


PI74ALVCH16270

12-Bit To 24-Bit Registered Bus Exchanger with 3-State Outputs

Product Features

- PI74ALVCH16270 is designed for low voltage operation
- $V_{CC} = 2.3 \text{V to } 3.6 \text{V}$
- Hysteresis on all inputs
- Typical VOLP (Output Ground Bounce)
 - < 0.8 V at $V_{CC} = 3.3 \text{V}$, $T_A = 25^{\circ}\text{C}$
- Typical V_{OHV} (Output V_{OH} Undershoot)
 - < 2.0 V at $V_{CC} = 3.3 \text{V}$, $T_A = 25^{\circ}\text{C}$
- Bus Hold retains last active bus state during 3-STATE, eliminating the need for external pullup resistors
- Industrial operation at -40°C to +85°C
- Packages available:
 - -56-pin 240 mil wide plastic TSSOP (A)
 - 56-pin 300 mil wide plastic SSOP (V)

Logic Block Diagram

1

Product Description

Pericom Semiconductor's PI74ALVCH series of logic circuits are produced in the Company's advanced 0.5 micron CMOS technology, achieving industry leading speed.

The PI7ALVCH16270 is used in applications where data must be transferred from a narrow high-speed bus to a wider lower frequency bus.

The device provides synchronous data exchange between the two ports. Data is stored in the internal registers on the low-to-high transition of the clock (CLK) input when the appropriate CLKEN inputs are low. The select (SEL) line selects 1B or 2B data for the A outputs. For data transfer in the A-to-B direction, a two stage pipeline is provided in the A-to1B path, with a single storage register in the A-to-2B path. Proper control of the CLKENA inputs allows two sequential 12-bit words to be presented synchronously as a 24-bit on the B port. Data flow is controlled by the active-low output enables (OEA, OEB). The control terminals are registered to synchronize the bus direction changes with the CLK.

To ensure the high-impedance state during power up or power down, OE should be tied to Vcc through a pullup resistor, the minimum value of the resistor is determined by the current-sinking capability of the driver. Due to OE being routed through a register, the active state of the outputs cannot be determined prior to the arrival of the first clock pulse.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

> PS8171A 03/17/98

Product Pin Description

Pin Name	Description
ŌĒ	Output Enable Input (Active LOW)
CLK	Clock
<u>SE</u> L	Select (Active Low)
CLKEN	Clock Enable (Active Low)
A,1B,2B	3-State Outputs
GND	Ground
Vcc	Power

Truth Tables(1)

	Inputs	Outputs		
CLK	ŌEĀ	ŌEB	A	1B, 2B
\uparrow	Н	Н	Z	Z
\uparrow	Н	L	Z	Active
\uparrow	L	Н	Active	Z
\uparrow	L	L	Active	Active

Product Pin Configuration

1 Toduct 1 III Com	ingui	ation		
ŌĒĀ	4		50 h	ŌĒB
CLKEN1B			56	CLKENA2
			55	2B4
2B3 GND	3		54	GND
2B2	☐ 4 ☐ 5		53	2B5
2B2 2B1	☐ 5 ☐ 6	56-PIN	52	2B6
		A56	51 D	VCC
VCC A1	☐ 7 ☐ 8	V56	49	2B7
A2			48	2B8
A3	10		47	2B9
GND	11		46	GND
A4	12		45	2B10
A5	13		44	2B11
A6	14		43	2B12
A7	15		42	1B12
A8	16		41	1B11
A9	17		40	1B10
GND	18		39	GND
A10	19		38	1B9
A11	20		37	1B8
A12	21		36	1B7
Vcc	22		35	VCC
1B1	23		34	1B6
1B2	□ 24		33	1B5
GND	□ 25		32	GND
1B3	□ 26		31	1B4
CLKEN2B	□ 27		30	CLKENA1
SEL	□ 28		29	CLK

A to B Storage (OEB = L)

	OUTPUTS				
CLKENA1	CLKENA1 CLKENA2		A	1B	2B
L	Н	1	L	$L^{(2)}$	$2B0^{(3)}$
L	Н	1	Н	H ⁽²⁾	2B0 ⁽³⁾
L	L	1	L	L ⁽²⁾	L
L	L	1	Н	H ⁽²⁾	Н
Н	L	1	L	1B0 ⁽³⁾	L
Н	L	1	Н	1B0 ⁽³⁾	Н
Н	Н	X	X	1B0 ⁽³⁾	2B0 ⁽³⁾

