| LTR | DESCRIPTION                                                                                                                                                                                          | DATE (YR-MO-DA) | APPROVED   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|
| В   | Add vendor CAGE 27014. Inactivate device 01DX for new design. Delete vendor CAGE 07263. Editorial changes throughout.                                                                                | 86-03-03        | M. A. Frye |
| С   | Add vendor CAGE 18714. Delete vendor CAGE 31019 and 27014. Technical changes in 1.3 and table 1. Change drawing CAGE code to 67268. Change to military drawing format. Editorial changes throughout. | 89-06-07        | M. A. Frye |
| D   | Add vendor CAGE 27014. Change vendor CAGE 18714 to 34371. Add device type 02. Technical and editorial changes throughout.                                                                            | 92-02-06        | M. A. Frye |

THE ORIGINAL FIRST PAGE OF THIS DRAWING HAS BEEN REPLACED.

#### CURRENT CAGE CODE 67268 REV SHEET REV SHEET E E Ε Ε Ε E Ε Ε **REV STATUS** REV E Ε ε E OF SHEETS 13 10 11 12 SHEET 3 PREPARED BY PMIC N/A DEFENSE ELECTRONICS SUPPLY CENTER Marcia B. Kelleher DAYTON, OHIO 45444 STANDARD CHECKED BY MICROCIRCUIT Ray Monnin DRAWING MICROCIRCUIT, DIGITAL, CMOS, APPROVED BY MONOSTABLE/ASTABLE MULTIVIBRATOR, Michael A. Frye THIS DRAWING IS AVAILABLE MONOLITHIC SILICON FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE DRAWING APPROVAL DATE 82-02-24 CAGE CODE SIZE 81020 AMSC N/A A 14933 REVISION LEVEL E OF 13 SHEET 1

DESC FORM 193-1

**JUL 94** 

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

5962-E414-94

- 1. SCOPE
- 1.1 <u>Scope</u>. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".
  - 1.2 Part or Identifying Number (PIN). The complete PIN shall be as shown in the following example:



1.2.1 Device type(s). The device type(s) shall identify the circuit function as follows:

| Device type | <u>Generic number</u> | <u>Circuit function</u>          |
|-------------|-----------------------|----------------------------------|
| 01          | 4047B                 | Monostable/Astable multivibrator |
| 02          | 4047B                 | Monostable/Astable multivibrator |

1.2.2 Case outline(s). The case outline(s) shall be as designated in MIL-STD-1835 and as follows:

| Outline letter | Descriptive designator | <u>Terminals</u> | Package style        |
|----------------|------------------------|------------------|----------------------|
| C              | GDIP1-T14 or CDIP2-T14 | 14               | Dual-in-line package |
| D              | GDFP1-F14 or CDFP2-F14 | 14               | Flat package         |

1.2.3 <u>Lead finish</u>. The lead finish shall be as specified in MIL-STD-883 (see 3.1 herein). Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference.

1.3 Absolute maximum ratings.

1.4 Recommended operating conditions.

 $\overline{1/}$  For  $T_C = +100$ °C to +125°C, derate linearly at 12 mW/°C to 200 mW.

| STANDARD MICROCIRCUIT DRAWING                        | SIZE<br>A |                     | 81020      |
|------------------------------------------------------|-----------|---------------------|------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL<br>E | SHEET<br>2 |

### 2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and bulletin</u>. Unless otherwise specified, the following specification, standards, and bulletin of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

### **SPECIFICATION**

MILITARY

MIL-1-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARDS

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

MIL-STD-1835 - Microcircuit Case Outlines.

BULLETIN

MILITARY

MIL-BUL-103 - List of Standardized Military Drawings (SMD's).

(Copies of the specification, standards, and bulletin required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

#### 3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-I-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-I-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-I-38535 is required to identify when the QML flow option is used.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-STD-883 (see 3.1 herein) and herein.
  - 3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
  - 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.
  - 3.2.3 Truth table. The truth table shall be as specified on figure 2.
  - 3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103 (see 6.6 herein).

| STANDARD<br>MICROCIRCUIT DRAWING<br>DEFENSE ELECTRONICS SUPPLY CENTER | SIZE 81020 A REVISION LEVEL SHEET 3 | 81020               |            |
|-----------------------------------------------------------------------|-------------------------------------|---------------------|------------|
| DAYTON, OHIO 45444                                                    | 3.1                                 | REVISION LEVEL<br>E | SHEET<br>3 |

