					j							RF\	VIS	ION	S							
					+	TR	T			DE	SCRII					T	DA.	TE	A	\PP	ROV	/ED
						Α	Con Add	vert ven	to dor	Mil	itary E 187	Dra		g for	mat.	20	O Di	EC 86	1)	MA	业	n.
					-			· · · · · ·					.,									
DEV 1 1		1	1 1		-1		1							ı		Т	T		-1			T
REV PAGE		Ţ-					T								1	Ŧ	1				1	1
REV PAGE REV STATUS	REV		A	A	A A	A	A	A	A	A	A A					T						1
PAGE REV STATUS	REV		+	_	A A A	+	+	A 7		_	A A 10 1:											-
PAGE REV STATUS OF PAGES	PAG		1	2 REP	3 4 ARE	5	6 3 Y /	7	8	9	10 1			TA	I R	I I		R	A'			IG
PAGE REV STATUS OF PAGES Defense Electro Supply Center	PAG			2 REP	ARE	5 D 1	6 2/2	7	8	9	10 1:	MII	draw	TA ing is	ava	ilab	le 1	for 1	use	by		IG
PAGE REV STATUS OF PAGES Defense Electro Supply Center	PAG			2 REP	ARE	5 D 1	6	7 Un	8 ste	9	10 1: e	his d	draw epart	ing is ments	ava and	ilab I Aç	le 1	for 1	use	by		IG
PAGE REV STATUS OF PAGES Defense Electro Supply Center	PAG			2 REP	ARE	5 D 1	6	7	8 ste	9	10 11 e	his o	draw epart tmer	ing is ments at of I	ava and Defer	ilab I Aç ISE	enc	for i	of t	by the	IGH-	SPE
PAGE REV STATUS OF PAGES Defense Electro Supply Center Dayton, Ohio Original date	PAG			2 REP	ARE	5 D 1	6	7 Un	8 ste	9	10 11 e	his d	draw epart tmer E: C	ing is ments nt of I ICROC MOS D	ava and Defer IRCU	ilab I Aç ISE ITS SEL	enc	for i	of t	by the	IGH-	SPE
PAGE REV STATUS OF PAGES Defense Electro Supply Center Dayton, Ohio Original date of drawing:	PAG		1 F	PREP HEO DC	AREKEE		6 3 2 1 8 8 4 8 4	7 un	8 ste	9	10 1:	This o	draw epart tmer E: M M	ing is ments nt of I ICROC MOS E ONOLI	ava and Defer CIRCU DATA THIC	ilab I Aç ISE IITS SEL SI	enco enco ECT	for to less of the	of t	by the	IGH-	SPE
PAGE REV STATUS	PAG		1 F	2 REP	AREKEE		6	7 Ln DEN	8 ste	9	10 1:	his o	draw epart tmer E: M M	ing is ments nt of I ICROC MOS D	ava and Defer CIRCU DATA THIC	ilab I Aç ISE IITS SEL SI	enco enco ECT	for to less of the	of t	by the	IGH-	SPE

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

rdance with non-JAN
non-JAN
er
ēr
510, and as
ckage ip carrier

Unless otherwise specified, all voltages are referenced to ground. For $T_C=\pm100^{\circ}\text{C}$ to $\pm125^{\circ}\text{C}$, derate linearly at 12 mW/ $^{\circ}\text{C}$. When a thermal resistance value is included in MIL-M-38510, appendix C, it shall supersede the value indicated herein.

MILITARY DRAWING	SIZE	14933	DWG NO. 84128	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV A	PAGE	2

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

3. REQUIREMENTS

- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
- 3.2.2 Truth table and logic diagram. The truth table and logic diagram shall be as specified on figure 2.
 - 3.2.3 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.

MILITARY DRAWING	SIZE	14933	DWG NO. 84128
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV Å	PAGE 3

