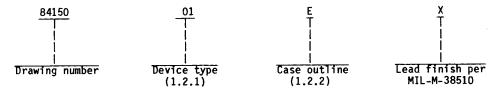
	REVISIONS		_
LTR	DESCRIPTION	DATE	APPROVED
А	Add vendors 04713, 27014, and 18714. Table I, propagation delay times at $V_{CC} = 2.0 \text{ V}$ and $V_{CC} = 6.0 \text{ V}$ and subgroups 10 and 11 shall be guaranteed if not tested. Changed propagation delay times for t_{PHL1}/t_{PLH1} . Convert to military drawing.	30 Sept 86	Malfands
В	Add vendor CAGE 27014 to case outline F and case outline 2. Editorial changes on pages 3 and 7.	10 Apr. 87	markenda
С	Inactive device O1EX and O12X for new design. Use M38510 QPL device. Changed code ident. no. to 67268. Changes to figure 1, page 3, and page 9.	7 NOV 87	RFEvans


CURR	ENT	C	Α(GE	E (C	D	E	67	72	68	}		_											
REV																								,	
PAGE																									
REV STATUS	REV		C	С	G	Α	A	A	C	Α	С	Α	Α	С											
OF PAGES	PAG	ES	1	2	3	4	5	6	7	8	9	10	11	12											
Defense Electro Supply Center Dayton, Ohio	nics		L	Je	60	MILITARY DRAWING This drawing is available for use by all Departments and Agencies of the Department of Defense																			
Original date of drawing:				APP	7//	XE!	VZ	lau	بك) a			TI	TLE	CN	10S	DUA	_ J-	S, E K FL IONOL	LIP-	-FLO	PW	ITH	SET	ED
28 May 198	35			SIZ A		C	ODE	4 9			NC).	D	WG	N	0.	8	4	15	0					
AMSC N/A			Γ	REV	7			С						P	AG	E	1		0	F	12	2			
,										4	7					-							590	52-E	613

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DESC FORM 193 MAY 86

- 1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".
 - 1.2 Part number. The complete part number shall be as shown in the following example:

1.2.1 Device type. The device type shall identify the circuit function as follows:

Device type	Generic number	Circuit function
01	54HC109	Dual J-K flip-flop

1.2.2 <u>Case outlines</u>. The case outlines shall be as designated in appendix C of MIL-M-38510, and as follows:

Outline letter

E D-2 (16-lead, 1/4" x 7/8"), dual-in-line package
F F-5 (16-lead, 1/4" x 3/8"), flat package
C-2 (20-terminal, .350" x .350"), square chip
carrier package

1.3 Absolute maximum ratings. 1/

1/ Unless otherwise specified, all voltages are referenced to ground.

2/ For $T_C = +100$ °C to +125°C, derate linearly at 12 mW/°C.

	SIZE			DWG NO	١.		
MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	A				84150		
		REV	С		PAGE	2	

```
1.4 Recommended operating conditions.
  +2.0 V dc to +6.0 V dc -55°C to +125°C
  Input rise or fall time:
   0 to 500 ns
                                     0 to 500 ns
                                     0 to 400 ns
  Minimum recovery time, data to clock + (t<sub>SHL1</sub>) and (t<sub>SLH1</sub>):
   Case at +25°C:
     V<sub>CC</sub> = 2.0 V- -
   20 ns
                                      17 ns
                                     150 ns
                                      30 ns
     VCC = 6.0 V-----
                                      26 ns
  Minimum setup time, preset or clear inactive to clock _{\pm} (t<sub>REC</sub>): Case at +25°C:
     V<sub>CC</sub> = 2.0 V- - - - - - - - - - - - - -
                                     100 ns
     17 ns
   Case at -55°C, +125°C:
     V<sub>CC</sub> = 2.0 V-----
                                     150 ns
     30 ns
                                      26 ns
  Minimum width of clock, preset or clear pulse (t_w): Case at +25 °C:
     100 ns
   20 ns
                                     150 ns
                                      30 ns
                                      25 ns
  Minimum hold time, clock to data (t_H):
   Case at +25°C:
     V<sub>CC</sub> = 2.0 V- - - - - - - - - - - - -
                                      25 ns
  5 ns
                                      40 ns
                                       8 ns
                                       7 ns
     Vcc = 2.0 V- - - - - - - - - - - - - -
                                      5.4 MHz
   27 MHz
                                      32 MHz
     V<sub>CC</sub> = 2.0 V-----
                                      3.6 MHz
     18 MHz
                                      21 MHz
```

