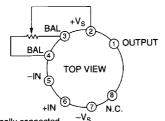
FEATURES

- LOW BIAS CURRENT, LOW NOISE FET Input
- PROTECTED OUTPUT Thermal Shutoff
- FULLY PROTECTED INPUT Up to ±150V
- WIDE SUPPLY RANGE ±15V to ±150V

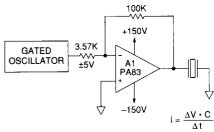
APPLICATIONS


- HIGH VOLTAGE INSTRUMENTATION
- ELECTROSTATIC TRANSDUCERS & DEFLECTION
- PROGRAMMABLE POWER SUPPLIES UP TO 290V
- ANALOG SIMULATORS

DESCRIPTION

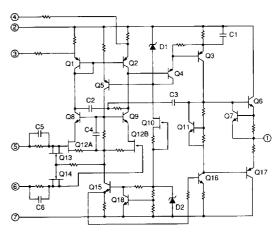
The PA83 is a high voltage operational amplifier designed for output voltage swings up to ±145V with a dual (±) supply or 290V with a single supply. Its input stage is protected against transient and steady state overvoltages up to and including the supply rails. High accuracy is achieved with a cascode input circuit configuration. All internal biasing is referenced to a zener diode fed by a FET constant current source. As a result, the PA83 features an unprecedented supply range and excellent supply rejection. The output stage is biased in the class A/ B mode for linear operation. Internal phase compensation assures stability at all gain settings without need for external components. Fixed current limits protect these amplifiers against shorts to common at supply voltages up to 120V. For operation into inductive loads, two external flyback pulse protection diodes are recommended. A built-in thermal shutoff circuit prevents destructive overheating. However, a heatsink may be necessary to maintain the proper case temperature under normal operating conditions.

This hybrid circuit utilizes beryllia (BeO) substrates, thick (cermet) film resistors, ceramic capacitors and silicon semiconductor chips to maximize reliability, minimize size and give top performance. Ultrasonically bonded aluminum wires provide reliable interconnections at all operating temperatures. The 8-pin TO-3 package is hermetically sealed and electrically isolated. The use of compressible thermal isolation washers and/or improper mounting torque voids product warranty. Please see Application Note 1 "General Operating Considerations".


EXTERNAL CONNECTIONS

1. Pin 8 not internally connected. 2. Input offset trimpot optional. Recommended value $100 \mathrm{K}\Omega$.

NOTES:



SIMPLE PIEZO ELECTRIC TRANSDUCER DRIVE

TYPICAL APPLICATION

While piezo electric transducers present a complex impedance, they are often primarily capacitive at useful frequencies. Due to this capacitance, the speed limitation for a given transducer/amplifier combination may well stem from limited current drive rather than power bandwidth restrictions. With its drive capability of 75mA, the PA83 can drive transducers having up to 2nF of capacitance at 40kHz at maximum output voltage. In the event the transducer may be subject to shock or vibration, flyback diodes, voltage clamps or other protection networks must be added to protect the amplifier from high voltages which may be generated.

EQUIVALENT SCHEMATIC

300V

17.5W

±300V

±300V

300°C

Internally Limited

PA83 • PA83A

ABSOLUTE MAXIMUM RATINGS

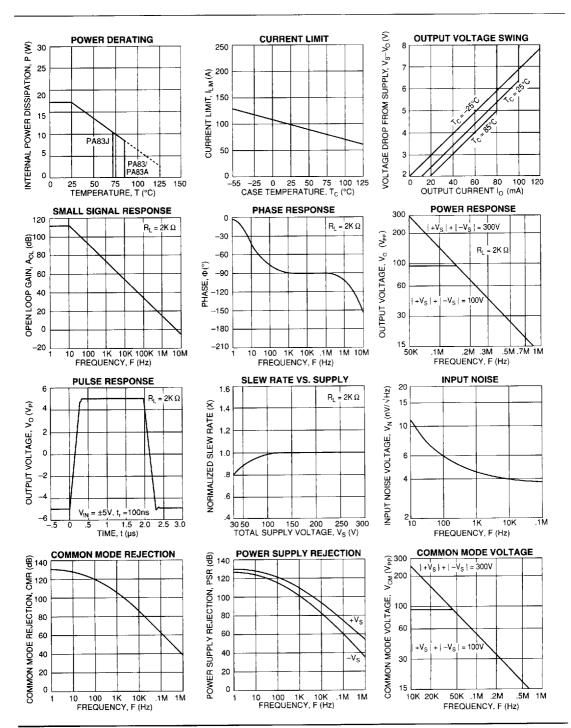
SUPPLY VOLTAGE, $+V_S$ to $-V_S$ OUTPUT CURRENT, within SOA POWER DISSIPATION, internal at $T_c = 25^{\circ}C^1$