B to A Storage (OEA = L)

	Outputs					
CLKEN1B	CLKEN2B	CLK	SEL	1B	2B	A
Н	X	X	Н	X	X	$A0^{(3)}$
X	Н	X	L	X	X	A0 ⁽³⁾
L	X	1	Н	L	X	L
L	X	1	Н	Н	X	Н
X	L	1	L	X	L	L
X	L	1	L	X	Н	Н

Notes:

2

1. H = High Signal Level L = Low Signal Level

X = Irrelevant

Z = High Impedance
↑ = Transition, Low to High

2. Two CLK edges are needed to propagate data.

3. Output level before the indicated steady state input conditions were established.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	-40°C to +85°C
Input Voltage Range, VIN	
Output Voltage Range, VOUT	0.5V to V _{CC} +0.5V
DC Input Voltage	0.5V to +5.0V
DC Output Current	100 mA
Power Dissipation	1.0W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $TA = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $VCC = 3.3\text{V} \pm 10\%$)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units			
V _{CC}	Supply Voltage		2.3		3.6				
V _{IH} ⁽³⁾	Innut IIICII Valtaga	$V_{CC} = 2.3V \text{ to } 2.7V$	1.7						
VIHC	Input HIGH Voltage	$V_{CC} = 2.7V \text{ to } 3.6V$							
V _{IL} (3)	Lorent LOW Valence	$V_{CC} = 2.3V \text{ to } 2.7V$			0.7				
VIL.	Input LOW Voltage	$V_{CC} = 2.7V \text{ to } 3.6V$			0.8				
V _{IN} ⁽³⁾	Input Voltage		0		V_{CC}				
V _{OUT} ⁽³⁾	Output Voltage		0		V_{CC}				
		I_{OH} = -100 μ A, V_{CC} = Min. to Max.	V _{CC} -0.2						
	_	$V_{IH} = 1.7V$, $I_{OH} = -6mA$, $V_{CC} = 2.3V$	2.0			V			
V _{OH}	Output HIGH	$V_{IH} = 1.7V$, $I_{OH} = -12mA$, $V_{CC} = 2.3V$	1.7			V			
	Voltage	$V_{IH} = 2.0V, I_{OH} = -12mA, V_{CC} = 2.7V$ 2.2							
		$V_{IH} = 2.0V$, $I_{OH} = -12mA$, $V_{CC} = 3.0V$	2.4	2.4					
		$V_{IH} = 2.0V$, $I_{OH} = -24mA$, $V_{CC} = 3.0V$	2.0						
		I_{OL} = 100 μ A, V_{IL} = Min. to Max.			0.2				
	Output	$V_{IL} = 0.7V$, $I_{OL} = 6mA$, $V_{CC} = 2.3V$			0.4				
V _{OL}	LOW Voltage	$V_{IL} = 0.7V$, $I_{OL} = 12mA$, $V_{CC} = 2.3V$			0.7				
	voltage	$V_{IL} = 0.8V$, $I_{OL} = 12mA$, $V_{CC} = 2.7V$			0.4				
		$V_{IL} = 0.8V$, $I_{OL} = 24mA$, $V_{CC} = 3.0V$			0.55				
	Output	$V_{CC} = 2.3V$			-12				
$I_{OH}^{(3)}$	HIGH Current	$V_{\rm CC} = 2.7 V$			-12				
	Curent	$V_{\rm CC} = 3.0 V$			-24				
(2)	Output	$V_{CC} = 2.3V$			12	mA			
I _{OL} ⁽³⁾	LOW Current	V _{CC} = 2.7V			12				
		$V_{\rm CC} = 3.0 V$			24				