TABLE I. <u>Electrical performance characteristics</u>.

| Test                     | Symbol          | Symbol Conditions                                                              |                                                                |                                                  | Group A   | Lin                                              | nits | Unit |
|--------------------------|-----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|-----------|--------------------------------------------------|------|------|
|                          |                 | -55°C <u>&lt;</u> T <sub>C</sub> ≤                                             | -55°C ≤ T <sub>C</sub> ≤ +125°C,<br>unless otherwise specified |                                                  | subgroups | Min                                              | Max  |      |
| Quiescent supply current | IDD             | V <sub>DD</sub> = 5 V <u>1</u> /<br>V <sub>IN</sub> = 0.0 V or V <sub>DD</sub> |                                                                | 01                                               | 1, 3      |                                                  | 1    | μА   |
| cui i efit               |                 | AIN - 0.0 A OL ADD                                                             |                                                                | <del> </del>                                     | 2         |                                                  | 30   | +    |
|                          | 1               |                                                                                |                                                                | 02                                               | 1, 3      |                                                  | 5    | †    |
|                          |                 |                                                                                |                                                                |                                                  | 2         | L                                                | 150  | +    |
|                          |                 | V <sub>DD</sub> = 10 V                                                         |                                                                | 01                                               | 1, 3      | -                                                | 2    | ļ    |
|                          |                 | AIN - O'O A OL ADD                                                             |                                                                | -                                                | 2         | ļ                                                | 60   | +    |
|                          |                 |                                                                                |                                                                | 02                                               | 1. 3      |                                                  | 10   | +    |
|                          |                 |                                                                                |                                                                | -                                                | 2         |                                                  | 300  | +    |
|                          |                 | V <sub>DD</sub> = 15 V <u>1/</u><br>V <sub>IN</sub> = 0.0 V or V <sub>DD</sub> |                                                                | 01                                               | 1, 3      | <b>—</b>                                         | 4    | †    |
|                          |                 | LIN - 0.0 A OI. ADD                                                            |                                                                | ļ                                                | 2         |                                                  | 120  | +    |
|                          |                 |                                                                                |                                                                | 02                                               | 1, 3      | -                                                | 20   | +    |
|                          |                 | $V_{DD} = 20 \text{ V} \frac{2}{\text{V}_{IN}} = 0.0 \text{ V or } V_{DD}$     |                                                                |                                                  | 2         |                                                  | 600  | +    |
|                          |                 |                                                                                |                                                                | 01                                               | 1.3       |                                                  | 20   | +    |
|                          |                 | AIN - 0.0 A OIL ADD                                                            |                                                                | <del>                                     </del> | 2         |                                                  | 600  | +    |
|                          |                 |                                                                                |                                                                | 02                                               | 1, 3      |                                                  | 100  | +    |
|                          |                 |                                                                                |                                                                |                                                  | 2         | <del>                                     </del> | 3000 | +    |
| Low level output voltage | v <sub>OL</sub> | $V_{IN} = 0.0 \text{ V or } V_{DD}$ $ Y_{O}  < 1 \mu A$                        | V <sub>DD</sub> = 5 V 1/                                       | All                                              | 1, 2, 3   |                                                  | 0.05 | V    |
|                          |                 |                                                                                | v <sub>DD</sub> = 10 v <u>1</u> /                              | ALL                                              | 1, 2, 3   |                                                  | 0.05 |      |
|                          |                 |                                                                                | v <sub>DD</sub> = 15 v                                         | ALL                                              | 1, 2, 3   |                                                  | 0.05 |      |
| High level output        | v <sub>OH</sub> | V <sub>IN</sub> = 0.0 V or V <sub>DD</sub><br> I <sub>O</sub>   < 1 μA         | V <sub>DD</sub> = 5 V 1/                                       | ALL                                              | 1, 2, 3   | 4.95                                             |      |      |
| <del>-</del> -           |                 | , 0.                                                                           | V <sub>DD</sub> = 10 V 1/                                      | All                                              | 1, 2, 3   | 9.95                                             |      |      |
|                          |                 |                                                                                | V <sub>DD</sub> = 15 V                                         | All                                              | 1, 2, 3   | 14.95                                            |      | T    |

| STANDARD<br>MICROCIRCUIT DRAWING                     | SIZE<br>A |                     | 81020   |
|------------------------------------------------------|-----------|---------------------|---------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, ONIO 45444 |           | REVISION LEVEL<br>E | SHEET 4 |