INPUT VOLTAGE, differential INPUT VOLTAGE, common mode TEMPERATURE, pin solder - 10s max (solder)

TEMPERATURE, junction 150°C
TEMPERATURE RANGE, storage -65 to +150°C
OPERATING TEMPERATURE RANGE, case -55 to +125°C

SPECIFICATIONS			PA83 PA				A83A		
PARAMETER	TEST CONDITIONS ²	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
INPUT							***		
OFFSET VOLTAGE, initial OFFSET VOLTAGE, vs. temperature OFFSET VOLTAGE, vs. supply OFFSET VOLTAGE, vs. time	$T_c = 25^{\circ}C$ Full temperature range $T_c = 25^{\circ}C$ $T_c = 25^{\circ}C$		±1.5 ±10 ±.5 ±75	±3 ±25		±.5 ±5 ±.2	±1 ±10	mV μV/°C μV/√ μV/√kħ	
BIAS CURRENT, initial ³ BIAS CURRENT, vs. supply	$T_c = 25^{\circ}C$ $T_c = 25^{\circ}C$.01	50		3	10	pA pA/V	
OFFSET CURRENT, initial ⁵ OFFSET CURRENT, vs. supply INPUT IMPEDANCE, DC INPUT CAPACITANCE COMMON MODE VOLTAGE RANGE ⁴ COMMON MODE REJECTION, DC	T _C = 25°C T _C = 25°C T _C = 25°C Full temperature range Full temperature range Full temperature range	±V _S -10	±2.5 ±.01 10" 6	±50	*	±1.5	±10	pA pA/V Ω pF V dB	
GAIN	r un temperature range		130		i			ub.	
OPEN LOOP GAIN at 10Hz UNITY GAIN CROSSOVER FREQ. POWER BANDWIDTH PHASE MARGIN	$\begin{array}{l} T_{\text{C}} = 25^{\circ}\text{C}, R_{\text{L}} = 2K\Omega \\ T_{\text{C}} = 25^{\circ}\text{C}, R_{\text{L}} = 2K\Omega \\ T_{\text{C}} = 25^{\circ}\text{C}, R_{\text{L}} = 10K\Omega \\ \text{Full temperature range} \end{array}$	96	116 5 60 60		3 40	* *		dB MHz kHz	
OUTPUT									
VOLTAGE SWING ⁴ , full load VOLTAGE SWING ⁴ CURRENT, peak CURRENT, short circuit SLEW RATE ⁶ CAPACITIVE LOAD, unity gain CAPACITIVE LOAD, gain > 4 SETTLING TIME to .1%	Full temp. range, I_{o} = 75mA Full temp. range, I_{o} = 15mA T_{c} = 25°C T_{c} = 25°C T_{c} = 25°C, R_{L} = 2K Ω Full temperature range Full temperature range T_{c} = 25°C, R_{L} = 2K Ω , 10V step	±V _s -10 ±V _s -5 75	±V _s -5 ±V _s -3 100 30	10 SOA	*	•	:	V V mA mA V/μs nF μF μs	
POWER SUPPLY								•	
VOLTAGE CURRENT, quiescent	$T_{c} = -55^{\circ}C \text{ to } +125^{\circ}C$ $T_{c} = 25^{\circ}C$	±15	±150	±150 8.5	•	:		V mA	
THERMAL									
RESISTANCE, AC, junction to case ⁵ RESISTANCE, DC, junction to case RESISTANCE, case to air	F > 60Hz F < 60Hz		3.8 6 30	6.5		*	*	°C/W °C/W	
TEMP. RANGE, case (PA83/PA83A) TEMP. RANGE, case (PA83J)	Meets full range specification Meets full range specification	-25 0		+85 70	*		*	သိ	

NOTES: * The specification of PAB3A is identical to the specification for PAB3 in applicable column to the left.

