

POWER OPERATIONAL AMPLIFIERS

PA08 • PA08A

HTTP://WWW.APEXMICROTECH.COM (800) 546-APEX (800) 546-2739

FEATURES

- WIDE SUPPLY RANGE ±15V to ±150V
- PROGRAMMABLE OUTPUT CURRENT LIMIT
- HIGH OUTPUT CURRENT Up to ±150mA
- LOW BIAS CURRENT FET Input

APPLICATIONS

- HIGH VOLTAGE INSTRUMENTATION
- ELECTROSTATIC TRANSDUCERS & DEFLECTION
- PROGRAMMABLE POWER SUPPLIES UP TO 290V
- ANALOG SIMULATORS

DESCRIPTION

The PA08 is a high voltage operational amplifier designed for output voltage swings of up to ±145V with a dual (±) supply or 290V with a single supply. High accuracy is achieved with a cascode input circuit configuration. All internal biasing is referenced to a zener diode fed by a FET constant current source. As a result, the PA08 features an unprecedented supply range and excellent supply rejection. The output stage is biased-on for linear operation. Internal phase compensation assures stability at all gain settings. The safe operating area (SOA) can be observed with all types of loads by choosing the appropriate current limiting resistors. For operation into inductive loads, two external flyback pulse protection diodes are recommended. A heatsink may be necessary to maintain the proper case temperature under normal operating conditions.

This hybrid integrated circuit utilizes beryllia (BeO) substrate, thick film resistors, ceramic capacitors and semiconductor chips to maximize reliability, minimize size and give top performance. Ultrasonically bonded aluminum wires provide reliable interconnections at all operating temperatures. The 8-pin TO-3 package is hermetically sealed and electrically isolated. The use of compressible thermal isolation washers and/or improper mounting torque will void the product warranty. Please see "General Operating Considerations".

EQUIVALENT SCHEMATIC

TYPICAL APPLICATION

ATE PIN DRIVER

The PA08 as a pin driver is capable of supplying high test voltages to a device under test (DUT). Due to the possibility of short circuits to any terminal of the DUT, current limit must be set to be safe when limiting with a supply to output voltage differential equal to the amplifier supply plus the largest magnitude voltage applied to any other pin of the DUT. In addition, flyback diodes are recommended when the output of the amplifier exits any equipment enclosure to prevent damage due to electrostatic discharges. Refer to Application Note 7 for details on accuracy considerations of this circuit.

EXTERNAL CONNECTIONS

NOTE: Input offset voltage trim optional. $R_T = 10K\Omega$ MAX

■ 0878636 0002369 879 |

PA08 • PA08A

ABSOLUTE MAXIMUM RATINGS

SUPPLY VOLTAGE, +Vs to -Vs 300V OUTPUT CURRENT, within SOA 200mA 17.5W POWER DISSIPATION, internal at T_c = 25°C ±50V INPUT VOLTAGE, differential ±V_s 300°C INPUT VOLTAGE, common mode TEMPERATURE, pin solder - 10s max 200°C TEMPERATURE, junction1 -65 to +150°C TEMPERATURE RANGE, storage OPERATING TEMPERATURE RANGE, case -55 to +125°C