MILITARY DRAWING	SIZE	
DEFENSE ELECTRONICS SUPPLY CENTER	<u> </u>	L

DESC FORM 193A FEB 86

DAYTON, OHIO

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

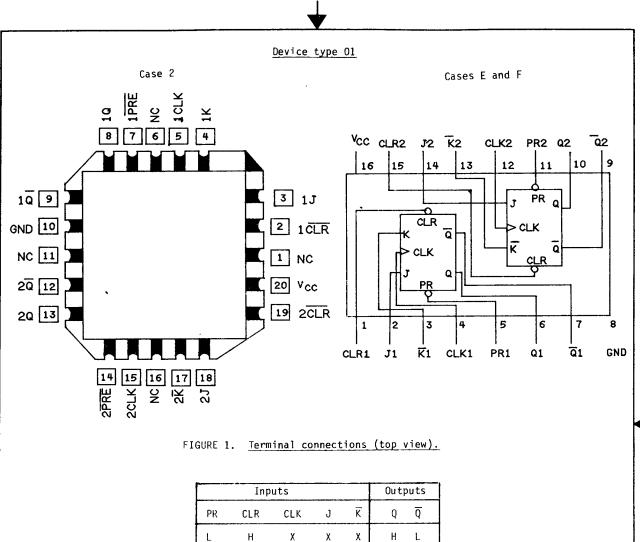
Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- $3.2\,$ Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.3 Logic diagram. The logic diagram shall be as specified on figure 3.
 - 3.2.4 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.

MILITARY DRAWING	SIZE		DWG NO	84150	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV A		PAGE	4

	TABLE	I. Electrical performan	nce characterist	ics.			
Test	Symbol	Condition $-55^{\circ}C < T_{C} < +1$ unless otherwise s	L25°C	Group A subgroups		Max	Unit
High-level output voltage	V _{OH}	V _{IN} = V _{IH} or V _{IL} I _O < 20 μA V _{IN} = V _{IH} or V _{II}	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	1, 2, 3	4.4		٧
		$\begin{array}{c c} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_0 \leq 4.0 \text{ mA} \\ \\ V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_0 \leq 5.2 \text{ mA} \\ \\ \\ \end{array}$	V _{CC} = 4.5 V	-	3.7		,
Low-level output voltage	V _{OL} 	V _{IN} = V _{IH} or V _{IL} I _O < 20 μA	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	1, 2, 3		0.1	V
		$ \begin{array}{c c} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_0 \leq 4.0 \text{ mA} \\ \hline V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_0 \leq 5.2 \text{ mA} \\ \hline \end{array} $	V _{CC} = 4.5 V			0.4	
High-level input voltage	VIH		$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	1, 2, 3	3.15 4.2	1	 V
Low-level input voltage	V _{IL}		$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	1, 2, 3		0.3	V V
Input capacitance	CIN	V _{IN} = 0 V See 4.3.1c	T _C = +25°C	4		10 10	pF
Quiescent current	ICC	V _{CC} = 6.0, V _{IN} = V _{CC} o	r GND	1, 2, 3		80	 μ Α
Functional test		See 4.3.1d		7			1


See footnotes at end of table.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE			DWG NO	84150	
		REV	A		PAGE	5

Test	Symbo1	Conditio	Conditions $-55^{\circ}C \leq T_{C} \leq +125^{\circ}C$ G					
1630		unless otherwise	specified $1/$	subgroups	Min	Max	- ' '	
Propagation delay time	Itou 1.	 T _C = +25°C	V _{CC} = 2.0 V	9		175	ns	
	tpi H1	C ₁ = 50 pF ±10%	V _{CC} = 4.5 V	Ť 1		35		
$\frac{3}{2}$	İ	 See figure 4	$V_{CC} = 6.0 \text{ V}$	- 	 	30	-	
		T _C = -55°C, +125°C	V _{CC} = 2.0 V	10, 11		265	ns	
			$V_{CC} = 4.5 \text{ V}$	-i i	<u> </u>	53	-	
			V _{CC} = 6.0 V	† †		45	_	
Durantian dalay timo			V _{CC} = 2.0 V	9		230	ns	
Propagation delay time high to low, low to high, preset or clear	tpl.H2	tpl.H2	 C ₁ = 50 pF *10%	$V_{CC} = 4.5 \text{ V}$	† !		46	
to Q or Q		1 -	V _{CC} = 6.0 V	† †		39	-	
<u>3</u> /		See figure 4 T _C = -55°C, +125°C	V _{CC} = 2.0 V	10, 11		345	ns	
			$V_{CC} = 4.5 \text{ V}$			69	-	
		1 -	V _{CC} = 6.0 V	† †		59	_	
Transition time A/	1+	See figure 4 T _C = +25°C	V _{CC} = 2.0 V	9	 	75	ns	
Transition time $\underline{4}$ /	t _{THL} ,	$ C_1 = 50 \text{ pF } \pm 10\%$	V _{CC} = 4.5 V	† †		15	_	
		 See figure 4	V _{CC} = 6.0 V	† †		13	-	
			V _{CC} = 2.0 V	10, 11		110	ns	
			V _{CC} = 4.5 V	-		22	-	
		C _L = 50 pF ±10%	V _{CC} = 6.0 V	† 1		19	-	
	<u> </u>	See figure 4			<u> </u>			