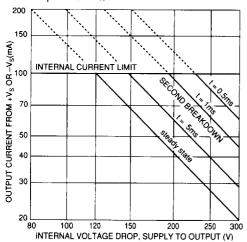

- Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTF.
- 2. The power supply voltage for all tests is the TYP rating, unless otherwise noted as a test condition.

Doubles for every 10°C of temperature increase.

- +V_s and -V_s denote the positive and negative supply rail respectively. Total V_s is measured from +V_s to -V_s.
- 5. Rating applies if the output current alternates between both output transistors at a rate faster than 60Hz.
- Signal slew rates at pins 5 and 6 must be limited to less than 1V/ns to avoid damage. When faster waveforms are unavoidable, resistors in series with those pins, limiting current to 150mA will protect the amplifier from damage.

CAUTION

The internal substrate contains beryllia (BeO). Do not break the seal. If accidentally broken, do not crush, machine, or subject to temperatures in excess of 850°C to avoid generating toxic fumes.


GENERAL

Please read Application Note 1, which covers stability, supplies, heatsinking, mounting, current limit, SOA interpretation, and specification interpretation. Additional information can be found in the application notes. For information on the package outline, heatsinks, and mounting hardware, consult the "Accessory and Package Mechanical Data" section of the handbook.

SAFE OPERATING AREA (SOA)

The bipolar output stage of this high voltage amplifier has two distinct limitations.

- The internal current limit, which limits maximum available output current.
- The second breakdown effect, which occurs whenever the simultaneous collector current and collector-emitter voltage exceed specified limits.

The SOA curves combine the effect of these limits. For a given application, the direction and magnitude of the output current should be calculated or measured and checked against the SOA curves. This is simple for resistive loads but more complex for reactive and EMF generating loads. However, the following guidelines may save extensive analytical efforts:

1. The following capacitive and inductive loads are safe:

±V _s	C(MAX)	L(MAX)
150V	.7 F	1.5H
125V	2.0μF	2.5H
100V	5.μ F	6.0H
75V	60μF	30H
50V	ALL	ALL

- Short circuits to ground are safe with dual supplies up to 120V or single supplies up to 120V.
- Short circuits to the supply rails are safe with total supply voltages up to 120V, e.g. ±60V.

 The output stage is protected against transient flyback. However, for protection against sustained, high energy flyback, external fast-recovery diodes should be used.

THERMAL SHUTDOWN PROTECTION

The thermal protection circuit shuts off the amplifier when the substrate temperature exceeds approximately 150°C. This allows heatsink selection to be based on normal operating conditions while protecting the amplifier against excessive junction temperature during temporary fault conditions.

Thermal protection is a fairly slow-acting circuit and therefore does not protect the amplifier against transient SOA violations (areas outside of the $T_{\rm c}=25^{\circ}{\rm C}$ boundary). It is designed to protect against short-term fault conditions that result in high power dissipation within the amplifier. If the conditions that cause thermal shutdown are not removed, the amplifier will oscillate in and out of shutdown. This will result in high peak power stresses, destroy signal integrity, and reduce the reliability of the device.

INDUCTIVE LOADS

Two external diodes as shown in Figure 1, are required to protect these amplifiers against flyback (kickback) pulses exceeding the supply voltages of the amplifier when driving inductive loads. For component selection, these external diodes must be very quick, such as ultra fast recovery diodes with no more than 200 nanoseconds of reverse recovery time. Be sure the diode voltage rating is greater than the total of both supplies. The diode will turn on to divert the flyback energy into the supply rails thus protecting the output transistors from destruction due to reverse bias.