TABLE I. <u>Electrical performance characteristics</u> - Continued.

| Test                         | Symbol          | Conditions Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | Group A   | Limits |          | Unit           |
|------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|--------|----------|----------------|
|                              |                 | -55°C ≤ T <sub>C</sub> ≤ +125°C,<br>unless otherwise specified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | type     | subgroups | Min    | Max      | <u> </u>       |
| Low level input<br>voltage   | VIL             | V <sub>DD</sub> = 5 V<br>  V <sub>O</sub> = 0.5 V or 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALL      | 1, 2, 3   |        | 1.5      | V              |
|                              |                 | $ V_{DD}  = 10 \text{ V}$<br>$ V_{O}  = 1.0 \text{ V or } 9.0 \text{ V}$ 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALL      | 1, 2, 3   |        | 3.0      | <br> <br> <br> |
|                              |                 | V <sub>DD</sub> = 15 V   V <sub>O</sub> = 1.5 V or 13.5 V   V <sub></sub> | ALL      | 1, 2, 3   |        | 4.0      |                |
| -High level input<br>voltage | V <sub>IH</sub> | $ v_{DD}  = 5 \text{ V}$<br>$ v_{O}  = 0.5 \text{ V or } 4.5 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ALL      | 1, 2, 3   | 3.5    |          | V              |
| ı                            |                 | $ v_{DD}  = 10 \text{ V}$<br>$ v_{O}  = 1.0 \text{ V or } 9.0 \text{ V}$ $\underline{1}/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ALL      | 1, 2, 3   | 7.0    |          |                |
| ı                            | <br>            | V <sub>DD</sub> = 15 V<br>  V <sub>O</sub> = 1.5 V or 13.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ALL      | 1, 2, 3   | 11     |          | 1              |
| Low level output             | I <sub>OL</sub> | V <sub>DD</sub> = 5 V<br>  V <sub>O</sub> = 0.4 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ALL      | 1         | 0.51   |          | mA             |
| current                      | İ               | V <sub>0</sub> = 0.4 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 2         | 0.36   |          | -              |
| 3/                           | ļ               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u> | 3         | 0.64   |          | 1              |
|                              |                 | V <sub>DD</sub> = 10 V<br>  V <sub>O</sub> = 0.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALL      | 1 1       | 1.3    |          | 1              |
|                              |                 | v <sub>o</sub> = 0.5 v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 2         | 0.9    | ļ<br>    | _              |
|                              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 3         | 1.6    |          | 1              |
|                              |                 | V <sub>DD</sub> = 15 V<br>  V <sub>O</sub> = 1.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALL      | 1         | 3.4    |          | 1              |
|                              |                 | v <sub>o</sub> = 1.5 v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 2         | 2.4    |          | ]              |
|                              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 3         | 4.2    | <u> </u> |                |
| High level output            | I I OH          | V <sub>DD</sub> = 5 V<br>  V <sub>O</sub> = 4.6 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ALL      | 1         | 0.51   |          | mA             |
| current                      |                 | V <sub>0</sub> = 4.6 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 2         | -0.36  |          | <u> </u>       |
| <u>3</u> /                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 3         | -0.64  |          | 1              |
|                              |                 | v <sub>DD</sub> = 5 v<br>  v <sub>O</sub> = 2.5 v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01       | 1         | -1.6   | <u> </u> | 1              |
|                              |                 | V <sub>O</sub> = 2.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 2         | -1.15  |          | <u> </u>       |
|                              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 3         | -2.0   | 1        | i              |

| STANDARD MICROCIRCUIT DRAWING DEFENSE FLECTRONICS SUPPLY CENTER | SIZE<br>A |                     | 81020      |
|-----------------------------------------------------------------|-----------|---------------------|------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444            |           | REVISION LEVEL<br>E | SHEET<br>5 |

TABLE I. <u>Electrical performance characteristics</u> - Continued.