	\

<u> </u>		Condition	ons 1/	Group A	Lfr	Unit	
Test	Symbol 	Conditi -55°C < T _C < unless otherwi	subgroups	Min	Max	00	
High-level output voltage	Уон		V _{CC} = 2.0 V	1, 2, 3	1.9	 	٧
70.0032	i I		V _{CC} = 4.5 V	i	4.4	l 	
	i I		V _{CC} = 6.0 V		5.9		
		VIN = VIH or VIL I ₀ < 4.0 mA	V _{CC} = 4.5 V		3.7		
		V _{IN} = V _{IH} or V _{IL}	V _{CC} = 6.0 V	 	5.2		
Low-level output voltage	V _{OL}		V _{CC} = 2.0 V	1, 2, 3		0.1	٧
Vortage	i !		V _{CC} = 4.5 V			0.1	
	i !	 	V _{CC} = 6.0 V			0.1	l
	i i		V _{CC} = 4.5 V			0.4	
		VIN = VIH or VIL	V _{CC} = 6.0 V			 0.4 	
High-level input voltage	VIH		V _{CC} = 2.0 V	1, 2, 3	1.5] 	V
.0.0030			V _{CC} = 4.5 V		3.15	 	
		 	V _{CC} = 6.0 V		4.2	 	
Low-level input	VIL		V _{CC} = 2.0 V	1, 2, 3		0.3	٧
. 0 1 00.30		į 	V _{CC} = 4.5 V	 		0.9	
	į	ļ	V _{CC} = 6.0 V			1.2	

See footnotes at end of table.

MILITARY DRAWING	SIZE	14933	DWG NO. 84128	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV A	PAGE	4

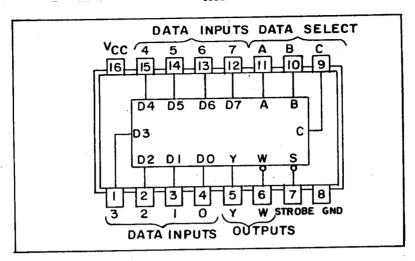
	Ţ.		1/	10	Lim	its	llm2 t
Test	Symbol	Condition -55°C < T _C < unless otherwise	ns <u>*/</u> +125°C se specified	Group A subgroups	Min	Max	Unit
Input capacitance	CIN	VIN = 0 V T _C = +25° See 4.3.1c	'C	4		10	pF
Quiescent current	Icc	V _{CC} = 6.0 V _{IN} = V	CC or GND	1, 2, 3		160	μА
Input leakage current	IIN	V _{CC} = 6.0 V _{IN} = V	CC or GND	1, 2, 3		±1	μА
Functional tests		See 4.3.1d		7, 8			
Propagation delay tpHL1 time, address tpLH1		T _C = +25°C C ₁ = 50 pF ±10%	V _{CC} = 2.0 V	9		250	ns
inputs to Y or W		See figure 3	V _{CC} = 4.5 V			50	
2/			V _{CC} = 6.0 V			43	
=		 T _C = -55°C, +125°C C _L = 50 pF ±10%	V _{CC} = 2.0 V	10, 11		375	ns
		See figure 3	V _{CC} = 4.5 V			75	
			V _{CC} = 6.0 V			64	}
Propagation delay time, data inputs	tpHL2	T _C = +25°C C _i = 50 pF ±10%	V _{CC} = 2.0 V	9		210	ns
to Y or W		See figure 3	V _{CC} = 4.5 V		l I	42	
2/			V _{CC} = 6.0 V	 		36	
<u>-</u>		T _C = -55°C, +125°C C _L = 50 ρF ±10%	V _{CC} = 2.0 V	10, 11		315	ns
		See figure 3	V _{CC} = 4.5 V			63	
		1	V _{CC} = 6.0 V			54	

See footnotes at end of table.

MILITARY DRAWING	SIZE	CODE IDENT. NO. 14933	DWG NO. 84128	3
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV A	PAGE	5

	TABLE I.	Electrical performance	characteristics -	- Continued.			
Test	 Symbol	Condition	ns $\frac{1}{}$		Limits		Unit
.000		Condition -55°C < T _C < unless otherwis	subgroups	Min	Max		
Propagation delay time, strobe to Y	t _{PHL3}	T _C = +25°C C _L = 50 pF ±10%		9		155	ns
or W		See figure 3	V _{CC} = 4.5 V			31	
<u>2</u> /	\ 		V _{CC} = 6.0 V			26	
_		T _C = -55°C, +125°C C _L = 50 pF ±10%	V _{CC} = 2.0 V	10, 11		235	ns
		See figure 3	V _{CC} = 4.5 V		1	47	
			V _{CC} = 6.0 V		1	40	
Transition time	t _{THL}	T _C = +25°C C _L = 50 pF ±10%	V _{CC} = 2.0 V	9		75	ns
			V _{CC} = 4.5 V			15	
<u>3</u> /			V _{CC} = 6.0 V			13	
<u> </u>		T _C = -55°C, +125°C C _L = 50 pF ±10%	V _{CC} = 2.0 V	10, 11		110	ns
			V _{CC} = 4.5 V	! ! ! !		22	
			V _{CC} = 6.0 V	 		19	

For a power supply of 5 V ± 10 percent, the worst case output voltages (V_{OH} and V_{OL}) occur for HC at 4.5 V. Thus, the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5$ V and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V.) The worst case leakage current (I_{IN} , I_{CC} and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used. Power dissipation capacitance (C_{PD}), typically 110 pF, determines the no load dynamic power consumption, $P_D = C_{PD}$ V_{CC} 2f $+ I_{CC}$ vand the no load dynamic current consumption, $I_S = C_{PD}$ V_{CC} ff I_{CC} .


the specified parameters.