A note of caution about the supply. The energy of the flyback pulse must be absorbed by the power supply. As a result, a transient will be superimposed on the supply voltage, the magnitude of the transient being a function of its transient impedance and current sinking capability. If the supply voltage plus transient exceeds the maximum supply rating or if the AC impedance of the supply is unknown, it is best to clamp the output and the supply with a zener diode to absorb the transient.

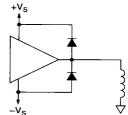
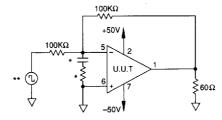


FIGURE 1. PROTECTION, INDUCTIVE LOAD


TABLE 4 GROUP A INSPECTION

PA83M

HTTP://WWW.APEXMICROTECH.COM (800) 546-APEX (800) 546-2739

Imput Offset Voltage Vos 25°C ±150V Vm = 0, A, = 100 5.7 mV	SG	PARAMETER	SYMBOL	TEMP.	POWER	TEST CONDITIONS	MIN	MAX	UNITS
Input Offset Voltage	1	Quiescent Current	l _Q	25°C	±150V	$V_{IN} = 0, A_{V} = 100$			mA
1 Input Bias Current, +IN 1 Input Bias Current, -IN 1 Input Offset Current 1 los 25°C ±150V V _{III} = 0 50 pA 1 Input Offset Current 1 los 25°C ±150V V _{III} = 0 50 pA 1 Input Offset Current 3 Quiescent Current 3 Input Offset Voltage Vos -55°C ±150V V _{III} = 0 110 mA 3 Input Offset Voltage Vos 1 pA = 0	1	Input Offset Voltage	Vos	25°C	±150V			3	m∨
1 Input Bias Current, -IN Input Offset Current Ios 25°C ±150V V _M = 0	1	Input Offset Voltage	Vos	25°C	±15V	$V_{IN} = 0, A_{V} = 100$		5.7	m∨
1 Input Offset Current 1 Ios 25°C ±150V V _H = 0 3 Quiescent Current 3 Input Offset Voltage V _{OS} -55°C ±150V V _H = 0, A _V = 100 3 Input Offset Voltage V _{OS} -55°C ±150V V _H = 0, A _V = 100 3 Input Bias Current, +IN +I ₆ +I ₆ -55°C ±150V V _H = 0, A _V = 100 3 Input Bias Current, +IN +I ₆ +55°C ±150V V _H = 0, A _V = 100 3 Input Bias Current, +IN +I ₆ -55°C ±150V V _H = 0 3 Input Gfset Current 1 Ios -55°C ±150V V _H = 0 4 Quiescent Current 2 Input Offset Voltage V _{OS} 125°C ±150V V _H = 0 4 Input Offset Voltage V _{OS} 125°C ±150V V _H = 0 4 Input Dfset Voltage V _{OS} 125°C ±150V V _H = 0 4 Input Dfset Voltage V _{OS} 125°C ±150V V _H = 0 4 Input Bias Current, +IN +I ₆ 125°C ±150V V _H = 0 4 Input Bias Current, +IN +I ₆ 125°C ±150V V _H = 0 4 Input Dfset Current I _{OS} 125°C ±150V V _H = 0 4 Output Voltage, I _O = 75mA V _O 25°C ±150V V _H = 0 4 Output Voltage, I _O = 29mA V _O 25°C ±150V V _H = 0 4 Stability/Noise E _N 25°C ±150V R _L = 10N R _L = 1	1	Input Bias Current, +IN	+18	25°C	±150V	$V_{iN} = 0$		50	pΑ
3 Quiescent Current	1	Input Bias Current, -IN	-I _B	25°C	±150V	$V_{IN} = 0$	1	50	pΑ
1	1	Input Offset Current	los	25°C	±150V	$V_{IN} = 0$		50	pΑ
3 Input Offset Voltage Vos -55°C ±150V Vin 0 A _V = 100 7.7 mV 3 Input Bias Current, +IN +I ₈ -55°C ±150V Vin 0 50 pA 50	3	Quiescent Current	l _o	-55°C	±150V	$V_{IN} = 0, A_{V} = 100$		10	mA
3 Input Offset Voltage 3 Input Bias Current, +IN 3 Input Bias Current, -IN 4	3	Input Offset Voltage	Vos	-55°C	±150V	$V_{IN} = 0, A_{V} = 100$		5	mV