SPECIFICATIONS			PA08			PA08A		
PARAMETER	METER TEST CONDITIONS 2		TYP	MAX	MIN	TYP	MAX	UNITS
INPUT								
OFFSET VOLTAGE, initial OFFSET VOLTAGE, vs. temperature OFFSET VOLTAGE, vs. supply OFFSET VOLTAGE, vs. time BIAS CURRENT, initial ³ BIAS CURRENT, vs. supply OFFSET CURRENT, initial ³ INPUT IMPEDANCE, DC INPUT CAPACITANCE COMMON MODE VOLTAGE RANGE ⁴ COMMON MODE REJECTION, DC	$\begin{split} & T_{\text{C}} = 25^{\circ}\text{C} \\ & T_{\text{C}} = -25^{\circ}\text{C} \text{ to +85^{\circ}\text{C}} \\ & T_{\text{C}} = 25^{\circ}\text{C} \\ & T_{\text{C}} = -25^{\circ}\text{C} \text{ to +85^{\circ}\text{C}} \\ & T_{\text{C}} = -25^{\circ}\text{C} \text{ to +85^{\circ}\text{C}}, V_{\text{CM}} = \pm 90\text{V} \end{split}$	±V _s -10	±.5 ±15 ±.5 ±75 5 .01 ±2.5 10 ⁵ 4	±2 ±30 50 ±50	•	±.25 ±5 3 ±1.5	±.5 ±10 2 10 ±10	mV μV/°C μV/√kh pA/V pA/V pA/V pA/V pF V dB
GAIN								
OPEN LOOP GAIN at 10Hz OPEN LOOP GAIN at 10Hz GAIN BANDWIDTH PRODUCT at 1MHz POWER BANDWIDTH PHASE MARGIN	$\begin{array}{l} T_{c} = 25^{\circ}\text{C}, \; R_{L} = \infty \\ T_{C} = 25^{\circ}\text{C}, \; R_{L} = 1.2K\Omega \end{array}$	96	118 111 5 90 60		•	•	:	dB dB MHz kHz
OUTPUT								
VOLTAGE SWING ⁴ VOLTAGE SWING ⁴ VOLTAGE SWING ⁴ CURRENT, peak SLEW RATE CAPACITIVE LOAD, A _V = 1 CAPACITIVE LOAD, A _V > 4 SETTLING TIME to .1%	$\begin{array}{l} T_{c}=25^{\circ}\text{C, } I_{o}=150\text{mA} \\ T_{c}=-25^{\circ}\text{C to } +85^{\circ}\text{C, } I_{o}=\pm75\text{mA} \\ T_{c}=-25^{\circ}\text{C to } +85^{\circ}\text{C, } I_{o}=\pm20\text{mA} \\ T_{c}=85^{\circ}\text{C} \\ T_{c}=25^{\circ}\text{C} \\ T_{c}=-25\text{ to } +85^{\circ}\text{C} \\ T_{c}=-25\text{ to } +85^{\circ}\text{C} \\ T_{c}=25^{\circ}\text{C, } R_{c}=1.2\text{K}\Omega, 2\text{V step} \end{array}$	±V _s -15 ±V _s -10 ±V _s -5 150		10 SOA	20	*	*	V V V/µs nF
POWER SUPPLY								1
VOLTAGE CURRENT, quiescent	$T_c = -55 \text{ to } +125^{\circ}\text{C}$ $T_c = 25^{\circ}\text{C}$	±15	±100 6	±150 8.5	*	:	:	mA
THERMAL								
RESISTANCE, AC junction to case ⁵ RESISTANCE, DC junction to case RESISTANCE, junction to air TEMPERATURE RANGE, case	$\begin{array}{l} T_c = -55 \text{ to } +125^\circ\text{C}, \ F > 60\text{Hz} \\ T_c = -55 \text{ to } +125^\circ\text{C}, \ F < 60\text{Hz} \\ T_c = -55 \text{ to } +125^\circ\text{C} \\ \text{Meets full range specification} \end{array}$	-25	3.8 6.0 30	6.5 85				.C\M .C\M .C\M

NOTES: * The specification of PA08A is identical to the specification for PA08 in applicable column to the left.

 Long term operation at the maximum junction temperature will result in reduced product life. Derate power dissipation to achieve high MTTF.

The power supply voltage specified under typical (TYP) applies unless otherwise noted.

3. Doubles for every 10°C of temperature increase.

4. +V_s and -V_s denote the positive and negative supply rail respectively.

5. Rating applies only if output current alternates between both output transistors at a rate faster than 60Hz.

CAUTION

The internal substrate contains beryllia (BeO). Do not break the seal. If accidentally broken, do not crush, machine, or subject to temperatures in excess of 850°C to avoid generating toxic fumes.

■ 0878636 0002370 590 ■

PA08 • PA08A

GENERAL

Please read the "General Operating Considerations", which covers stability, supplies, heatsinking, mounting, current limit, SOA interpretation, and specification interpretation. Additional information can be found in the application notes. For information on the package outline, heatsinks, and mounting hardware, see the "Package Outlines" and "Accessories" sections of the handbook.