3/ Transition time, if not tested, shall be guaranteed to the specified limits.

MILITARY DRAWING	SIZE	14933	DWG NO.	84128	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV A		PAGE	6

Device type 01

Case E

Case 2

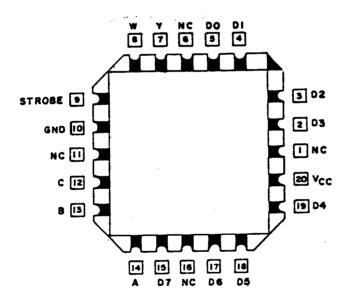
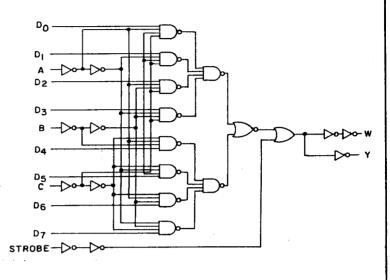


FIGURE 1. Terminal connections (top view).


MILITARY DRAWING	SIZE	14933	DWG NO. 84128	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV A	PAGE	7

DESC FORM 193A

FEB 86

Device type 01

		nputs	Out	puts		
	Select		Strcbe S	Y	W	
С	В	A	3	<u>'</u>		
Х	Х	X	н	L	н	
L	L	L	L	DO	DO	
L	L	н	L	D1	DI	
L	Н	L	L	D2	D2	
L	Н	н	L	D3	D3	
н	L	L	L	D4	D4	
Н	L	н	L	D5	D5	
н	н	L	L	D6	D6	
Н	н	Н	L	D7	D7	

H = High level, L = low level, X = Don't care

DO, D1 and D7 = the level of the respective D input

FIGURE 2. Truth table and logic diagram.

Device type 01

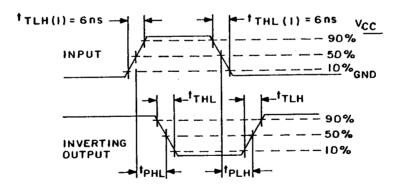


FIGURE 3. Switching waveform.

MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO

٦	SIZE	CODE	IDEN	T. NO.	DWG NO	٠.		
	Α	1 1	4933	}	DWG NO	84128		
			REV	Α		PAGE	8	

- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to reveiw the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test (method 1015 of MIL-STD-883).
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5, 6, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance.
 - d. Subgroup 7 tests sufficient to verify the truth table.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - (1) Test condition A, B, C, or D using the circuit submitted with he certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE	14933	DWG NO. 84128
		REV A	PAGE 9

DESC FORM 193A

M 193A

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 9
Group A test requirements (method 5005)	1, 2, 3, 4, 7, 9, 10, 11**
Groups C and D end-point l electrical parameters l (method 5005)	1, 2, 3
Additional electrical subgroups for group C periodic inspections	

- * PDA applies to subgroup 1.
- ** Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.
- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
- 6. NOTES
- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
 - 6.2 Replaceability. Replaceability is determined as follows:
 - Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
 - b. When a QPL source is established, the part numbered device specified in this drawing will be replaced by the microcircuit identified as part number M38510/66201B--.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, CHIO

SIZE
CODE IDENT. NO. DWG NO.

14933

REV A PAGE 10

6.4 Approved sources of supply. Approved sources of supply are listed herein. Additional sources will be added as they become available. The vendors listed herein have agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar part number <u>1</u> /	Replacement military specification part number
8412801EX	27014 04713 18714	MM54HC151J/883B 54HC151/BEAJC CD54HC151F/3A	M38510/66201BEX
84128012X	04713	54HC151M/B2CJC	 M38510/66201B2X

Vendor CAGE number	Vendor name and address
04713	Motorola, Inc. 7402 S. Price Road Tempe, AZ 85283
27014	National Semiconductor 2900 Semiconductor Drive Santa Clara, CA 95051
18714	RCA Corporation Route 202 Somerville, NJ 08876

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE	14933	DWG NO. 84128	
		REV A	PAGE 11	