

8410, 8411, 8412, 8413, 8414, 8415, 8416, 8417

1MHz Voltage-to-Frequency Converter Family

Description

The **8410** Series are high performance, high precision 1MHz full scale Voltage-to-Frequency Converters intended for applications which require high resolution, very high linearity, and a six decade dynamic range. Units are available with varying gain drift performance over temperature in both single-ended and differential input configurations. The Single-ended analog voltage input of all units is $10\mu V$ to 10V full scale with a 10% overange capability. The differential

input signal is either a positive or negative $10\mu V$ to 10V full scale, with common-mode signals attenuated by 60dB minimum. The input signal is converted to an output proportional to the full scale frequency, within 0.001% linearity, utilizing the long-proven charge balance technique. A buffered TTL-compatible frequency output with a $10\ TTL$ -load fanout is provided that will drive up to 200pF capacitive loads.

Stability of the **8410 Series** over temperature is excellent, with a $40\mu V/^{\circ}C$ maximum offset and 15ppm/ $^{\circ}C$ maximum (**8413**) gain tempco. Warmup time to 0.02% accuracy is less than two (2) minutes.

In applications that require slightly different specifications such as different full scale output frequency, or where fixed offset or different full scale voltages would be convenient, custom frequencies and/or custom trimming can be easily accommodated. Other varia-

Features

- □ Guaranteed Minimum/ Maximum Specifications
- ☐ Wide Dynamic Range >1,000,000:1 >120dB
- □ Excellent Linearity 0.001% FS ±0.02% of input
- □ Excellent Stability 10μV/°C offset 10ppm/°C gain
- ☐ Buffered Frequency
 Output
 10 TTL loads
- ☐ Self-contained Subsystem 2" x 2" x 0.4" module
- □ Low Power <0.95W

Applications

- ☐ Analytical Instrumentation
- ☐ Medical Instrumentation
- □ Telemetry
- □ Data Recording
- □ Weighing Systems

Figure 1. 8410 Series Block Diagram

Analog Input input Range

 $\pm 10 \mu V$ to $\pm 10 V$

Current Range

+1nA to +1mA

Overrange

10% minimum

Configuration

8410, 8411, 8412, 8413

Sinale-ended

8414, 8415, 8416, 8417

Differential

Common-Mode Voltage Range

8414, 8415, 8416, 8417

±10V minimum

Common-Mode Rejection Ratio

8414, 8415, 8416, 8417

60dB minumum, 66dB typical; See Note 1

Offset Voltage

±3mV typical; ±10mV maximum; adjustable to zero

Input Bias Current

100nA maximum

Impedance (+Vin)

10KΩ, ±1%

Impedance (V_{ref})

8410, 8411, 8412, 8413

500KΩ minimum

Impedance (Differential)

8414, 8415, 8416, 8417

40KΩ, ±1%

Overvoltage Protection (In Terminal)

±Vs without damage

Overvoltage Protection (Vref Terminal)

±2V_S without damage

Transfer Characteristics

Full Scale Frequency Output (Fout)

1MHz +10% overrange

Transfer Characteristic

1MHz (V_{in}/10V)

Full Scale Factor

1mA ±0.1%, or 10V trimmable to 1MHz

Non-Linearity

 $\pm 0.001\%$ FS, $\pm 0.02\%$ of input maximum;

not specified under overrange conditions

Full Scale Step Response (to 0.01%)

2 cycles of new frequency plus 15µs

Overload Recovery

6 cycles of new frequency

Stability

Gain - Tempco

8410, 8414

60ppm FS/°C typical

100ppm FS/°C maximum

8412, 8416

15ppm FS/°C typical

25ppm FS/°C maximum

8411, 8415

35ppm FS/°C typical

50ppm FS/°C maximum

8413, 8417

10ppm FS/°C typical

15ppm FS/°C maximum

Gain - PS Sensitivity

100ppm/1% change in supply voltage

Gain - Drift Per Day

±100ppm FS maximum

Gain - Drift Per Month

±200ppm FS maximum

Offset - Tempco

±10μV typical; ±40μV maximum

Offset - PS Sensitivity

20μV/V change in supply voltage

Offset - Drift Per Day

±10µV typical

Offset - Drift Per Month

±20μV typical

Warmup Time

≤2 minutes to 0.02% accuracy

Output

Pulse Polarity

Positive

Pulse Width

500ns ±100ns

Logic Levels

Logic "1" (High) Logic "0" (Low)

+4.0V ±0.5V

<0.4V @ 16mA sink

Load

≤200pF for rated performance

Fanout

10 TTL loads

Short Circuit Protection

Indefinite to ground without damage

Power Requirements

(+Ve) +15V, ±5%

(-Vs) -15V, ±5%

40mA maximum 20mA maximum

Power Dissipation

0.95W maximum

Environmental and Mechanical

Operating Temperature

(to Rated Performance)

0°C to +70°C

Operating Temperature

(to 50% Derated TC, Linearity, and Fanout)

-25°C to +85°C

Storage Temperature

-55°C to +125°C

Humidity

0-85%, non-condensing up to 40°C

Dimensions

2.00" x 2.00" x 0.40"

(50.8 x 50.8 x 10.16mm)

Figure 3. Expanded or Contracted Input Range

frequency approximately 10kHz above 1MHz. The GAIN ADJUST potentiometer will only trim the output frequency higher.

