REVISIONS LTR DESCRIPTION DATE **APPROVED** С Delete Vendor, CAGE 18324 9 APRII Revise to military drawing format. 1987 D Add vendor CAGE 18324. 6 OCT Change drawing code ident. no. to 1987 67268. Editorial changes throughout. DEVICE O1 INACTIVE FOR NEW DESIGN AS OF 9 APRIL 1987 USE M38510/32803B - -. **CURRENT CAGE CODE 67268** REV PAGE REV D D **REV STATUS OF PAGES** 10 **PAGES** 1 2 **PREPARED** ITARY DRAWING **Defense Electronics Supply Center** This drawing is available for use by all Departments and Agencies of the Dayton, Ohio Department of Defense MICROCIRCUITS, DIGITAL, LOW POWER SCHOTTKY TTL BUS TRANSCEIVERS WITH THREE-STATE OUTPUTS MONOLITHIC SILICON TITLE: Original date of drawing: 30 April 81 CODE IDENT. NO. DWG NO. SIZE 80021 14933 Α 10 AMSC N/A REV PAGE D

5962-E602

<u>DISTRIBUTION STATEMENT A.</u> Approved for public release; distribution is unlimited. **DESC FORM 193**

MAY 86

- 1. SCOPE
- 1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".
 - 1.2 Part number. The complete part number shall be as shown in the following example:

1.2.1 Device type. The device type shall identify the circuit function as follows:

Device type

Generic number

Circuit

01

54LS245

Octal bus transceivers with three-state outputs

1.2.2 Case outlines. The case outlines shall be as designated in appendix C of MIL-M-38510, and as follows:

Outline letter

S

Case outline

C-2 (20-terminal, .350" x .350"), square chip carrier

F-9 (20-lead, 1/4" x 1/2"), flat package

1.3 Absolute maximum ratings.

Supply voltage range - - - - - - - - - - -DC input voltage - - - - - - - - - - - - -Storage temperature- - - - - - - - - - - -Maximum power dissipation (P_D) per device 1/--Lead temperature (soldering, 10 seconds) ----Thermal resistance, junction-to-case (O_{JC}): Cases S and 2 -----

-0.5 V dc to +7.0 V dc -0.5 V dc to V_{CC} +0.5 V dc -65 C to +150 C 522.5 mW +300 C

See MIL-M-38510, appendix C +175°C Junction temperature (T_J) ------

1.4 Recommended operating conditions.

4.5 V dc minimum to 5.5 V dc maximum 2.0 V dc -55°C to +125°C -12 mA maximum 12 mA maximum Low level output current (I_{OL}) - - - - - - - -

I/Must withstand the added P_D due to snort circuit test (e.g., I_{OS}).

MILITARY DRAWING **DEFENSE ELECTRONICS SUPPLY CENTER** DAYTON, OHIO

DWG NO SIZE 80021 REV PAGE D 2

DESC FORM 193A FFR 86

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2. Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
- 3.2.1 Terminal connections and logic diagram. The terminal connections and logic diagram shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.3 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO

SIZE
A

BOUG NO.

80021

REV C PAGE 3

	T	ABLE I. Elec	trical pe	rformance characte	ristics.				
Test	Symbol	-5	Condit 5°C < Tc	ions < +125°C,		roup A ubgroups	Limi	its	Uni [.]
	<u>i</u>	un1	ess other	wise specified			Min	Max	
High level input voltage	V _{IH}	<u> </u>				1, 2, 3	2.0	<u> </u>	٧
Low level input voltage	VIL				1	1, 2, 3	<u> </u>	0.7	V
Input clamp voltage	VIC	V _{CC} = 4.5 V, T _C = +25°C		$I_{IN} = -18 \text{ mA},$		1		-1.5	V
High level output voltage	V _{OH}	V _{CC} = 4.5 V, V _{IL} = 0.7 V,		V _{IH} = 2.0 V, I _{OH} = -3 mA		1, 2, 3	2.4	 	V
Low level output voltage	VOL	V _{CC} = 4.5 V, V _{IH} = 2.0 V,		I _{OL} = 12 mA V _{IL} = 0.7 V		1, 2, 3		0.4	V
Off-state output current, high level voltage applied	IOZH	V _{CC} = 5.5 V, V _{IH} = 2.0 V, V _{IL} = 0.7 V		V _{OH} = 2.7 V		1, 2, 3		20	μ A
Off-state output current, low level voltage applied	I _{OZL}			V _{OL} = 0.4 V	 	1, 2, 3	! ! !	-200	μА
High level input	I I H1	V _{CC} = 5.5 V,	·	V _{IN} = 5.5 V	1	1, 2, 3		0.1	mA
High level input current, any input	I _{IH2}	V _{CC} = 5.5 V,		V _{IN} = 2.7 V		1, 2, 3		20	μА
Low level input current	IIL	V _{CC} = 5.5 V,	·	V _{IL} = 0.4 V		1, 2, 3		-200	μА
Output short circuit current	105	V _{CC} = 5.5 V V _{OUT} = 0.0	<u>1</u> /) 	1, 2, 3	-40	-225	mA
Supply current	I _{CC}	V _{CC} = 5.5 V		Outputs high		1, 2, 3		70	mA
				Outputs low		1, 2, 3		90	mA
				 All outputs di	sabled	1, 2, 3	1	95	mА
Functional tests		 See 4.3.1c				7	} 	1	<u> </u>
See footnote at en	d of tabl	e.							
MILITARY			SIZE		DWG	NO. 800	21		
DEFENSE ELECTRO DAYTO	INICS SUP ON, OHIO	PLY CENTER		REV	С	PAGE		4	