SAFE OPERATING AREA (SOA)

The output stage of most power amplifiers has two distinct limitations:

- The current handling capability of the transistor geometry and the wire bonds.
- The second breakdown effect which occurs whenever the simultaneous collector current and collector-emitter voltage exceeds specified limits.

The SOA curves combine the effect of these limits. For a given application, the direction and magnitude of the output current should be calculated or measured and checked against the SOA curves. This is simple for resistive loads but more complex for reactive and EMF generating loads. However, the following guidelines may save extensive analytical efforts.

 Under transient conditions, the following capacitive and inductive loads are safe with the current limits set to the maximum:

$\pm \mathbf{V_s}$	C(MAX)	L(MAX)
150V	.4μF	280mH
125V	.9µF	380mH
100V	2µF	500mH
75V	1ÓµF	1200mH
50V	10ÖμF	13H

The amplifier can handle any EMF generating or reactive load and short circuits to the supply rails or simple shorts to common if the current limits are set as follows:

±V _s	SHORT TO $\pm V_{sc.}$ C, L, OR EMF LOAD	SHORT TO COMMON			
150V	20mA	67mA			
125V	27mA	90mA			
100V	42mA	130mA			
75V	67mA	200mA			
50V	130mA	200mA			

These simplified limits may be exceeded with further analysis using the operating conditions for a specific application.

The output stage is protected against transient flyback. However, for protection against sustained, high energy flyback, external fast-recovery diodes should be used.

INDUCTIVE LOADS

Two external diodes as shown in Figure 1, are required to protect these amplifiers from flyback (kickback) pulses exceeding the supply voltages of the amplifier when driving inductive loads. For component selection, these external diodes must be very quick, such as ultra fast recovery diodes with no more than 200 nanoseconds of reverse recovery time. The diode will turn on to divert the flyback energy into the supply rails thus protecting the output transistors from destruction due to reverse bias.

A note of caution about the supply. The energy of the flyback pulse must be absorbed by the power supply. As a result, a transient will be superimposed on the supply voltage, the magnitude of the transient being a function of its transient impedance and current sinking capability. If the supply voltage plus transient exceeds the maximum supply rating or if the AC impedance of the supply is unknown, it is best to clamp the output and the supply with a zener diode to absorb the transient.

INPUT PROTECTION

The input is protected against common mode voltages up to the supply rails and differential voltages up to $\pm50V$. Increased protection against differential input voltages can be obtained by adding 2 resistors, 2 capacitors and 4 diode connected FETs as shown in Figure 2.

PROTECTION, INDUCTIVE LOAD

PROTECTION, OVERVOLTAGE

CURRENT LIMITING

Proper operation requires the use of two current limit resistors, connected as shown in the external connection diagram. The minimum value for $R_{\rm CL}$ is $3.24\Omega.$ However, for optimum reliability it should be set as high as possible. Refer to the "General Operating Considerations" section of the handbook for current limit adjust details.