3 Input Bias Current, +IN -I _B -55°C ±150V V _{IN} = 0 50 pA 3 Input Offset Current I _O 125°C ±150V V _{IN} = 0 50 pA 4 Input Offset Voltage V _{OS} 125°C ±150V V _{IN} = 0, A _V = 100 5.5 mV 5 Input Offset Voltage V _{OS} 125°C ±150V V _{IN} = 0, A _V = 100 5.5 mV 6 Input Offset Voltage V _{OS} 125°C ±150V V _{IN} = 0, A _V = 100 5.5 mV 7 Input Offset Voltage V _{OS} 125°C ±150V V _{IN} = 0, A _V = 100 5.5 mV 8 Input Bias Current, +IN +I _B 125°C ±150V V _{IN} = 0, A _V = 100 5.5 mV 8 Input Bias Current, -IN +I _B 125°C ±150V V _{IN} = 0 0 0 0 9 Input Bias Current, -IN +I _B 125°C ±150V V _{IN} = 0 0 0 0 9 Input Bias Current, -IN +I _B 125°C ±150V V _{IN} = 0 0 0 0 10 Input Offset Current I _{OS} 125°C ±150V V _{IN} = 0 0 0 0 10 Input Offset Current I _{OS} 125°C ±150V V _{IN} = 0 0 0 0 10 Input Offset Current I _{OS} 125°C ±150V V _{IN} = 0 0 0 0 10 Input Offset Current I _{OS} 125°C ±150V I _{IN} = 0 0 0 0 10 Input Offset Current I _{OS} 125°C ±150V I _{IN} = 0 0 0 0 10 Input Offset Current I _{OS} 125°C ±150V I _{IN} = 0 0 0 0 10 Input Offset Current I _{OS} 125°C ±150V I _{IN} = 0 0 0 0 10 Input Offset Current I _{OS} 125°C ±150V I _{IN} = 0 0 0 10 Input Offset Current I _{OS} 125°C ±150V I _{IN} = 0 0 0 10 Input Offset Current I _{IN} Input Offset Current I _{IN} Input Offset Current Input Offset Current Input	3	Input Offset Voltage		–55°C	±15V	$V_{IN} = 0, A_{V} = 100$		7.7	m۷
3 Input BiasCurrent, -IN 1-IB -55°C ±150V V _{IN} = 0 50 pA		Input Bias Current, +IN		-55°C	±150V			50	pΑ
3 Input Offset Current				–55°C	±150V	V _{IN} = 0		50	pΑ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			_	–55°C				50	pΑ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	Quiescent Current	l _o	125°C	±150V	$V_{IN} = 0, A_{V} = 100$		10	mA
2 Input Offset Voltage 2 Input Bias Current, +IN 3 Input Bias Current, -IN 4 Input Offset Current 4 Output Voltage, I _o = 75mA 4 Output Voltage, I _o = 29mA 4 Current Limits 5 Ica Siew Rate 6 Output Voltage, I _o = 40mA 6 Output Voltage, I _o = 29mA 7 Common Mode Rejection 6 Siew Rate 7 Siew Rate 8 Siew							l	5.5	mV
2 Input Bias Current, +IN 2 Input Bias Current, +IN 2 Input Bias Current, -IN 3 Input Bias Current, -IN 4 Input Offset Current Input Offset Input Of		,	Vos					8.2	mV
2 Input Bias Current, -IN 2 Input Offset Current -I _g 125°C ±150V V _{IN} = 0 10 nA 4 Output Voltage, I _o = 75mA V _o 25°C ±85V R _L = 1K 4 Output Voltage, I _o = 29mA V _o 25°C ±150V R _L = 5K 4 Current Limits 4 Stability/Noise 5 Output Voltage, I _o = 40mA V _o -55°C ±150V R _L = 5K Common Mode Rejection -I _g 125°C ±150V R _L = 5K Common Mode Rejection -I _g 25°C ±150V R _L = 5K Common Mode Rejection -I _g 25°C ±150V R _L = 5K, F = 10Hz Common Mode Rejection -I _g 25°C ±150V R _L = 5K, F = 10Hz Common Mode Rejection -I _g 25°C ±150V R _L = 5K, F = 10Hz Common Mode Rejection -I _g 25°C ±150V R _L = 5K -I _g 20 80 V/μμ R _L = 5K -I _g 20 80 V/								10	nA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								10	nA.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								10	nA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	Output Voltage I _o = 75mA	V _a	25°C	+85V	R. = 1K	75		v