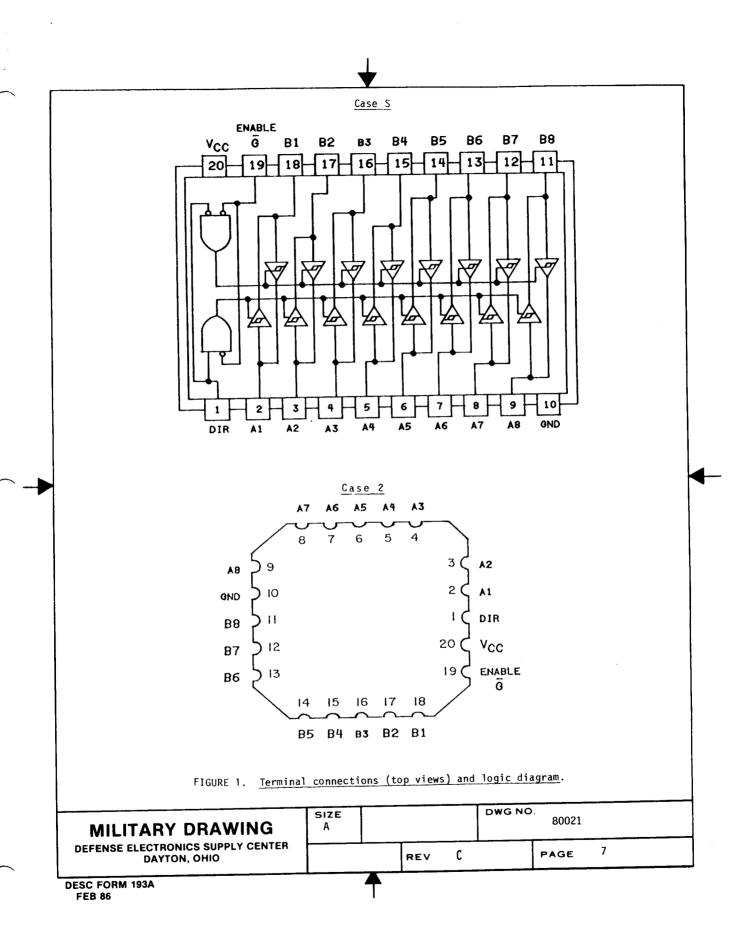
Test Sy	Symbol	Conditions -55°C < T _C < +125°C	Group A	<u>Limi</u>	Unit	
		unless otherwise specified	subgroups	Min	Max	
Propagation delay time, low-to- high level output	tpLH	$V_{CC} = 5.0 \text{ V},$ $R_L = 667\Omega \pm 5\%,$ $C_L = 50 \text{ pF} \pm 10\% 2/$	9, 10, 11		22	ns
Propagation delay time, high-to- low level output	t _{PHL}		9, 10, 11	 	22	ns
Disabled time to low level output	tpZL	† 	9, 10, 11	 	58	ns
Disabled time to high level output	tpZH	† 	9, 10, 11	 	58	ns
Low level time to disable output	tpLZ	-	9, 10, 11		39	ns
High level time to disable output	tPHZ	- † ! !	9, 10, 11		53	ns