Differential Inputs

The input can be configured as a differential input as shown in Figure 5. The differential input impedance is $40 \text{K}\Omega$. The maximum common mode

voltage is ±10V.

Negative Input Currents (8410-8413 only)

Figure 6 shows the input configuration for negative input currents. No degradation in performance will occur for full scale frequencies of 1MHz with input voltages (-l_{in}*R_L) from -10V down to -1V.

If some degradation of dynamic range and stability can be tolerated, an input voltage as low as -1 mV can be used. This degradation is due to the input voltage drift and bias current when compared to signal voltage and current levels. The input configuration is differential, referred to the Vref input.

Figure 5. Differential Inputs (8414-17 only)

Figure 6. Negative Input Currents (8410-13 only)

Description (continued)

tions such as ratiometric operation, FET input opamp, or extended temperature range can also be accommodated. Please contact the factory to discuss your specific requirements.

The **8410 Series** are packaged in a 2.00" x 2.00" x 0.40" modular package. Power dissipation is less than 0.95W maximum, and operation

to rated performance is over the 0°C to +70°C temperature range.

Using the 8410 Family of V/F Converters

General Considerations

Figure 2 depicts a typical circuit configuration for the **8410 Series**. The layout should be clean, with output pulses routed as far away from the input analog signals as possible. For maximum performance, bypass capacitors, as shown in Figure 2, should be mounted right at the appropriate pins of the **8410**.

For positive input signals, use the connections as shown. For negative input voltages, Vin should be grounded and the negative-going voltage should be connected to the Vref input.

Grounding

The Analog and Digital grounds are internally separate in the **8410 Series**. The use of ground plane is not necessary for proper operation; however, a ground plane is recommended with any analog signal conditioning circuitry that may be used in

front of the V/F, especially if this circuitry involves high gains. Any amplifiers used in front of the **8410** should be decoupled to eliminate potential problems with the high frequency output of the V/F.

Offset and Gain Trimming

The OFFSET adjustment potentiometer should be a $50 K\Omega$, 10-turn unit. With this pot in the circuit, initial offsets of up to $\pm 10 mV$ may be trimmed to zero.

The GAIN adjustment potentiometer should be a 200Ω , 10-turn unit with a recommended temperature coefficient of 100ppm or better. With this pot in the circuit, initial gain errors of up to $\pm 2\%$ may be trimmed to zero.

Offset and Gain Calibration

Offset Calibration

Offset calibration should be performed prior to gain calibration. With a +1mV analog signal at the inplut of the 8410 Series, adjust the OFFSET potentiometer until a frequency of 100Hz is observed on the output pin.

Gain Calibration

With a full scale analog input voltage of +10.00V, adjust the GAIN potentiometer until a full scale frequency of 1.000MHz is observed on the output pin.

Input Considerations Single-ended Inputs

The Vin pin accepts a 0V to +10V analog input, and has an impedance of $10K\Omega$. Figure 3 provides a recommended configuration for expanded or contracted input ranges.

High Impedance Inputs (8410 - 8413 only)

Figure 4 shows the input configuration for a high impedance, 0V to - 10V input. This configuration is differential, referenced to the Vref input. An input of -10V will produce a

Figure 2. Normal 8410 Series Input Configuration

Mechanical Dimensions & Pinout

Mechanical Dimensions & Pinout

For Single-ended Input Configuration and:	Specify:
100ppm FS/°C maximum Gain Drift	8410
50ppm FS/°C maximum Gain Drift	8411
25ppm FS/°C maximum Gain Drift	8412
15ppm FS/°C maximum Gain Drift	8413
For Differential Input Configuration and:	Specify:
100ppm FS/°C maximum Gain Drift	8414
50ppm FS/°C maximum Gain Drift	8415
25ppm FS/°C maximum Gain Drift	8416
15ppm FS/°C maximum Gain Drift	8417

A Subsidiary of SILICON TRANSISTOR CORP.

Printed in U.S.A.

6

Copyright 1986 DYMEC Incorporated

Bulletin No. 86078410 REV.0