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							145	i	v
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_		1		75	125	mA
4 Slew Rate $SR = 25^{\circ}C = \pm 150V = R_L = 5K = 20 = 80 = V/\mu = 40 = 25^{\circ}C = \pm 150V = R_L = 5K = 10 = 20 = 80 = 40 = 40 = 40 = 40 = 40 = 40 = 4$					1				mV
4 Open Loop Gain $A_{OL} = 25^{\circ}\text{C} + 150^{\circ}\text{V} R_L = 5\text{K}, F = 10\text{Hz}$ 96 dB							20	80	V/µs
4 Common Mode Rejection			_	1	1		1		
6 Output Voltage, $I_{o} = 40 \text{mA}$		•						İ	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	Common wode Rejection	Civiti	250	102.54	11(= 310, 1 = 50, 4 _{CM} = ±22.54			
6 Stability/Noise $E_N = -55^{\circ}C \pm 150V$ $R_L = 5K$, $A_V = 1$, $C_L = 10nF$ 1 mV $V/\mu = 6$ Slew Rate $SR = -55^{\circ}C \pm 150V$ $R_L = 5K$, $A_V = 1$, A_V	6	Output Voltage, Io = 40mA	V _o	-55°C	±45V	$R_L = 1K$	40	1	1 -
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Output Voltage, lo = 29mA	V _o	–55°C	±150V		145		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Stability/Noise	E _N	-55°C	±150V	$R_L = 5K, A_V = 1, C_L = 10nF$			mV
6 Common Mode Rejection CMR $-55^{\circ}C$ $\pm 32.5^{\circ}V$ $R_L = 5K$, $F = DC$, $V_{CM} = \pm 22.5^{\circ}V$ 90 dB 5 Output Voltage, $I_0 = 40mA$ V_0 $125^{\circ}C$ $\pm 45^{\circ}V$ $R_L = 1K$ 40 V 5 Output Voltage, $I_0 = 29mA$ V_0 $125^{\circ}C$ $\pm 150^{\circ}V$ $R_L = 5K$ 145 V 145 V 5 Stability/Noise E_N 125°C $\pm 150^{\circ}V$ $R_L = 5K$, $A_V = 1$, $C_L = 10nF$ 1 mV 5 Slew Rate SR 125°C $\pm 150^{\circ}V$ $R_L = 5K$, $R_L = 5K$, $R_L = 10nF$ 20 80 V/μ 5 Open Loop Gain $R_L = 100^{\circ}V$ $R_L =$	6	Slew Rate	SR	-55°C	±150V	$R_L = 5K$	20	80	V/μs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	Open Loop Gain	A _{OL}	-55°C	±150V	$R_L = 5K$, $F = 10Hz$	96		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6			-55°C	±32.5V	$R_L = 5K, F = DC, V_{CM} = \pm 22.5V$	90		dB
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	Output Voltage, I _o = 40mA	V _o	125°C	±45V	R _L = 1K	40		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				125°C	±150V	R _L = 5K	145		V
5 Slew Rate SR 125°C ±150V $R_L = 5K$ 20 80 V/μ 5 Open Loop Gain $A_{o.}$ 125°C ±150V $R_L = 5K$, $F = 10Hz$ 96 dB								1	mV
5 Open Loop Gain $A_{o.}$ 125°C ±150V R_{L} = 5K, F = 10Hz 96 dB		•					20	80	V/µs
							96		dB
	5	Common Mode Rejection	CMR	125°C			90		₫B

BURN IN CIRCUIT

- These components are used to stabilize device due to poor high frequency characteristics of burn in board.
- Input signals are calculated to result in internal power dissipation of approximately 2.1W at case temperature = 125°C.