| Test                                                                                                | Symbol                                                         | Symbol Conditions                                                                           |                                   |           | Group A  | <u>Lim</u> | nits                                             | Unit    |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|-----------|----------|------------|--------------------------------------------------|---------|
|                                                                                                     | -55°C ≤ T <sub>C</sub> ≤ +125°C,<br>unless otherwise specified |                                                                                             | type                              | subgroups | Min      | Max        | <u> </u>                                         |         |
| High level output                                                                                   | IOH                                                            |                                                                                             | ALL                               | 1         | -1.3     |            | mA                                               |         |
| current 3/                                                                                          | Un.                                                            | V <sub>DD</sub> = 10 V<br>V <sub>O</sub> = 9.5 V                                            |                                   |           | 2        | -0.9       |                                                  |         |
|                                                                                                     |                                                                |                                                                                             |                                   |           | 3        | -1.60      |                                                  | -       |
|                                                                                                     |                                                                | V <sub>DD</sub> = 15 V                                                                      | · ——————                          | ALL       | 1        | -3.4       |                                                  | -       |
|                                                                                                     |                                                                | V <sub>DD</sub> = 15 V<br>V <sub>O</sub> = 13.5 V                                           |                                   |           | . 2      | -2.4       |                                                  | 1       |
|                                                                                                     |                                                                |                                                                                             |                                   |           | 3        | -4.2       |                                                  |         |
| Input current                                                                                       | IIN                                                            | V <sub>DD</sub> = 20 V                                                                      |                                   | All       | 1, 3     |            | ±0.1                                             | μΑ      |
| 2/                                                                                                  |                                                                | V <sub>DD</sub> = 20 V<br>V <sub>IN</sub> = 0.0 V or V <sub>DD</sub>                        |                                   |           | 2        |            | ±1.0                                             | <u></u> |
| Input capacitance                                                                                   | CIN                                                            | V <sub>IM</sub> = 0 V                                                                       |                                   | 01        | 4        |            | 7.7                                              | pF      |
| Input capacitance   C <sub>IN</sub>   V <sub>IN</sub> = 0 V<br>T <sub>C</sub> = +25°C<br>See 4.3.1c |                                                                |                                                                                             | 02                                |           | <u> </u> | 7,5        | <u> </u>                                         |         |
| Functional test                                                                                     |                                                                | See 4.3.1d                                                                                  |                                   | ALL       | 7, 8     |            |                                                  |         |
| Pulse width                                                                                         | t <sub>w</sub>                                                 | R <sub>L</sub> = 200 kΩ                                                                     | V <sub>DD</sub> = 5 V <u>1</u> /  | 01        | 9        | 1000       |                                                  | ns      |
| (any input)                                                                                         |                                                                | $R_L = 200 \text{ k}\Omega$<br>$C_L = 50 \text{ pF minimum}$<br>$t_r = t_f = 20 \text{ ns}$ |                                   |           | 10, 11   | 1500       |                                                  |         |
|                                                                                                     |                                                                |                                                                                             |                                   | 02        | 9        | 1000       |                                                  | ,       |
|                                                                                                     |                                                                |                                                                                             |                                   |           | 10, 11   | 1500       | -                                                |         |
|                                                                                                     |                                                                |                                                                                             | v <sub>DD</sub> = 10 v <u>1</u> / | 01        | 9        | 230        | <del> </del>                                     | 1       |
|                                                                                                     |                                                                |                                                                                             |                                   |           | 10, 11   | 311        | <del>                                     </del> |         |
|                                                                                                     |                                                                |                                                                                             |                                   | 02        | 9        | 400        | <del> </del>                                     |         |
|                                                                                                     |                                                                |                                                                                             | <u> </u>                          |           | 10, 11   | 400        | <del>                                     </del> | -       |
|                                                                                                     |                                                                |                                                                                             | v <sub>DD</sub> = 15 v <u>1</u> / | 01        | 9        | 160        | <del> </del>                                     | -       |
|                                                                                                     |                                                                |                                                                                             |                                   | 02        | 10, 11   | 225<br>320 |                                                  | -       |
|                                                                                                     |                                                                |                                                                                             |                                   | 02        | 10, 11   | 320        |                                                  |         |
| Transition time                                                                                     |                                                                | 7                                                                                           | v <sub>DD</sub> = 5 V             | 01        | 9        | 10         | 200                                              |         |
| , ansition time                                                                                     | t <sub>TLH</sub>                                               |                                                                                             | DD - 7 4                          |           | 10, 11   | 15         | 300                                              | I       |
|                                                                                                     |                                                                |                                                                                             |                                   | 02        | 9 .      | 10         | 200                                              | 1       |
|                                                                                                     |                                                                |                                                                                             |                                   |           | 10, 11   | 15         | 300                                              | T       |

| STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE<br>A |                     | 81020      |
|------------------------------------------------------------------------------------|-----------|---------------------|------------|
|                                                                                    |           | REVISION LEVEL<br>E | SHEET<br>6 |