PA08M

HTTP://WWW.APEXMICROTECH.COM (800) 546-APEX (800) 546-2739

1 Quiescent Current Io 25°C ±100V V _{In} = 0, A _v = 100 2 mrV V _{In} = 0, A _v = 100 2 mrV V _{In} = 0, A _v = 100 3.3 mrV V _{In} = 0, A _v = 100 3.3 mrV V _{In} = 0, A _v = 100 3.3 mrV V _{In} = 0, A _v = 100 3.3 mrV V _{In} = 0, A _v = 100 3.3 mrV V _{In} = 0, A _v = 100 3.5 mrV V _{In} = 0, A _v = 100 3.5 mrV V _{In} = 0, A _v = 100 3.5 mrV V _{In} = 0, A _v = 100 3.5 mrV V _{In} = 0, A _v = 100 3.5 mrV V _{In} = 0, A _v = 100 3.5 mrV V _{In} = 0, A _v = 100 5.0 pA V _{In} = 0, A _v = 100 V _{In} = 0, A _v = 100 5.0 pA V _{In} = 0, A _v = 100 V _{In} = 0, A _v = 100 5.0 pA V _{In} = 0, A _v = 100 V _{In} = 0, A _v = 100 V _{In} = 0, A _v = 100 9.5 mrA V _{In} = 0, A _v = 100 V _{In} = 0, A _v = 100 9.5 mrA V _{In} = 0, A _v = 100 V _{In} = 0, A _v = 100 9.5 mrA V _{In} = 0, A _v = 100 0.5 A _v V _{In} = 0, A _v = 100 0.5 A _v V _{In} = 0, A _v = 100 0.5 A _v V _{In} = 0, A _v = 100 0.5 A _v V _{In} = 0, A _v = 100 0.5 A _v V _{In} = 0, A _v = 100 0.5 A _v V _{In} = 0, A _v = 100 0.5 A _v V _{In} = 0, A _v = 100 0.5 A _v V _{In} = 0, A _v = 100 0.5 A _v V _{In} = 0, A _v = 100 0.5 A _v V _{In} = 0, A _v = 100 0.5 A _v V _{In} = 0, A _v = 100 0.5 A _v V _{In} = 0, A _v = 100 0.5 A _v V _{In} = 0, A _v = 100 0.5 A _v V _{In} = 0, A _v = 100 0.5 A _v V _{In} V _{In} = 0, A _v = 100 0.5 A _v V _{In} V _{In} = 0, A _v = 100 0.5 A _v V _{In} V _{In} = 0, A _v = 100 0.5 A _v V _{In} V _{In} V _{In} = 0, A _v = 100 0.5 A _v V _{In} V _{In} = 0, A _v = 100 0.5 A _v V _{In} V _{In} V _{In} = 0, A _v = 100 0.5 A _v V _{In} V _{In} V _{In} = 0, A _v = 100 0.5 A _v V _{In} V _{In} V _{In} = 0, A _v = 100 0.5 A _v V _{In} V _{In} V _{In} = 0, A _v = 100 0.5 A _v V _{In} V _{In} V _{In} V _{In} = 0, A _v = 100 0.5 A _v V _{In} V _{In}	SG	PARAMETER	SYMBOL	TEMP.	POWER	TEST CONDITIONS	MIN	MAX	UNITS
1 Input Offset Voltage	1	Quiescent Current	l _o	25°C	±100V	$V_{IN} = 0, A_{V} = 100$		8.5	mA
1 Input Offset Voltage V _{os} 25°C ±150V V _{in} = 0, A _i = 100 3.7 mV 1 mput Bias Current, HN H ₀ 25°C ±150V V _{in} = 0 A _i = 100 50 pA 50	1	Input Offset Voltage	V _{os}	25°C	±100V	$V_{IN} = 0, A_{V} = 100$		2	mV
1 Input Offset Voltage 1 Input Bias Current, +IN 1 Input Bias Current, +IN 1 Input Bias Current 1 Input Offset Voltage 3 Ouiescent Current 3 Input Offset Voltage 3 Input Offset Voltage 4 Input Bias Current, +IN 3 Input Bias Current, +IN 3 Input Offset Voltage 4 Input Bias Current, +IN 4 Input Bias Current, +IN 5 Ouiescent Current 1 Input Bias Current, +IN 5 Input Bias Current, +IN 6 Input Bias Current, +IN 7 Input Bias Current, +IN 7 Input Bias Current, +IN 8 Input Bias Current, +IN 8 Input Bias Current 1 Input Bias Current 2 Input Bias Current 2 Input Bias Current 2 Input Bias Current 3 Input Bias Current 4 Output Voltage, Io = 150mA 4 Output Voltage, Io = 80mA 5 Input Bias Current 5 Input Bias Current 5 Input Bias Current 5 Input Bias Current 6 Input Bias Current 7 Input Bias Current 7 Input Bias Current 8 Input Bias Current 8 Input Bias Current 9 Input Bias Current 9 Input Bias Current 1 Input	1	Input Offset Voltage		25°C	±15V	$V_{IN} = 0$, $A_{V} = 100$		1	
