
		<u>, </u>	1					R	E۷	SIO	NS						
			LT	R		I	DESCI					T	DATI	E	APPF	OVE	D
			В		for 1 Add outl	new de vendor ine ": ert te	e devi esign. CAGE 2". mili chang	270)14 / dr	to cas	e form		16 DE 8			Je	•
			<u> </u>											-			
			. ~ r	\ E	67	250											
	JT CA		~/ \11														
	VT CA	GE (ノ <u>ニ</u>	1	200 1 T	-	- 1		_					1 1		Т
REV	NT CA	GE () 	元 十	Ŧ		\ 		\dashv	1			+	\pm		\pm	E
REV PAGE		GE C		B I		$oxed{H}$	B B	В	В					\pm			
PAGE REV STATUS	REV	H	В	В	3 B	В	3 B	11	12								
PAGE REV STATUS OF PAGES	REV PAGES	B B B	B B	B E	B B 7	B 8	B B 10	11	12	 -	AF	H NY		H RA	W		G
PAGE REV STATUS OF PAGES Defense Electron Supply Center	REV PAGES	B B B B 1 2 3 PAEP	B 4 ARED	B [5 (B B 7	B 8	3 B	11 N	12 is d	_IT	is a	ıvaila	ble fo	or us	e by	IN	G
PAGE REV STATUS OF PAGES Defense Electron Supply Center	REV PAGES	B B B B 1 2 3 PAEP	B 4 ARED	B [5 (B B 7	B 8	B B 10	II N Th all	12 is d	arawing partme	is a nts a	ivaila ind A	ble fo Igenci	or us	e by	IN	G
PAGE REV STATUS OF PAGES Defense Electron Supply Center Dayton, Ohio	REV PAGES	B B B B 1 2 3 PAEP	B 4 ARED CKED	B BY	B B 5 7	B 8	B B 10	II Th all De	12 is d Dep	rawing partme ment o	is a nts a of Def	vaila nd A fense	ble fo genci	es of	e by		G
PAGE REV STATUS OF PAGES Defense Electron Supply Center Dayton, Ohio Original date	REV PAGES	B B B B 1 2 3 PAEP	B 4 ARED	B BY	B B 5 7	B 8	B B 10	II Th all De	12 is d Dep	rawing partme ment of MICI QUAI	is a nts a of Def ROCIF D-1	ivaila ind A fense RCUII TYPE	ble fo genci	es of	e by		G
	REV PAGES	B B B B 1 2 3 PAEP	ARED CKED	BY BY	B B 7	B B B B B B B B B B B B B B B B B B B	B B 10	II Th ail De	12 is d Dep	rawing partme ment of MICI QUAI	is a nts a of Def ROCIF D-1	ivaila ind A fense RCUII TYPE	Ible for spencion of the spenc	es of	e by		G
PAGE REV STATUS OF PAGES Defense Electron Supply Center Dayton, Ohio Original date of drawing:	REV PAGES	B B B B I I 2 3 B PAEP	ARED CKED	BY BY	3 B 5 7	B B B B B B B B B B B B B B B B B B B	3 B 9 10	II Th ail De	12 is d Depart	rawing partme ment of : MICI QUAI MONI	is a nts a of Def ROCIF D-1	ivaila ind A fense RCUII TYPE	Ible for spencion of the spenc	es of	e by		G

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DESC FORM 193 MAY 86

Minimum recovery time, reset inactive to At +25 C:	clock:	t _{REC}	3/		
V _{CC} = 2.0 V			– 17 ns		
V _{CC} = 4.5 V		·	30 ns 26 ns		
Minimum set-up time, data to clock: t _S At +25°C:	_		100		
V _{CC} = 2.0 V			20 ns 17 ns		
V _{CC} = 2.0 V			150 ns 30 ns 26 ns		
Minimum pulse width, reset, or clock: t At +25°C:	-				
V _{CC} = 2.0 V			16 ns 14 ns		
V _{CC} = 2.0 V			120 ns 24 ns 21 ns		
Minimum hold time, data from clock: t _H At -55°C to +125°C:	_				
V _{CC} = 2.0 V ₋			40 ns 8 ns 7 ns		
Maximum clock frequency: f _{MAX} <u>3</u> / At +25°C:					
V _{CC} = 2.0 V			– - 30 MHz – - 35 MHz		
VCC = 2.0 V			- 4 MHz - 20 MHz - 24 MHz		
3/ See figure 3.					
			•		
STANDARDIZED	SIZE A			84089	
MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	A	Щ,	REVISION LEVE		
DAYTON, OHIO 45444			B B	SHEET	3