TABLE I. <u>Electrical performance characteristics</u> - Continued.

| Test                                           | Symbol            |                                                                  |                                   |          | Group A   | Limits   |              | Uni          |
|------------------------------------------------|-------------------|------------------------------------------------------------------|-----------------------------------|----------|-----------|----------|--------------|--------------|
|                                                |                   | -55°C ≤ T <sub>C</sub> ≤ †<br>unless otherwise                   | ·125°C,<br>specified              | type     | subgroups | Min      | Max          |              |
| Transition time                                | t <sub>THL</sub>  | $ R_{L}  = 200 \text{ k}\Omega$                                  | v <sub>DD</sub> = 10 v <u>1</u> / | 01       | 9         | 2.0      | 100          | i ns         |
|                                                | t <sub>TLH</sub>  | $ C_L  = 50 \text{ Pf minimum}$<br>$ t_r  = t_f = 20 \text{ ns}$ | ]<br>                             |          | 10, 11    | 2.0      | 150          | Ļ            |
|                                                |                   |                                                                  |                                   | 02       | 9         | 2.0      | 100          | 1            |
|                                                |                   |                                                                  |                                   | <u> </u> | 10, 11    | 2.0      | 150          | -            |
|                                                |                   |                                                                  | v <sub>DD</sub> = 15 v <u>1</u> / | 01       | . 9       | 2.0      | 80           | <u> </u>     |
|                                                |                   | <u>{</u>                                                         |                                   | ļ        | 10, 11    | 2.0      | 120          | 1            |
|                                                |                   | 02                                                               | 9                                 | 2.0      | 80        | ‡        |              |              |
|                                                | ļ                 |                                                                  | <u> </u>                          | 1        | 10, 11    | 2.0      | 120          | <u> </u>     |
| Propagation delay time,<br>Astable to OSC out, | tPHL1/<br>tPLH1   |                                                                  | v <sub>DD</sub> = 5 v             | 01       | 9         | 20       | 400          | Ļ            |
| Astable to OSC out                             |                   |                                                                  |                                   | -        | 10, 11    | 30       | 600          | <u> </u><br> |
|                                                |                   |                                                                  |                                   | 02       | 9         | 20       | 400          |              |
|                                                |                   |                                                                  |                                   |          | 10, 11    | 30       | 600          |              |
|                                                |                   |                                                                  | v <sub>DD</sub> = 10 v 1/         | 01       | 9         | 2.0      | 200          | -            |
|                                                |                   |                                                                  | 1                                 | <u> </u> | 10, 11    | 2.0      | 270          | 1            |
|                                                |                   |                                                                  |                                   | 02       | 9         | 2.0      | 200          | <del> </del> |
|                                                |                   |                                                                  | <u> </u>                          |          | 10, 11    | 2.0      | 280          | -            |
|                                                |                   |                                                                  | v <sub>DD</sub> = 15 v <u>1</u> / | 01       | 9         | 2.0      | 160          | 1            |
|                                                |                   |                                                                  |                                   | <u> </u> | 10, 11_   | 2.0      | 216          | 1            |
|                                                |                   |                                                                  |                                   | 02       | 9         | 2.0      | 160          | 4            |
|                                                | 1                 | 1                                                                |                                   |          | 10, 11    | 2.0      | 225          | 1            |
| Propagation delay time,                        | : rnuz            |                                                                  | $v_{DD} = 5 v$                    | 01       | 9         | 45       | 900          | ‡            |
| Astable to Q,<br>Astable to Q,                 | t <sub>PLH2</sub> |                                                                  |                                   |          | 10, 11    | 68       | 1350         | 1            |
| Astable to Q,<br>Astable to Q                  |                   |                                                                  |                                   | 02       | 9         | 45       | 900          | 1            |
|                                                | <br>              |                                                                  |                                   | 1        | 10, 11    | <br>  68 | 1 <u>350</u> |              |

| STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                     | 81020      |
|-----------------------------------------------------------------|-----------|---------------------|------------|
| DAYTON, OHIO 45444                                              |           | REVISION LEVEL<br>E | SHEET<br>7 |