1 Input Bias Current, +IN 1 Input Bias Current, +IN 1 Input Bias Current 1 Input Bias Curre	1	Input Offset Voltage		25°C	±150V	$V_{IM} = 0$, $A_{IJ} = 100$			i
1 Input Bias Current, -IN Input Offset Current	1	Input Bias Current, +IN		25°C	±100V				
1 Input Offset Current 1 Ios 25°C ±100V V V = 0 3 Quiescent Current 1 Ios 25°C ±100V V V = 0 3 Input Offset Voltage V = 55°C ±150V V = 0 3 Input Offset Voltage V = 55°C ±150V V = 0 3 Input Offset Voltage V = 55°C ±150V V = 0 3 Input Offset Voltage V = 55°C ±150V V = 0 3 Input Offset Voltage V = 55°C ±150V V = 0 3 Input Offset Voltage V = 0 4 Quiescent Current V = 0 4 Quiescent Current 1 Ios 25°C ±100V V = 0 4 Quiescent Current 2 Input Offset Voltage V = 0 4 Input Offset Voltage V = 0 5 Input Offset Voltage V = 0 6 Input Offse	1	Input Bias Current, -IN		1					
3		• •		ı	1				
3 Input Offset Voltage Vos −55°C ±100V Vos −0.0 −0.0 Vos −0.0 Vos −0.0 Vos −0.0	3	Quiescent Current	l _o	_55°C	±100V	$V_{IN} = 0$, $A_{IJ} = 100$		9.5	mA
3 Input Offset Voltage Vos −55°C ±15V V _w = 0, A _v = 100 5.4 mV mV 3 Input Bias Current, +IN H _B −55°C ±100V V _{iw} = 0 5.0 pA 3 Input Bias Current I _o −55°C ±100V V _{iw} = 0 5.0 pA 4 100V V _{iw} = 0 5.0 pA 5 100V V _{iw} = 0 5.0 pA 6 1 mV V _{iw} = 0 5.0 pA 7 100V V _{iw} = 0 5.0 pA 8 125°C ±100V V _{iw} = 0, A _v = 100 9 100V V _{iw} = 0, A _v = 100 100V V _{iw} = 0, A _v = 100 5.0 mV 100V V _{iw} = 0, A _v = 100 5.0 mV 100V V _{iw} = 0, A _v = 100 5.0 mV 100V V _{iw} = 0, A _v = 100 5.0 mV 100V V _{iw} = 0, A _v = 100 5.0 mV 100V V _{iw} = 0 5.0 mV 1	3	Input Offset Voltage	Vos	–55°C	±100V				
3 Input Offset Voltage Vos Les	3	Input Offset Voltage	Vos						
3 Input Bias Current, +IN -I ₆ -55°C ±100V V _{IN} = 0 50 pA 3 Input Bias Current -I ₀ -55°C ±100V V _{IN} = 0 50 pA 4 Current -I ₀ -55°C ±100V V _{IN} = 0 50 pA 5 Cutput Voltage V _{OS} 125°C ±100V V _{IN} = 0, A _V = 100 50 pA 5 Cutput Voltage V _{OS} 125°C ±100V V _{IN} = 0, A _V = 100 50 mV 5 Input Offset Voltage V _{OS} 125°C ±15V V _{IN} = 0, A _V = 100 66.7 mV 6 Input Bias Current, +IN +I ₈ 125°C ±15V V _{IN} = 0, A _V = 100 66.7 mV 6 Input Bias Current, +IN +I ₈ 125°C ±100V V _{IN} = 0, A _V = 100 66.7 mV 7 Input Bias Current, +IN +I ₈ 125°C ±100V V _{IN} = 0 0 10 nA 8 Input Offset Voltage V _{OS} 125°C ±100V V _{IN} = 0 10 nA 9 Input Bias Current, +IN +I ₈ 125°C ±100V V _{IN} = 0 10 nA 10 Input Bias Current, +IN +I ₈ 125°C ±100V V _{IN} = 0 10 nA 10 Input Offset Current	3	Input Offset Voltage							
3 Input BlasCurrent, -IN -I ₆ -55°C ±100V V _{IN} = 0 50 pA					1				
Input Offset Current Ios -55°C ±100V Vin = 0 50 pA									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•							•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	Quiescent Current	l _o	125°C	+100V	V = 0, A = 100		11	mΔ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