3

PS8171A 03/17/98

12-Bit To 24-Bit Registered Bus Exchanger with 3-State Outputs

DC Electrical Characteristics-Continued (Over the Operating Range, $T_A = -40$ °C to +85°C, $V_{CC} = 3.3 \text{V} \pm 10\%$)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Тур.(2)	Max.	Units
I_{IN}	Input Current	$V_{IN} = V_{CC}$ or GND, $V_{CC} = 3.6V$			±5	
		$V_{IN} = 0.7V, V_{CC} = 2.3V$	45			
	Input	$V_{IN} = 1.7V, V_{CC} = 2.3V$	-45			
I _{IN} (HOLD)	_	$V_{IN} = 0.8V, V_{CC} = 3.0V$	75			
		$V_{IN} = 2.0V, V_{CC} = 3.0V$	-75			
		$V_{IN} = 0$ to 3.6V, $V_{CC} = 3.6V$			±500	μΑ
Ioz	Output Current (3-STATE Outputs)	$V_{OUT} = V_{CC}$ or GND, $V_{CC} = 3.6V$			±10	
I_{CC}	Supply Current	V_{CC} = 3.6V, I_{OUT} = 0 μ A, V_{IN} = GND or V_{CC}			40	
ΔI_{CC}	Supply Current per Input @ TTL HIGH	$V_{CC} = 3.0V$ to $3.6V$ One Input at V_{CC} - $0.6V$ Other Inputs at V_{CC} or GND			750	
C_{I}	Control Inputs	$V_{IN} = V_{CC}$ or GND, $V_{CC} = 3.3V$		3.5		nE
Co	Outputs	$V_{\rm O} = V_{\rm CC}$ or GND, $V_{\rm CC} = 3.3 \text{V}$		9		pF

Notes:

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient and maximum loading.
- 3. Unused Control Inputs must be held HIGH or LOW to prevent them from floating.

Timing Requirements over Operating Range

Parameters	D	a a animéia m	$V_{\rm CC} = 2.5 V \pm 0.2 V$ $V_{\rm CC} = 2.7 V$		= 2.7V	$V_{CC} = 3.$	$3V \pm 0.3V$	Units		
rarameters	J	escription	Min.	Max. Min. Max.			Min.	Max.		
fCLOCK	Clock frequency		0	150	0	150	0	150	Mhz	
tw	Pulse duration, CLK HIGHor Low		3.3		3.3		3.3			
		A data before CLK↑	4.1		3.8		3.1			
		B data before CLK↑	0.9		1.2		0.9			
t _{SU} Setuj	Setup time	CLKENA1 or CLKENA2 before CLK↑	3.5		3.2		2.7			
		CLKEN1B or CLKEN2B before CLK↑	3.4		3		2.6			
		OE data before CLK↑	4.4		3.9		3.2		ns	
		A data after CLK↑	0		0		0.2			
		B data after CLK↑	1.4		1		1.7			
t _H	Hold time	CLKENA1 or CLKENA2 before CLK↑	0		0.1		0.3			
		CLKEN1B or CLKEN2B before CLK↑	0		0		0.6			
		OE after CLK↑	0		0		0.1			
$\Delta t / \Delta V^{(1)}$	Input Transition Rise or Fall		0	10	0	10	0	10	ns/V	

4

Notes:

1. Unused control inputs must be held HIGH or LOW to prevent them from floating.

Switching Characteristics over Operating Range⁽¹⁾

Parameters From		To (OUTPUT)	$V_{CC} = 2.5V \pm 0.2V$		$V_{\rm CC} = 2.7 V$		$V_{CC} = 3.$	Units	
	(INPUT)	(OUTPUT)	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Min. ⁽²⁾ Max. ⁽²⁾	
			150		150		150		
FMAX	CLK	В	2	6.5		5.8	1.1	5.1	
	CLK	A	1.7	6		5.4	1	4.7	
t _{PD}	SEL	A	1.9	6.8		6.4	1	5.5	ns
t _{EN}	CLK	A or B	1.6	7.5		6.8	1	6	
t _{DIS}	CLK	A or B	2.6	7.4		6.5	1.1	5.8	

Notes:

- 1. See test circuit and wave forms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.

Operating Characteristics, $T_A = 25^{\circ}C$

Parameter		Test Conditions	$V_{CC} = 2.5V \pm 0.2V$	$V_{CC} = 3.3V \pm 0.3V$	Units
Taramen	rarameter		Турі	ical	Units
C _{PD} Power Dissipation	Outputs Enabled	$C_{\rm L} = 50 {\rm pF},$	87	120	nE
Capacitance	Outputs Disabled	f= 10 MHz	80.5	118	pF

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com