TABLE I. Electrical performance characteristics - Continued.

| Test                                                                                        | Symbol                                                        | Conditions                                  |                                        | Device | Group A   | Limits |      | Unit       |   |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|----------------------------------------|--------|-----------|--------|------|------------|---|
|                                                                                             |                                                               | -55°C ≤ T <sub>C</sub> ≤<br>unless otherwis | +125°C,<br>e specified                 | type   | subgroups | Min    | Max  | <u> </u>   |   |
| Propagation delay time,                                                                     | pagation delay time, $t_{PHL2}$ , $R_L = 200 \text{ k}\Omega$ |                                             | <br> v <sub>DD</sub> = 10 v <u>1</u> / | 01     | 9         | 2.0    | 350  | l<br>L IIS |   |
| Astable to Q, $ t_{p_1 \sqcup 2} C_i = 50 \text{ pr m}$                                     | t <sub>PLH2</sub>                                             |                                             |                                        |        | 10, 11    | 2.0    | 473  | ļ<br>ļ     |   |
|                                                                                             | ' '<br>                                                       | ļ                                           | 02                                     | 9      | 2.0       | 500    | 1    |            |   |
|                                                                                             | ,                                                             |                                             |                                        | 10, 11 | 2.0       | 700    | -    |            |   |
|                                                                                             |                                                               |                                             | v <sub>DD</sub> = 15 v <u>1</u> /      | 01     | . 9       | 2.0    | 250  | <u> </u>   |   |
|                                                                                             |                                                               |                                             |                                        |        | 10, 11    | 2.0    | 338  | +          |   |
|                                                                                             |                                                               |                                             |                                        |        | 02        | 9      | 2.0  | 400        |   |
|                                                                                             | ļ                                                             |                                             |                                        | ļ      | 10, 11    | 2.0    | 500  | +          |   |
| Propagation delay time,   t <sub>PHL3</sub> , + Trig to Q,   t <sub>PLH3</sub> + Trig to Q, |                                                               | HL3'                                        | 01                                     | 9      | 60        | 1200   | 1    |            |   |
|                                                                                             |                                                               |                                             | <u> </u>                               | 10, 11 | 90        | 1800   | 1    |            |   |
| - Trig to <u>Q</u> ,<br>- Trig to Q                                                         |                                                               |                                             |                                        | 02     | 9         | 60     | 1200 | 1          |   |
|                                                                                             |                                                               |                                             |                                        |        | ļ         | 10, 11 | 90   | 1800       | 1 |
|                                                                                             |                                                               |                                             | v <sub>DD</sub> = 10 v <u>1</u> /      | 01     | 9         | 2.0    | 450  | +          |   |
|                                                                                             |                                                               |                                             | 10, 11 2                               | 2.0    | 608       | +      |      |            |   |
|                                                                                             | 1                                                             |                                             |                                        | 02     | 9         | 2.0    | 600  | ļ          |   |
|                                                                                             |                                                               |                                             |                                        |        | 10, 11    | 2.0    | 840  | +          |   |
|                                                                                             | v <sub>DD</sub> = 15 v <u>1</u> /                             | 01                                          | 9                                      | 2.0    | 300       | -      |      |            |   |
|                                                                                             |                                                               | ļ                                           | 10, 11                                 | 2.0    | 405       | -      |      |            |   |
|                                                                                             |                                                               |                                             |                                        | 02     | 9         | 2.0    | 480  | 1          |   |
|                                                                                             |                                                               |                                             |                                        |        | 10, 11    | 2.0    | 670  | <u> </u>   |   |

| STANDARD MICROCIRCUIT DRAWING                        | SIZE<br>A |                     | 81020      |
|------------------------------------------------------|-----------|---------------------|------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL<br>E | SHEET<br>8 |