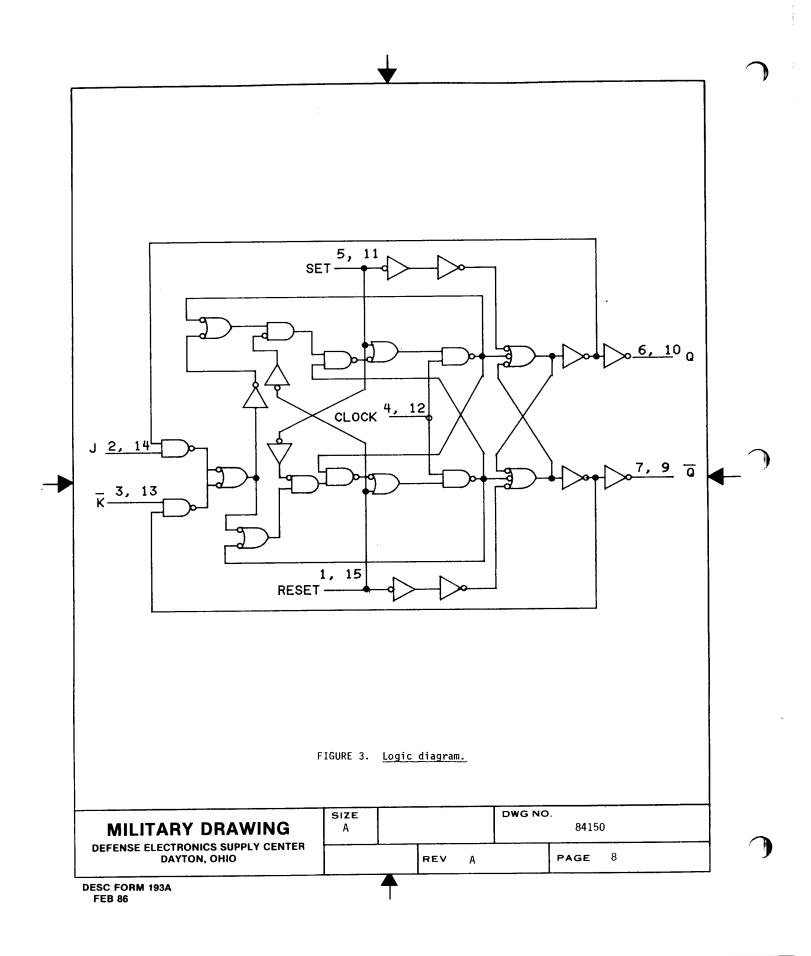
- For a power supply of 5.0 V $\pm 10\%$ the worst case output voltages (V_{OH} and V_{OL}) occur for HC at 4.5 V. Thus, the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5$ V and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage so the 6.0 V values should be used. Power dissipation capacitance (C_{PD}), typically 80 pF, determines the no load dynamic power consumption, $P_{D} = C_{PD}$ V_{CC} $f^{+}I_{CC}$ V_{CC} , and the no load dynamic current consumption, $I_{S} = C_{PD}$ V_{CC} $f^{+}I_{CC}$.
- $\underline{2}/$ V $_{IH}$ and V $_{IL}$ tests not required if applied as a forcing function for V $_{OH}$ and V $_{OL}$.
- 3/ AC testing at V_{CC} = 2.0 V and V_{CC} = 6.0 V shall be guaranteed, if not tested to the specified parameters.
- $\underline{4}$ / Transition times (t_{THL} , t_{TLH}), if not tested, shall be guaranteed to the specified parameters.