2 Input Offset Voltage Vos 125°C ±150V V _{IN} = 0, A _V = 100 10 nA 2 Input Bias Current, +IN 2 Input Bias Current -IN 10s 125°C ±100V V _{IN} = 0 10 nA 2 Input Offset Current I _{os} 125°C ±100V V _{IN} = 0 10 nA 3 Input Offset Current I _{os} 125°C ±100V V _{IN} = 0 10 nA 4 Output Voltage, I _o = 150mA V _o 25°C ±150V R _L = 15K 145 V 4 Output Voltage, I _o = 80mA V _o 25°C ±100V R _L = 100Ω 15 Input Offset Current Limits I _{ot} 25°C ±100V R _L = 1K 80 V 4 Current Limits I _{ot} 25°C ±100V R _L = 5K, A _V = 1, C _L = 10nF 1 mV 4 Slew Rate SR 25°C ±100V R _L = 5K, F = 10Hz 96 dB 4 Common Mode Rejection CMR 25°C ±100V R _L = 5K, F = 10Hz 96 dB 5 Output Voltage, I _o = 29mA V _o -55°C ±100V R _L = 5K, A _V = 1, C _L = 10nF 1 mV 6 Stability/Noise E _N -55°C ±100V R _L = 5K, F = 10Hz 96 dB 6 Output Voltage, I _o = 29mA V _o -55°C ±100V R _L = 5K, F = 10Hz 96 dB 6 Output Voltage, I _o = 70mA V _o -55°C ±100V R _L = 5K, A _V = 1, C _L = 10nF 1 mV 6 Stability/Noise E _N -55°C ±100V R _L = 5K, A _V = 1, C _L = 10nF 1 mV 6 Stability/Noise E _N -55°C ±100V R _L = 5K, A _V = 1, C _L = 10nF 1 mV 6 Stability/Noise E _N -55°C ±100V R _L = 5K, F = 10Hz 96 dB 6 Output Voltage, I _o = 150mA V _o 125°C ±31V R _L = 5K, F = 10Hz 96 dB 7 Output Voltage, I _o = 29mA V _o 125°C ±31V R _L = 5K, F = 10DC N _{CM} = ±22.5V 90 dB 7 Output Voltage, I _o = 29mA V _o 125°C ±31V R _L = 5K, F = 10Hz 96 dB dB 8 Output Voltage, I _o = 29mA V _o 125°C ±31V R _L = 5K, F = 10Hz 96 dB dB dB dB dB dB dB d		,							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
4 Output Voltage, $l_0 = 150 \text{mA}$ V _O 25°C ±31V R _L = 100Ω 15		•	_						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	input Oliset Ourient	'os	123 0	11000	V _{IN} = U		10	ΠA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 2.0					15		٧
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							145		V
4 Stability/Noise $S_{N} = S_{N} = S_$		Output Voltage, I _o = 80mA	V_{o}	25°C	± 90V	R _L = 1K	80		V
4 Slew Rate SR $25^{\circ}C$ $\pm 100V$ $R_L = 5K$ 20 100 $V_{\mu s}$ dB dB dB dB dB dB dB dB			l _{cι}	25°C	±30V	$R_L = 100\Omega$	75	125	mA
4 Open Loop Gain A _{OL} 25°C ±100V R _L = 5K, F = 10Hz 96 dB Common Mode Rejection CMR 25°C ±32.5V R _L = 5K, F = DC, V _{CM} = ± 22.5 V 90 dB COutput Voltage, I _O = 100mA V _O -55°C ±150V R _L = 5K 145 V Coutput Voltage, I _O = 29mA V _O -55°C ±100V R _L = 5K 145 V V Coutput Voltage, I _O = 70mA V _O -55°C ±100V R _L = 5K 145 V V Coutput Voltage, I _O = 70mA V _O -55°C ±100V R _L = 5K, A _V = 1, C _L = 10nF 1 mV V Coutput Voltage, I _O = 70mA V _O -55°C ±100V R _L = 5K, A _V = 1, C _L = 10nF 1 mV V Coutput Voltage, I _O = 70mA V _O 125°C ±32.5V R _L = 5K, F = 10Hz 100V R _L = 5K, F = 10H	4	Stability/Noise	E _N	25°C	±100V	$R_L = 5K, A_V = 1, C_L = 10nF$		1	mV
