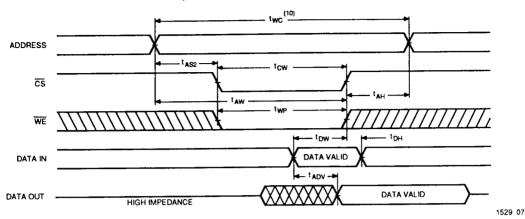

AC CHARACTERISTICS—WRITE CYCLE

Over recommended operating temperature and supply voltage(2)

	_	-(5	-7	7	-	8	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
t _{wc}	Write Cycle Time	6		7		8		ns
t _{cw}	Chip Enable Time to End of Write	5		6		7		ns
t _{AW}	Address Valid to End of Write	5		6		7		ns
t _{AS1}	Address Set-up Time (WE controlled cycle)	1		1		1		ns
t _{AS2}	Address Set-up Time (CS controlled cycle)	0		0		0		ns
t _{wp}	Write Pulse Width	4		5		6		ns
t _{AH}	Address Hold Time	1		1		1		ns
t _{DW}	Data Valid to End of Write	3		4		5		ns
t _{DH}	Data Hold Time	1		1		1		ns
t _{AWE}	Write Enable to Data-out Valid		5		6		7	ns
t _{ADV}	Data-in Valid to Data-out Valid		5		6		7	ns

1529 Tbi 09

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED) (#)



Notes:

9. CS and WE must be LOW for WRITE cycle.

 Write Cycle Time is measured from the last valid address to the first transition address.

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED) *)

1529 Tbl 10

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns
Input Timing Reference Level	1.5V
Output Timing Reference Level	1.5V
Output Load	See Figures 1 and 2

Mode	CS	WE	Output
Standby	Н	х	High Z
Read	L	Н	D _{out}
Write	L	L	D _{IN}

1529 Tbl 11

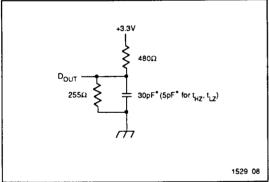


Figure 1. Output Load

Note:

Due to the ultra-high speed of the P3C3148, care must be taken when testing this device; an inadequate setup can cause a normal functioning part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the V_{cc} and ground planes directly up to the contactor fingers. A 0.01 μF high

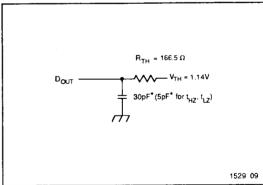
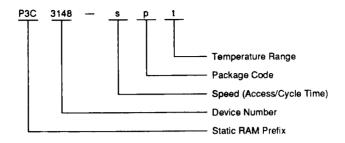



Figure 2. Thevenin Equivalent

frequency capacitor is also required between V_{cc} and ground. To avoid signal reflections, proper termination must be used; for example, a 50 Ω test environment should be terminated into a 50 Ω load with 1.14V (Thevenin Voltage) at the comparator input, and a 116 Ω resistor must be used in series with $D_{o,n}$ to match 166 Ω (Thevenin Resistance).

^{*} including scope and test fixture.

ORDERING INFORMATION

- s = Speed (access/cycle time in ns), e.g., 6, 7, 8
- p = Package code, i.e., P, S, L.
- t = Temperature range, i.e., C.

1529 10

PACKAGE SUFFIX

Package Suffix	Description
S	Plastic SOIC, 300 mil wide standard

TEMPERATURE RANGE SUFFIX

Temperature Range Suffix	Description	
С	Commercial Temperature Range, 0°C to +70°C.	

1529 Tbl 13

SELECTION GUIDE

The P3C3148 is available in the following temperature, speed and package options.

Temperature Range	Package	Speed (ns)	6	7	8
Commercial	Plastic SOIC	-	-6SC	-7SC	-8SC

1529 Tbl 14