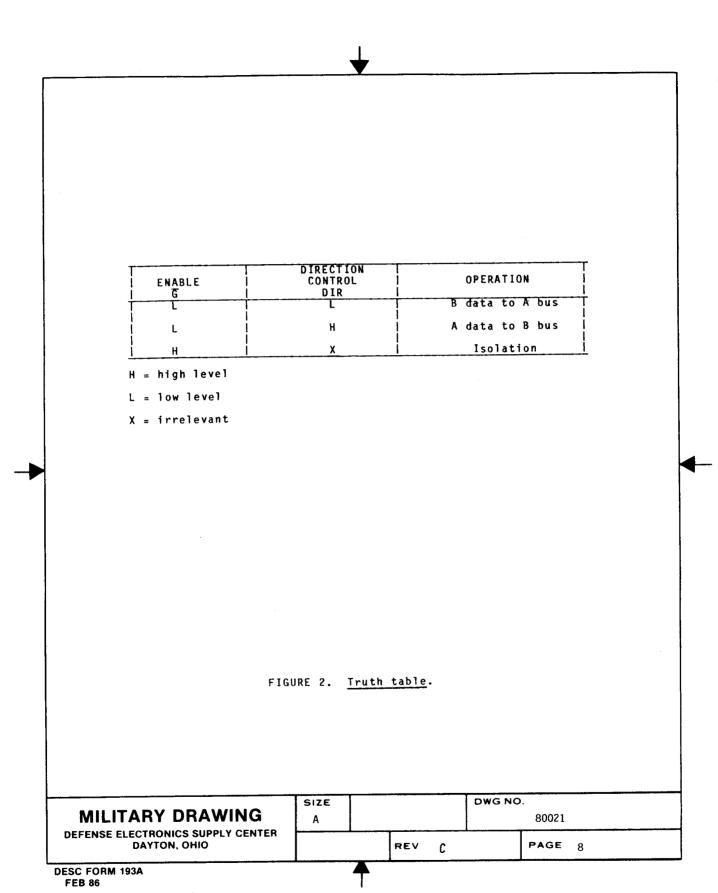
./ Not more than one output should be shorted at a time, and the duration of the short circuit condition should not exceed one second.

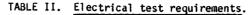
2/ Testing may be performed using either $C_L = 5$ pF, $C_L = 45$ pF, or $C_L = 50$ pF; however, the manufacturer shall certify that the microcircuits meet the switching test limits specified for a 50 pF load.

- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 <u>Verification and review</u>. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE			DWG NO	80021	
		REV	С		PAGE	5


4. QUALITY ASSURANCE PROVISIONS


- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test (method 1015 of MIL-STD-883).
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, 6, and 8 of table I of method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 7 tests shall verify the truth table.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.


MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE A			DWG NO	80021		
		REV	С		PAGE	6	

DESC FORM 193A FEB 86

FEB 80

 MIL-STD-883 test requirements 	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 3, 9
Group A test requirements (method 5005)	1, 2, 3, 7, 9 10, 11**
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3

- * PDA applies to subgroup 1.
 ** Subgroups 10 and 11, if not tested, shall be quaranteed to the specified limits in table I.
- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
- 6. NOTES
- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 Replaceability. Replaceability is determined as follows:
 - a. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
 - b. When a QPL source is established, the part numbered device specified in this drawing will be replaced by the microcircuit identified as part number M38510/32803B--.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, OH 45444, or telephone 513-296-5375.

	MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE				DWG NO	80021	<u></u>	
			<u> </u>	REV	C		PAGE	9	

6.4 Approved sources of supply. Approved sources of supply are listed herein. Additional sources will be added as they become available. The vendors listed herein have agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military di part number	_	Vendor CAGE number	Vendor similar part number <u>1</u> /	Replacement military specification part number
80021012X	2/	04713 01295 18324		M38510/32803B2X
8002101SX	2/	04713 01295 18324	54LS245/8SAJC SNJ54LS245W 54LS245/BSA	M38510/32803BSX

Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
 Inactive for new design, use QPL-38510 device.

Vendor CAGE number	Vendor name and address
04713	Motorola, Inc. 7402 South Price Road Tempe, AZ 85283
01295	Texas Instruments, Inc. P. O. Box 6448 Midland, TX 79701
18324	Signetics Corp. 4130 South Market Ct. Sacramento, CA 95834

SIZE DWG NO. **MILITARY DRAWING** A 80021 DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO REV D PAGE 10