4 Common Mode Rejection CMR 25°C $\pm 32.5\text{V}$ $R_{L} = 5\text{K}, F = D\text{C}, V_{\text{CM}} = \pm 22.5\text{V}}$ 90 dB	4	Slew Rate	SR	25°C	±100V	$R_L = 5K$	20	100	V/µs
6 Output Voltage, I _o = 100mA V _o -55°C ±31V R _L = 100Ω 10 V 6 Output Voltage, I _o = 29mA V _o -55°C ±150V R _L = 5K 145 V 6 Stability/Noise E _N -55°C ±100V R _L = 5K, A _V = 1, C _L = 10nF 1 mV 6 Slew Rate SR -55°C ±100V R _L = 5K, E 10Hz 96 dB 6 Open Loop Gain A _{OL} -55°C ±100V R _L = 5K, F = 10Hz 96 dB 6 Common Mode Rejection CMR -55°C ±32.5V R _L = 5K, F = DC, V _{CM} = ±22.5V 90 dB 5 Output Voltage, I _O = 150mA V _O 125°C ±31V R _L = 100Ω 15 V 5 Output Voltage, I _O = 29mA V _O 125°C ±150V R _L = 5K 145 V 6 Output Voltage, I _O = 80mA V _O 125°C ±90V R _L = 5K 145 V 6 Output Voltage, I _O = 80mA V _O 125°C ±90V R _L = 5K 145 V	4	Open Loop Gain	A _{OL}	25°C	±100V	$R_L = 5K, F = 10Hz$	96		ďΒ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	Common Mode Rejection	CMR	25°C	±32.5V	$R_L = 5K$, $F = DC$, $V_{CM} = \pm 22.5V$	90		dB
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Output Voltage, I _O = 100mA	Vo	–55°C	±31V	$R_L = 100\Omega$	10		٧
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	Output Voltage, I _O = 29mA	V _o	-55°C	±150V	R _L = 5K	145		٧
6 Slew Rate $SR = -55^{\circ}C = \pm 100V = R_{L} = 5K$ 20 100 $V_{\mu ls} = 5K$ 20 100 $V_{\mu ls} = 5K$ 32.5V $R_{L} = 5K$ 5 Output Voltage, $I_{0} = 150 \text{mA}$ $V_{0} = 125^{\circ}C = 12$	6	Output Voltage, Io = 70mA	V _o	-55°C	±90V	R _i = 1K	70		V
6 Slew Rate SR A_{OL} $-55^{\circ}C$ $\pm 100V$ $R_{L} = 5K$ 20 100 $V/\mu s$ dB $Common Mode Rejection CMR A_{OL} -55^{\circ}C \pm 100V R_{L} = 5K, F = 10Hz 96 dB Common Mode Rejection CMR CMR$	6	Stability/Noise	E _N	-55°C	±100V	$R_1 = 5K, A_2 = 1, C_1 = 10nF$		1	mV
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Slew Rate		-55°C	±100V		20		
6 Common Mode Rejection CMR -55°C ±32.5V R _L = 5K, F = DC, V _{CM} = ±22.5V 90 dB 5 Output Voltage, I _O = 150mA V _O 125°C ±31V R _L = 100Ω 15 V 5 Output Voltage, I _O = 29mA V _O 125°C ±150V R _L = 5K 145 V 5 Output Voltage, I _O = 80mA V _O 125°C ±90V R _L = 1K 80 V	6	Open Loop Gain		-55°C					•
5 Output Voltage, I _O = 29mA V _O 125°C ±150V R ₁ = 5K 145 V 5 Output Voltage, I _O = 80mA V _O 125°C ±90V R _L = 1K 80 V	6	Common Mode Rejection							
5 Output Voltage, I _O = 29mA V _O 125°C ±150V R ₁ = 5K 145 V 5 Output Voltage, I _O = 80mA V _O 125°C ±90V R _L = 1K 80 V	5	Output Voltage, I _O = 150mA	V _o	125°C	±31V	Β _c = 100Ω	15		V
5 Output Voltage, $I_0 = 80\text{mA}$ V_0 125°C $\pm 90\text{V}$ $R_L = 1\text{K}$ 80 V					T.				
						_			-
	5	Stability/Noise	E _N	125°C	±100V	$R_{L} = 5K$, $A_{V} = 1$, $C_{L} = 10nF$	00	1	mV
5 Slew Rate SR 125°C $\pm 100V$ $R_L = 5K$ 20 100 $V/\mu s$							20		
5 Open Loop Gain A_{OL} 125°C ±100V $B_L = 5K$, $F = 10Hz$ 96 dB			1	1		- 1	- 1	.00	
5 Common Mode Rejection CMR 125°C ±32.5V R ₂ = 5K, F = DC, V _{CM} = ±22.5V 90 dB								ļ	