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510 - Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

3. REQUIREMENTS

- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- $3.2\,$ Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
- 3.2.1 Terminal connections and logic diagram. The terminal connections and logic diagram shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.3 Switching waveforms. The switching waveforms shall be as specified on figure 3.
 - 3.2.4 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.

STANDARDIZED MILITARY DRAWING	SIZE A				84089	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REV	/ISION LEVEL B	•	SHEET	4

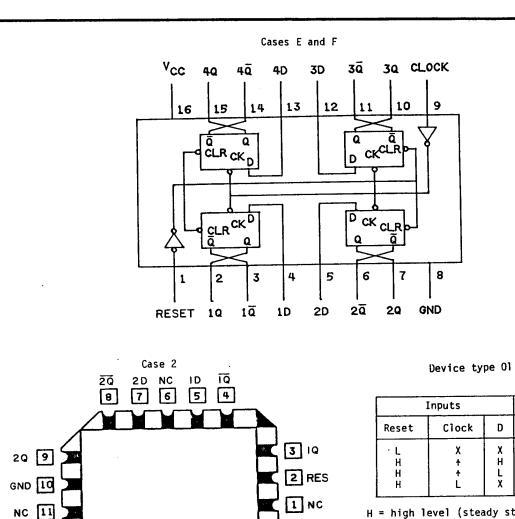
DESC FORM 193A SEP 87

	Υ	1		 	Limit	S	
Test	Symbol	Condition Condit	ons <u>1</u> / +125°C se specified	Group A subgroups	Min	Max	Unit
High-level output voltage	I v _{OH}	VIN = VIH or VIL	V _{CC} = 2.0 V	1, 2, 3	1.9		v !
		 	V _{CC} = 4.5 V	 - -	4.4		
		[[V _{CC} = 6.0 V		5.9		
		 I ₀ <u><</u> 4.0 mA 	V _{CC} = 4.5 V	 	3.7		!
	 	I ₀ <u><</u> 5.2 mA	V _{CC} = 6.0 V	 	5.2		
Low-level output voltage	v _{OL}	$ V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_0 \leq 20 \mu A$	V _{CC} = 2.0 V	1, 2, 3		0.1	
			V _{CC} = 4.5 V	_		0.1	! -
			V _{CC} = 6.0 V	 - -		0.1	! ! !
		I ₀ < 4.0 mA	V _{CC} = 4.5 V	 _!		0.4	
	 	$ I_0 \leq 5.2 \text{ mA}$	V _{CC} = 6.0 V	 		0.4	
High-level input voltage	V _{IH}		V _{CC} = 2.0 V	1, 2, 3	1.5		V L
			V _{CC} = 4.5 V	_	3.15		 -
	 		V _{CC} = 6.0 V		4.2		
Low-level input voltage	VIL		V _{CC} = 2.0 V	1, 2, 3		0.3	V
	 		V _{CC} = 4.5 V	_		0.9	
			V _{CC} = 6.0 V	 	 	1.2	<u> </u>
see footnotes at end of ta	ble.						
STANDARDIZI MILITARY DRAV		SIZE A			84089		
DEFENSE ELECTRONICS SU DAYTON, OHIO 45	PPLY CENT	ER	REVISION L	EVEL B	SHEE	T 5	