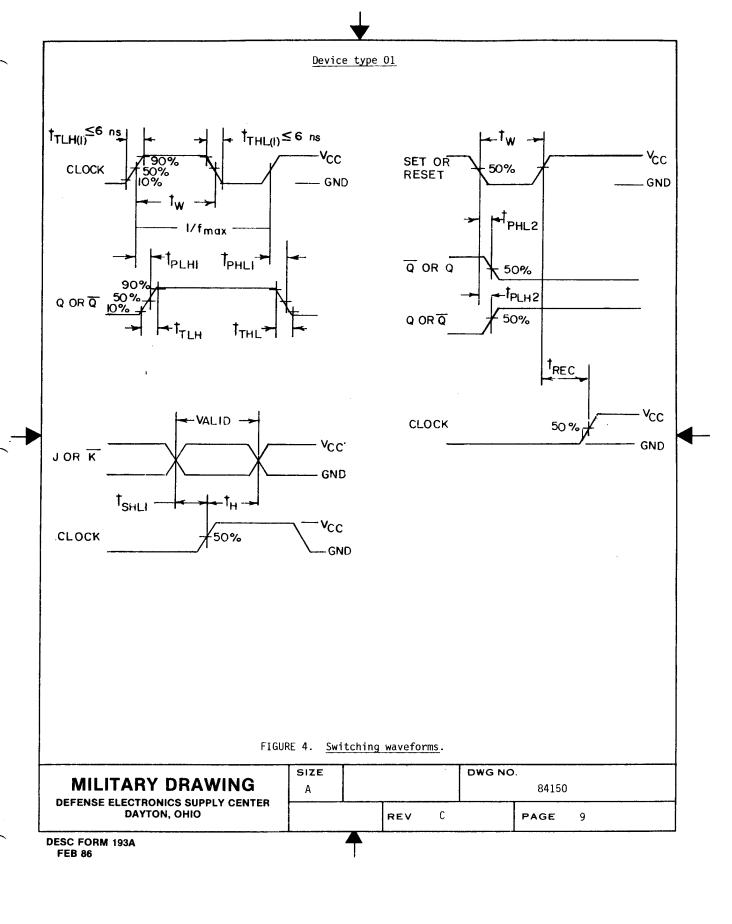
MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE A		DWG	NO. 84150		
		REV	Α	PAGE	6	

	Inp	uts			Outp	uts
PR	CLR	CLK	J	ĸ	Q	Q
L	Н	Х	Χ	Х	Н	L
Н	L	X	X	х	L	Н
L	L	. X	X	х	Н*	Н*
Н	н	†	L	L	L	Н
Н	Н	†	Н	L	TOGG	LE
Н	н	†	L	н	QO	Q̄0
Н	н	†	Н	н	Н	L
Н	Н	L	X	х	Q0	Q0

^{*}This is an unstable condition and is not guaranteed.

FIGURE 2.


MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO


SIZE
A

BUG NO.
84150

REV C
PAGE 7

Truth table.

- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. OUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test (method 1015 of MIL-STD-883).
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125$ °C, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5, 6, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 ($C_{ ext{IN}}$ measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance.
 - d. Subgroup 7 tests sufficient to verify the truth table.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE			DWG NO	84150	
		REV	ρ		PAGE	10

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125$ °C, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004) 	
Final electrical test parameters (method 5004)	1*, 2, 9
Group A test requirements (method 5005)	1, 2, 3, 4, 7, 9, 10, 11**
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3
Additional electrical subgroups for group C periodic inspections	

^{*}PDA applies to subgroup 1.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.

MILITARY DRAWING	SIZE			DWG NO	١.		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	Α				84150		
		REV	А		PAGE	11	

^{**}Subgroups 10 and I1, if not tested, shall be guaranteed to the specified limits in table I.

- 6.2 Replaceability. Replaceability is determined as follows:
 - a. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
 - b. When a QPL source is established, the part numbered device specified in this drawing will be replaced by the microcircuit identified as part number M38510/65304B--.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.
- 6.4 Approved sources of supply. Approved sources of supply are listed herein. Additional sources will be added as they become available. The vendors listed herein have agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing Vendo CAGE part number numbe		Vendor similar part number 1/	Replacement military specification part number		
8415001EX 2/	18714	CD54HC109F/3A	M38510/65304BEX		
ı —	01295	SNJ54HC109J			
	04/13	54HC109/BEAJC	1		
i.	27014	MM54HC109J/883	1		
8415001FX	01295	SNJ54HC109W	M38510/65304BFX		
	27014	MM54HC109W/883	·]		
84150012X 3/	01295	SNJ54HC109FK	M38510/65304B2X		
-	04713	54HC109M/B2CJC	i		
	27014	MM54HC109E/883	<u>-</u> }		

Vendor CAGE number	Vendor name and address				
01295	Texas Instruments, Incorporated P.O. Box 6448 Midland, TX 79701				
04713	Motorola, Incorporated 7402 S. Price Road Tempe, AZ 85283				
18714	RCA Corporation Solid State Division Route 202 Somerville, NJ 08876				
27014	National Semiconductor P.O. Box 58090 Santa Clara, CA 95051				

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE			DWG NO	DWG NO. 84150		
			REV	С	PAGE	12	