BURN IN CIRCUIT

- These components are used to stabilize device due to poor high frequency characteristics of burn in board.
- Input signals are calculated to result in internal power dissipation of approximately 2.1W at case temperature = 125°C.

APEX

POWER OPERATIONAL AMPLIFIER

PA08V

HTTP://WWW.APEXMICROTECH.COM (800) 546-APEX (800) 546-2739

FEATURES

- EXTENDED SUPPLY RANGE UP TO ±175V or 350V TOTAL
- PROVIDES PAO8 PERFORMANCE
 UP TO ±150mA
 PROGRAMMABLE CURRENT LIMIT
 LOW DRIFT FET INPUT

APPLICATIONS

- PROGRAMMABLE POWER SUPPLIES UP TO 340V
- ELECTROSTATIC TRANSDUCERS & DEFLECTION
- PIEZO ELECTRIC TRANSDUCERS
- HIGH VOLTAGE INSTRUMENTATION

DESCRIPTION

The PA08V is an extended supply range operational amplifier capable of output voltage swings of $\pm 170V$ with dual supplies or 340V total supply voltage on single or non-symmetric supplies.

High accuracy is achieved with a cascode input circuit configuration. All internal biasing is referenced to a zener diode fed by a FET constant current source. As a result, the PA08 features an unprecedented supply range and excellent supply rejection. The output stage is biased class A-B for linear operation. Internal phase compensation assures stability at all gain settings. The safe operating area (SOA) can be observed with all types of loads by choosing the appropriate current limiting resistors. For operation into inductive loads, two external flyback pulse protection diodes are recommended. A heatsink may be necessary to maintain the proper case temperature under normal operating conditions.

This hybrid integrated circuit utilizes a beryllia (BeO) substrate, thick film resistors, ceramic capacitors, and semiconductor chips to maximize reliability, minimize size and give top performance. Ultrasonically bonded aluminum wires provide reliable interconnections at all operating temperatures. The 8-pin to TO-3 package is hermetically sealed and electrically isolated. The use of compressible thermal isolation washers and/or improper mounting torque will void the product warranty. Please see "General Operating Considerations".

SPECIFICATIONS

Specifications of the standard PA08 apply with the benefit of supply ratings being extended to $\pm 175V$. Design changes enabling the total supply rating of 350V have no effect on the shape of the typical performance graphs.

GENERAL CONSIDERATIONS

SAFE OPERATING AREA

The extended safe operating area is as follows:

When operating on $\pm 175V$, maximum safe values of capacitive and inductive loading are .2 μ F and 200mH. Maximum safe current limit for a short to common is 50mA, and for a short to supply rails, the maximum is 15mA.

Please consult the PA08 data sheet for basic information on this amplifier, plus the application notes in this APEX DATA BOOK, for recommendations on stability, current limiting, heatsinks, bypassing, and suggestions for circuit functions.

EQUIVALENT SCHEMATIC