TABLE I	. Electi	rical performance c	haracteristics	- Continue	1.		
Test	Symbol	Conditio -55°C < T _C < unless otherwis	+125°C	Group A subgroups	Limit Min	S Max	Unit
Input capacitance	CIN	VIN = 0 V, T _C = +2 See 4.3.1c	25°C	4		10	pF
Quiescent current	Icc	V _{CC} = 6.0 V, V _{IN} =	V _{CC} or GND	1, 2, 3		160	μ Α
Input leakage current	IIN	V _{CC} = 6.0 V, V _{IN} =	· V _{CC} or GND	1, 2, 3		±1	μА
Functional tests		See 4.3.1d	7				
Propagation delay time, clock to Q or Q	 tpHL1 tpLH1	T _C = +25°C C _L = 50 pF ±10%	V _{CC} = 2.0 V	9		175	ns
<u>2</u> /		(see figure 3) 	V _{CC} = 4.5 V			35	<u> </u>
_			$V_{CC} = 6.0 V$			30	
		T _C = -55°C, +125°C C _L = 50 pF ±10%	V _{CC} = 2.0 V	10, 11		265 	 ns
		(see figure 3)	V _{CC} = 4.5 V			53	
		 	V _{CC} = 6.0 V			45	
Propagation delay time, reset to Q or U	 tpHL2 tpLH2	T _C = +25°C C _L = 50 pF ±10%	V _{CC} = 2.0 V	9		 185 	ns
2/		(see figure 3) 	V _{CC} = 4.5 V			 37 	1
<u>≃</u>			V _{CC} = 6.0 V			31	
		 T _C = -55°C, +125°C C _L = 50 pF ±10%	V _{CC} = 2.0 V	10, 11		280	ns
	 	(see figure 3)	V _{CC} = 4.5 V	 		 56 	
	1		V _{CC} = 6.0 V			48 	

See footnotes at end of table.

STANDARDIZED MILITARY DRAWING	SIZE A		84089	84089		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVE	EL SHEE	т 6		


DESC FORM 193A SEP 87

☆ U.S. GOVERNMENT PRINTING OFFICE: 1987—549-096

Т	ABLE I. Electi	rical performance c	haracteristics	- Continue	d.			
Test	Symbol		ns <u>1</u> /	Group A	Limit		Unit	
		-55°C < T _C < unless otherwis	+125 C se specified	subgroups	Min	Max	<u> </u>	
Transition time $3/$	I t _{TLH} t _{THL}	T _C = +25°C C _L = 50 pF ±10%	V _{CC} = 2.0 V	9		75	ns	
		(see figure 3) 	V _{CC} = 4.5 V			 15 		
		 	V _{CC} = 6.0 V	- 		13	T 	
			V _{CC} = 2.0 V	10, 11		110	ns	
		l(see figure 3)	V _{CC} = 4.5 V	- 		22	T 	
			V _{CC} = 6.0 V	- 		19	Ţ	

- I/ For a power supply of 5.0 V $\pm 10\%$ the worst case output voltages (V_{OH} and V_{OL}) occur for HC at 4.5 V. Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5$ V and 4.5 V, respectively. (The V_{IH} value at 5.5 V is 3.85 V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used. Power dissipation capacitance (C_{PD}), typically 150 pF, determines the no load dynamic power consumption, $P_{D} = C_{PD}$ V_{CC} 2f+ I_{CC} 4 VCC, and the no load dynamic current consumption, $I_{S} = C_{PD}$ V_{CC} 4 f+ I_{CC} 5.
- $\underline{2}/$ AC testing at VCC = 2.0 V and VCC = 6.0 V shall be guaranteed, if not tested, to the specified parameters.
- 3/ Transition times (t_{TLH}, t_{THL}), if not tested, shall be guaranteed to the specified parameters.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M_F38510 to the extent specified in MIL-STD-883 (see 3.1 herein).

STANDARDIZED MILITARY DRAWING	SIZE A			84089	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		·	REVISION LEVEL	SHEET 7	7

1	Inputs	Out	puts	
Reset	Clock	D	Q	Q
· L Н Н	X † † L	X H L X	L H L Q _O	Н L Н Q̄ _o

H = high level (steady state)
L = low level (steady state)

X = irrelevant

t = transition from low to high level
the level of Q before the indicated steady-state input conditions were established