## TABLE 1. <u>Electrical performance characteristics</u> - Continued.

| Test                                            | Test Symbol Conditions |                                                                                             |                                   | Device<br>type       | Group A subgroups | Lim | iits        | Unit     |
|-------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|----------------------|-------------------|-----|-------------|----------|
|                                                 |                        | -55°C ≤ T <sub>C</sub> ≤<br>unless otherwis                                                 | e specified                       | ified type subgroups |                   |     | Max         |          |
| Propagation delay time,<br>Retrig to <u>Q</u> , | tPHL4                  | R <sub>L</sub> = 200 kΩ                                                                     | v <sub>DD</sub> = 5 v             | 01                   | 9                 | 30  | 600         | ns       |
| Retrig to Q                                     | TPLH4                  | $R_L = 200 \text{ k}\Omega$<br>$C_L = 50 \text{ pF minimum}$<br>$t_r = t_f = 20 \text{ ns}$ |                                   | <u> </u>             | 10, 11            | 45  | 900         |          |
|                                                 | i                      |                                                                                             |                                   | 02                   | 9                 | 30  | 600         |          |
|                                                 |                        |                                                                                             |                                   |                      | 10, 11            | 45  | 900         |          |
|                                                 |                        |                                                                                             | v <sub>DD</sub> = 10 v <u>1</u> / | 01                   | 9                 | 2.0 | 300         | ļ        |
|                                                 |                        |                                                                                             |                                   |                      | 10, 11            | 2.0 | 405         | -        |
|                                                 |                        |                                                                                             |                                   | 02                   | 9                 | 2.0 | <b>3</b> 00 | 1        |
|                                                 |                        |                                                                                             |                                   |                      | 10, 11            | 2.0 | 420         |          |
|                                                 |                        | V <sub>DD</sub> = 15 V <u>1</u> /                                                           | 01                                | 9                    | 2.0               | 200 | <u> </u>    |          |
|                                                 |                        |                                                                                             |                                   |                      | 10, 11            | 2.0 | 270         | 1        |
|                                                 |                        |                                                                                             | 02                                | 9                    | 2.0               | 250 | <u> </u>    |          |
|                                                 |                        |                                                                                             |                                   |                      | 10, 11            | 2.0 | 350         | -        |
| Propagation delay time,                         | t <sub>PHL5</sub> ,    |                                                                                             | v <sub>DD</sub> = 5 v             | 01                   | 9                 | 30  | 600         | -        |
| external RESET to $Q$ , external RESET to $Q$   | t <sub>PLH5</sub>      |                                                                                             |                                   |                      | 10, 11            | 45  | 900         |          |
|                                                 |                        |                                                                                             |                                   | 02                   | 9                 | 30  | 600         |          |
|                                                 |                        |                                                                                             |                                   |                      | 10, 11            | 45  | 900         | 1        |
|                                                 |                        |                                                                                             | v <sub>DD</sub> = 10 v <u>1</u> / | 01                   | 9                 | 2.0 | 200         | <u> </u> |
|                                                 |                        |                                                                                             |                                   |                      | 10, 11            | 2.0 | 270         | 1        |
|                                                 |                        |                                                                                             |                                   | 02                   | 9                 | 2.0 | 250         |          |
|                                                 |                        |                                                                                             |                                   | 10, 11               | 2.0               | 350 | ļ           |          |
|                                                 |                        | V <sub>DD</sub> = 15 V <u>1</u> /                                                           | 01                                | 9                    | 2.0               | 140 | -           |          |
|                                                 |                        |                                                                                             |                                   |                      | 10, 11            | 2.0 | 189         | 1        |
|                                                 |                        |                                                                                             |                                   | 02                   | 9                 | 2.0 | 200         | ]        |
|                                                 |                        |                                                                                             |                                   |                      | 10, 11            | 2.0 | 280         |          |
|                                                 | •                      | •                                                                                           |                                   |                      | •                 |     |             |          |

 $<sup>\</sup>underline{1}/$  Guaranteed, if not tested, to the specified limits in table I.

| STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONIC SUPPLY CENTER | SIZE<br>A |                | 81020      |
|----------------------------------------------------------------|-----------|----------------|------------|
| DAYTON, OHIO 45444                                             |           | REVISION LEVEL | SHEET<br>9 |

 $<sup>\</sup>underline{2}$ / At  $T_{C}$  = -55°C test is performed with  $V_{DO}$  = 18 V.

<sup>3/</sup> The  $I_{OL}$  and  $I_{OH}$  tests are tested 100 percent at  $T_{C}$  = +25°C and are guaranteed if not tested for  $T_{C}$  = -55°C and  $T_{C}$  = +125°C

| Device types       | 01 and 02          |
|--------------------|--------------------|
| Case outlines      | C and D            |
| Terminal<br>number | Terminal<br>symbol |
| 1                  | С                  |
| 2 .                | R                  |
| 3                  | R C COMMON         |
| 4                  | ASTABLE            |
| 5                  | ASTABLE            |
| 6                  | -TRIGGER           |
| 7                  | ٧ <sub>ss</sub>    |
| 8                  | +TRIGGER           |
| 9                  | EXT. RESET         |
| 10                 | Q                  |
| 11                 | ā                  |
| 12                 | RETRIGGER          |
| 13                 | OSC OUT            |
| 14                 | V <sub>DD</sub>    |

FIGURE 1. Terminal connections.