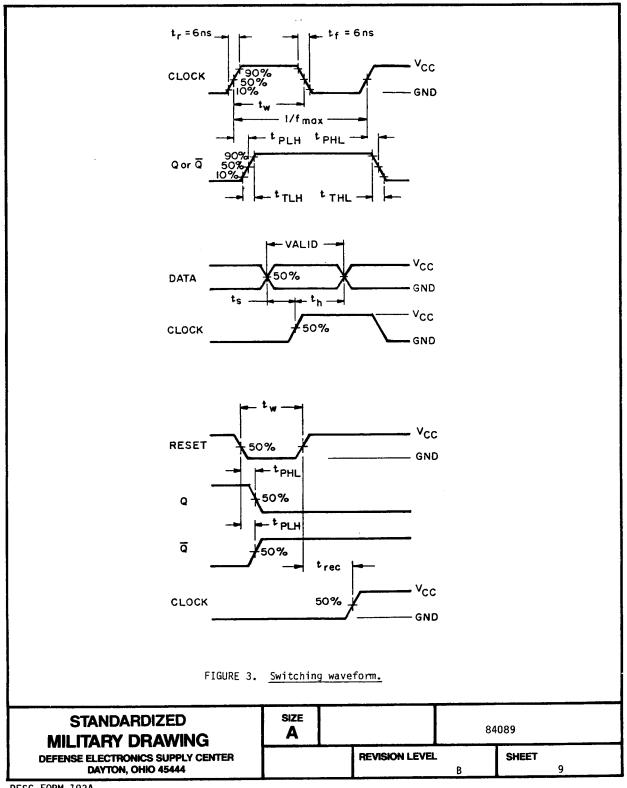
FIGURE 2. Truth table.

FIGURE 1. Terminal connections and logic diagram.

NC

4D

STANDARDIZED MILITARY DRAWING	SIZE A		84	089
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		 REVISION LEVEL	- B	SHEET 8


20 V_{CC}

19 4Q

DESC FORM 193A SEP 87

CLK [12

3Q 13

- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test (method 1015 of MIL-STD-883).
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5, 6, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 ($C_{\hbox{IN}}$ measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance.
 - d. Subgroup 7 tests sufficient to verify the truth table.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.

STANDARDIZED MILITARY DRAWING	SIZE A			84089	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	-	SHEET 10	

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
 Final electrical test parameters (method 5004)	 1*, 2, 9
 Group A test requirements (method 5005)	1,2,3,4,7, 9,10,11**
 Groups C and D end-point electrical parameters (methdo 5005)	1, 2, 3
 Additional electrical subgroups for group C periodic inspections	

PDA applies to subgroup 1.

** Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
 - 6.2 Replaceability. Replaceability is determined as follows:
 - a. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
 - b. When a QPL source is established, the part numbered device specified in this drawing will be replaced by the microcircuit identified as part number M38510/65308---.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 SIZE A / 84089 REVISION LEVEL B SHEET 11

DESC FORM 193A

SEP 87

6.4 Approved sources of supply. Approved sources of supply are listed herein. Additional sources will be added as they become available. The vendors listed herein have agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

 	Military drawing part number	Vendor CAGE number	Vendor similar part number <u>1</u> /	Replacement military specification part number		
/	8408901EX <u>2</u> /	01295 04713 27014 18714	SNJ54HC175J 54HC175/BEAJC MM54HC175J/883B CD54HC175F/3A	M38510/65308BEX		
-	8408901FX	01295	SNJ54HC175W	M38510/65308BFX		
- - -	84089012X <u>2</u> /	01295 04713 27014	SNJ54HC175FK 54HC175M/B2CJC MM54HC175E/883	M38510/65308B2X		

- Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 2/ Inactive for new design. Use M38510/65308BEX for 8408901EX and use M38510/65308B2X for 84089012X.

Vendor CAGE number	Vendor name and address			
04713	Motorola Incorporated 7402 S. Price Road Tempe, AZ 85283			
27014	National Semiconductor 2900 Semiconductor Drive Santa Clara, CA 95051			
18714	RCA Corporation Route 202 Somerville, NJ 08876			
01295	Texas Instruments, Incorporated P.O. Box 6448 Midland, TX 79701			

STANDARDIZED MILITARY DRAWING	SIZE A	Δ		84089		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444			REVISION LEVEL		SHEET 12	

DESC FORM 193A SEP 87