# Device types 01 and 02

|            |         | Inputs             |       |        |       |                                                                      |
|------------|---------|--------------------|-------|--------|-------|----------------------------------------------------------------------|
| Astable    | Astable | +Tr <del>i</del> g | -Trig | Retrig | Reset | Function                                                             |
| 1          | х       | 0                  | 1     | 0      | 0     | Astable multivibrator (free running)                                 |
| x          | 0       | 0                  | 1     | 0      | 0     | Astable multivibrator (free running)                                 |
| <u>[</u> ] | 1       | 0                  | 1     | o      | 0     | Astable multivibrator                                                |
| 0          |         | 0                  | 1     | 0      | 0     | (true gating) Astable multivibrator (complement gating)              |
| 0          | 1       |                    | 0     | 0      | 0     | Monostable multivibrator                                             |
| 0          | 1       | 1                  |       | 0      | 0     | (positive-edge triggering) Monostable multivibrator                  |
| 0          | 1       | 1                  | 0     |        | 0     | (Negative-edge triggering) Monostable multivibrator (retriggering) . |
| x          | x       | x                  | X     | X      | 1     | Reset                                                                |

FIGURE 2. <u>Truth table</u>.

| STANDARD<br>MICROCIRCUIT DRAWING                     | SIZE<br>A |                     | 81020       |
|------------------------------------------------------|-----------|---------------------|-------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL<br>E | SHEET<br>10 |



- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.6 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply shall affirm that the manufacturer's product means the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.7 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 <u>Notification of change</u>. Notification of change to DESC-EC shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.9 <u>Verification and review</u>. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
  - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
  - a. Burn-in test, method 1015 of MIL-STD-883.
    - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
    - (2)  $T_A = +125$ °C, minimum.
  - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

TABLE II. Electrical test requirements.

| MIL-STD-883 test requirements                                      | Subgroups (in accordance with method 5005, table I) |
|--------------------------------------------------------------------|-----------------------------------------------------|
| Interim electrical parameters (method 5004)                        |                                                     |
| Final electrical test parameters (method 5004)                     | 1*,2,3,9                                            |
| Group A test requirements<br>(method 5005)                         | 1,2,3,4,7,8<br>9,10**,11**                          |
| Groups C and D end-point<br>electrical parameters<br>(method 5005) | 1,2,3                                               |

<sup>\*</sup> PDA applies to subgroup 1.

<sup>\*\*</sup> Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.

| STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                     | 81020       |
|-----------------------------------------------------------------|-----------|---------------------|-------------|
| DAYTON, OHIO 45444                                              |           | REVISION LEVEL<br>E | SHEET<br>12 |

- 4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
  - 4.3.1 Group A inspection.
    - a. Tests shall be as specified in table II herein.
    - b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
    - c. Subgroup 4 (C<sub>IN</sub> measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance. Capacitance shall be measured between the designated terminal and ground at a frequency of 1 MHz. Test all applicable pins on 5 devices with zero failures.
    - d. Subgroups 7 and 8 shall include verification of the truth table as specified on figure 2 herein.
  - 4.3.2 Groups C and D inspections.
    - a. End-point electrical parameters shall be as specified in table II herein.
    - b. Steady-state life test conditions, method 1005 of MIL-STD-883.
      - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
      - (2)  $T_{\Delta} = +125$ °C, minimum.
      - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
  - 5. PACKAGING
- 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-STD-883 (see 3.1 herein).
  - 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DESC-EC, Dayton, Ohio 45444-5270, or telephone (513) 296-5377.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-EC.

| STANDARD  MICROCIRCUIT DRAWING  DEFENSE ELECTRONICS SUPPLY CENTER  DAYTON, OHIO 45444 | SIZE<br>A |               | 81020    |
|---------------------------------------------------------------------------------------|-----------|---------------|----------|
|                                                                                       |           | REVISIC LEVEL | SHEET 13 |